Prediction of liver remnant regeneration after living donor liver transplantation using preoperative CT texture analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-05

AUTHORS

Ji-Eun Kim, Jung Hoon Kim, Sang Joon Park, Seo-Youn Choi, Nam-Joon Yi, Joon Koo Han

ABSTRACT

PURPOSE: To predict the rate of liver regeneration after living donor liver transplantation (LDLT) using pre-operative computed tomography (CT) texture analysis. MATERIALS AND METHODS: 112 living donors who performed right hepatectomy for LDLT were included retrospectively. We measured the volume of future remnant liver (FLR) on pre-operative CT and the volume of remnant liver (LR) on follow-up CT, taken at a median of 123 days after transplantation. The regeneration index (RI) was calculated using the following equation: [Formula: see text]. Computerized texture analysis of the semi-automatically segmented FLR was performed. We used a stepwise, multivariable linear regression to assess associations of clinical features and texture parameters in relation to RI and to make the best-fit predictive model. RESULTS: The mean RI was 110.7 ± 37.8%, highly variable ranging from 22.4% to 247.0%. Among texture parameters, volume of FLR, standard deviation, variance, and gray level co-occurrence matrices (GLCM) contrast were found to have significant correlations between RI. In multivariable analysis, smaller volume of FLR (ß - 0.17, 95% CI - 0.22 to - 0.13) and lower GLCM contrast (ß - 1.87, 95% CI - 3.64 to - 0.10) were associated with higher RI. The regression equation predicting RI was following: RI = 203.82 + 10.42 × pre-operative serum total bilirubin (mg/dL) - 0.17 × VFLR (cm3) - 1.87 × GLCM contrast (× 100). CONCLUSION: Volume of FLR and GLCM contrast were independent predictors of RI, showing significant negative correlations. Pre-operative CT with texture analysis can be useful for predicting the rate of liver regeneration in living donor of liver transplantation. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-018-01892-2

DOI

http://dx.doi.org/10.1007/s00261-018-01892-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111160301

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30612157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ji-Eun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung Hoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Joon", 
        "id": "sg:person.0646222154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soonchunhyang University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412678.e", 
          "name": [
            "Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon-Si, Gyeonggi-Do, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Seo-Youn", 
        "id": "sg:person.0701343356.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701343356.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Nam-Joon", 
        "id": "sg:person.0654144447.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654144447.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/tp.0b013e3181aaccb0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000921405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/tp.0b013e3181aaccb0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000921405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/tp.0b013e3181aaccb0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000921405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jmiv.0000011320.81911.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003031106", 
          "https://doi.org/10.1023/b:jmiv.0000011320.81911.38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.transproceed.2006.10.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004681559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.21622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005153129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-3944(03)00066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007872274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-3944(03)00066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007872274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.tp.0000053755.08825.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008416574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.tp.0000053755.08825.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008416574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3420-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010879560", 
          "https://doi.org/10.1007/s00330-014-3420-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/liv.12089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014341207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.transproceed.2006.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014374016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/jhep.2000.9406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015631546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archsurg.135.3.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023178090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3349/ymj.2003.44.6.1069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.21562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028882744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2302021318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2965-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276284", 
          "https://doi.org/10.1007/s00330-013-2965-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2965-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276284", 
          "https://doi.org/10.1007/s00330-013-2965-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000197912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032427899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.23966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035172531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0196-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036528660", 
          "https://doi.org/10.1007/s13244-012-0196-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036982442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840200712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038111780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/jlts.2002.33731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038172624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.transproceed.2009.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038852089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2013.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039340051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01676884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040591908", 
          "https://doi.org/10.1007/bf01676884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01676884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040591908", 
          "https://doi.org/10.1007/bf01676884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.1800750309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041682136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2010.0021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045447398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8278(02)00262-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045854338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.22087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046638513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.22087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046638513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-013-2278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047310187", 
          "https://doi.org/10.1007/s00268-013-2278-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-6109(16)44780-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048894443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.transproceed.2012.01.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050333797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.213.2.r99nv49317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050632265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002680020059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050992267", 
          "https://doi.org/10.1007/s002680020059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21037/hbsn.2016.11.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068832689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.176.2.1760483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069323815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2522080922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077948763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2001.937505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095383001"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-05", 
    "datePublishedReg": "2019-01-05", 
    "description": "PURPOSE: To predict the rate of liver regeneration after living donor liver transplantation (LDLT) using pre-operative computed tomography (CT) texture analysis.\nMATERIALS AND METHODS: 112 living donors who performed right hepatectomy for LDLT were included retrospectively. We measured the volume of future remnant liver (FLR) on pre-operative CT and the volume of remnant liver (LR) on follow-up CT, taken at a median of 123\u00a0days after transplantation. The regeneration index (RI) was calculated using the following equation: [Formula: see text]. Computerized texture analysis of the semi-automatically segmented FLR was performed. We used a stepwise, multivariable linear regression to assess associations of clinical features and texture parameters in relation to RI and to make the best-fit predictive model.\nRESULTS: The mean RI was 110.7\u2009\u00b1\u200937.8%, highly variable ranging from 22.4% to 247.0%. Among texture parameters, volume of FLR, standard deviation, variance, and gray level co-occurrence matrices (GLCM) contrast were found to have significant correlations between RI. In multivariable analysis, smaller volume of FLR (\u00df -\u20090.17, 95% CI -\u20090.22 to -\u20090.13) and lower GLCM contrast (\u00df -\u20091.87, 95% CI -\u20093.64 to -\u20090.10) were associated with higher RI. The regression equation predicting RI was following: RI\u2009=\u2009203.82\u2009+\u200910.42\u2009\u00d7\u2009pre-operative serum total bilirubin (mg/dL) -\u20090.17\u2009\u00d7\u2009VFLR (cm3)\u2009-\u20091.87\u2009\u00d7\u2009GLCM contrast (\u00d7\u2009100).\nCONCLUSION: Volume of FLR and GLCM contrast were independent predictors of RI, showing significant negative correlations. Pre-operative CT with texture analysis can be useful for predicting the rate of liver regeneration in living donor of liver transplantation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-018-01892-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Prediction of liver remnant regeneration after living donor liver transplantation using preoperative CT texture analysis", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ff3e1a3e9c1cff1f113ee4cca2a2da833ff20c8e237d95ad6c2969a2d46a11e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30612157"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-018-01892-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111160301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-018-01892-2", 
      "https://app.dimensions.ai/details/publication/pub.1111160301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000312_0000000312/records_1298_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-018-01892-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-01892-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-01892-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-01892-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-01892-2'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      63 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-018-01892-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N5d8df1d968684819a0b655ab7e398d01
4 schema:citation sg:pub.10.1007/bf01676884
5 sg:pub.10.1007/s00268-013-2278-0
6 sg:pub.10.1007/s002680020059
7 sg:pub.10.1007/s00330-013-2965-0
8 sg:pub.10.1007/s00330-014-3420-6
9 sg:pub.10.1007/s13244-012-0196-6
10 sg:pub.10.1023/b:jmiv.0000011320.81911.38
11 https://doi.org/10.1001/archsurg.135.3.302
12 https://doi.org/10.1002/bjs.1800750309
13 https://doi.org/10.1002/hep.1840200712
14 https://doi.org/10.1002/lt.21562
15 https://doi.org/10.1002/lt.21622
16 https://doi.org/10.1002/lt.22087
17 https://doi.org/10.1002/lt.23966
18 https://doi.org/10.1016/j.transproceed.2006.06.003
19 https://doi.org/10.1016/j.transproceed.2006.10.101
20 https://doi.org/10.1016/j.transproceed.2009.08.014
21 https://doi.org/10.1016/j.transproceed.2012.01.063
22 https://doi.org/10.1016/s0003-3944(03)00066-x
23 https://doi.org/10.1016/s0039-6109(16)44780-8
24 https://doi.org/10.1016/s0168-8278(02)00262-3
25 https://doi.org/10.1053/jhep.2000.9406
26 https://doi.org/10.1053/jlts.2002.33731
27 https://doi.org/10.1097/01.tp.0000053755.08825.12
28 https://doi.org/10.1097/tp.0b013e3181aaccb0
29 https://doi.org/10.1102/1470-7330.2010.0021
30 https://doi.org/10.1102/1470-7330.2013.0015
31 https://doi.org/10.1109/iccv.2001.937505
32 https://doi.org/10.1111/liv.12089
33 https://doi.org/10.1148/radiol.2302021318
34 https://doi.org/10.1148/radiol.2522080922
35 https://doi.org/10.1148/radiology.213.2.r99nv49317
36 https://doi.org/10.1159/000197912
37 https://doi.org/10.21037/hbsn.2016.11.05
38 https://doi.org/10.2214/ajr.176.2.1760483
39 https://doi.org/10.3174/ajnr.a2061
40 https://doi.org/10.3349/ymj.2003.44.6.1069
41 schema:datePublished 2019-01-05
42 schema:datePublishedReg 2019-01-05
43 schema:description PURPOSE: To predict the rate of liver regeneration after living donor liver transplantation (LDLT) using pre-operative computed tomography (CT) texture analysis. MATERIALS AND METHODS: 112 living donors who performed right hepatectomy for LDLT were included retrospectively. We measured the volume of future remnant liver (FLR) on pre-operative CT and the volume of remnant liver (LR) on follow-up CT, taken at a median of 123 days after transplantation. The regeneration index (RI) was calculated using the following equation: [Formula: see text]. Computerized texture analysis of the semi-automatically segmented FLR was performed. We used a stepwise, multivariable linear regression to assess associations of clinical features and texture parameters in relation to RI and to make the best-fit predictive model. RESULTS: The mean RI was 110.7 ± 37.8%, highly variable ranging from 22.4% to 247.0%. Among texture parameters, volume of FLR, standard deviation, variance, and gray level co-occurrence matrices (GLCM) contrast were found to have significant correlations between RI. In multivariable analysis, smaller volume of FLR (ß - 0.17, 95% CI - 0.22 to - 0.13) and lower GLCM contrast (ß - 1.87, 95% CI - 3.64 to - 0.10) were associated with higher RI. The regression equation predicting RI was following: RI = 203.82 + 10.42 × pre-operative serum total bilirubin (mg/dL) - 0.17 × VFLR (cm3) - 1.87 × GLCM contrast (× 100). CONCLUSION: Volume of FLR and GLCM contrast were independent predictors of RI, showing significant negative correlations. Pre-operative CT with texture analysis can be useful for predicting the rate of liver regeneration in living donor of liver transplantation.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1297457
48 schema:name Prediction of liver remnant regeneration after living donor liver transplantation using preoperative CT texture analysis
49 schema:pagination 1-10
50 schema:productId N472c171a49f94690a638d8f798929703
51 N4cd09a05608041ba92c9925712433d09
52 N91053eebbb744f158d423326888f6266
53 Nc47ceff8c24f4833bc80297e3e4aacbb
54 Nfeecf24d77024671b46bc1b36ba8e660
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111160301
56 https://doi.org/10.1007/s00261-018-01892-2
57 schema:sdDatePublished 2019-04-11T08:35
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N054b911bde7d4a4693355e9c88338156
60 schema:url https://link.springer.com/10.1007%2Fs00261-018-01892-2
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N054b911bde7d4a4693355e9c88338156 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N472c171a49f94690a638d8f798929703 schema:name nlm_unique_id
67 schema:value 101674571
68 rdf:type schema:PropertyValue
69 N4ac95d5be0b14023a54da38e3b2b252d schema:affiliation https://www.grid.ac/institutes/grid.412484.f
70 schema:familyName Kim
71 schema:givenName Jung Hoon
72 rdf:type schema:Person
73 N4cd09a05608041ba92c9925712433d09 schema:name readcube_id
74 schema:value 9ff3e1a3e9c1cff1f113ee4cca2a2da833ff20c8e237d95ad6c2969a2d46a11e
75 rdf:type schema:PropertyValue
76 N51e57d181e334756acc7b123ed287881 rdf:first sg:person.0647723014.95
77 rdf:rest rdf:nil
78 N5adcfcfd9af543cfbd53870b9aad019b schema:affiliation https://www.grid.ac/institutes/grid.412484.f
79 schema:familyName Kim
80 schema:givenName Ji-Eun
81 rdf:type schema:Person
82 N5d8df1d968684819a0b655ab7e398d01 rdf:first N5adcfcfd9af543cfbd53870b9aad019b
83 rdf:rest Naf3a904cff0e4df194db0945fabdc04f
84 N820029c651d24ac68b26c46c855e7edf rdf:first sg:person.0701343356.31
85 rdf:rest Nff5e63533db8463c8eb02d0bef771e2d
86 N91053eebbb744f158d423326888f6266 schema:name doi
87 schema:value 10.1007/s00261-018-01892-2
88 rdf:type schema:PropertyValue
89 Na536d12cc9b94432bf9ac61d458a0681 rdf:first sg:person.0646222154.82
90 rdf:rest N820029c651d24ac68b26c46c855e7edf
91 Naf3a904cff0e4df194db0945fabdc04f rdf:first N4ac95d5be0b14023a54da38e3b2b252d
92 rdf:rest Na536d12cc9b94432bf9ac61d458a0681
93 Nc47ceff8c24f4833bc80297e3e4aacbb schema:name dimensions_id
94 schema:value pub.1111160301
95 rdf:type schema:PropertyValue
96 Nfeecf24d77024671b46bc1b36ba8e660 schema:name pubmed_id
97 schema:value 30612157
98 rdf:type schema:PropertyValue
99 Nff5e63533db8463c8eb02d0bef771e2d rdf:first sg:person.0654144447.73
100 rdf:rest N51e57d181e334756acc7b123ed287881
101 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
102 schema:name Medical and Health Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
105 schema:name Clinical Sciences
106 rdf:type schema:DefinedTerm
107 sg:journal.1297457 schema:issn 2366-004X
108 2366-0058
109 schema:name Abdominal Radiology
110 rdf:type schema:Periodical
111 sg:person.0646222154.82 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
112 schema:familyName Park
113 schema:givenName Sang Joon
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82
115 rdf:type schema:Person
116 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
117 schema:familyName Han
118 schema:givenName Joon Koo
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
120 rdf:type schema:Person
121 sg:person.0654144447.73 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
122 schema:familyName Yi
123 schema:givenName Nam-Joon
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654144447.73
125 rdf:type schema:Person
126 sg:person.0701343356.31 schema:affiliation https://www.grid.ac/institutes/grid.412678.e
127 schema:familyName Choi
128 schema:givenName Seo-Youn
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701343356.31
130 rdf:type schema:Person
131 sg:pub.10.1007/bf01676884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040591908
132 https://doi.org/10.1007/bf01676884
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00268-013-2278-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047310187
135 https://doi.org/10.1007/s00268-013-2278-0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s002680020059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050992267
138 https://doi.org/10.1007/s002680020059
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00330-013-2965-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030276284
141 https://doi.org/10.1007/s00330-013-2965-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00330-014-3420-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010879560
144 https://doi.org/10.1007/s00330-014-3420-6
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s13244-012-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036528660
147 https://doi.org/10.1007/s13244-012-0196-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1023/b:jmiv.0000011320.81911.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003031106
150 https://doi.org/10.1023/b:jmiv.0000011320.81911.38
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1001/archsurg.135.3.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023178090
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/bjs.1800750309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041682136
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/hep.1840200712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038111780
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/lt.21562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028882744
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/lt.21622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005153129
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/lt.22087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046638513
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/lt.23966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035172531
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.transproceed.2006.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014374016
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.transproceed.2006.10.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004681559
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.transproceed.2009.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038852089
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.transproceed.2012.01.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050333797
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0003-3944(03)00066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007872274
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0039-6109(16)44780-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048894443
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0168-8278(02)00262-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045854338
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1053/jhep.2000.9406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015631546
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1053/jlts.2002.33731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038172624
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1097/01.tp.0000053755.08825.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008416574
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1097/tp.0b013e3181aaccb0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000921405
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1102/1470-7330.2010.0021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045447398
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1102/1470-7330.2013.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340051
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/iccv.2001.937505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095383001
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/liv.12089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014341207
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1148/radiol.2302021318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223783
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiol.2522080922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077948763
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiology.213.2.r99nv49317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050632265
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1159/000197912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032427899
203 rdf:type schema:CreativeWork
204 https://doi.org/10.21037/hbsn.2016.11.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068832689
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2214/ajr.176.2.1760483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069323815
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3174/ajnr.a2061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036982442
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3349/ymj.2003.44.6.1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649193
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
213 schema:name Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
214 Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
215 Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
216 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.412678.e schema:alternateName Soonchunhyang University Hospital
219 schema:name Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon-Si, Gyeonggi-Do, South Korea
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...