Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: what are the advantages and trade-offs in conspicuity ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

G. Jay Hanson, Gregory J. Michalak, Robert Childs, Brian McCollough, Anil N. Kurup, David M. Hough, Judson M. Frye, Jeff L. Fidler, Sudhakar K. Venkatesh, Shuai Leng, Lifeng Yu, Ahmed F. Halaweish, W. Scott Harmsen, Cynthia H. McCollough, J. G. Fletcher

ABSTRACT

PURPOSE: Single-energy low tube potential (SE-LTP) and dual-energy virtual monoenergetic (DE-VM) CT images both increase the conspicuity of hepatic lesions by increasing iodine signal. Our purpose was to compare the conspicuity of proven liver lesions, artifacts, and radiologist preferences in dose-matched SE-LTP and DE-VM images. METHODS: Thirty-one patients with 72 proven liver lesions (21 benign, 51 malignant) underwent full-dose contrast-enhanced dual-energy CT (DECT). Half-dose images were obtained using single tube reconstruction of the dual-source SE-LTP projection data (80 or 100 kV), and by inserting noise into dual-energy projection data, with DE-VM images reconstructed from 40 to 70 keV. Three blinded gastrointestinal radiologists evaluated half-dose SE-LTP and DE-VM images, ranking and grading liver lesion conspicuity and diagnostic confidence (4-point scale) on a per-lesion basis. Image quality (noise, artifacts, sharpness) was evaluated, and overall image preference was ranked on per-patient basis. Lesion-to-liver contrast-to-noise ratio (CNR) was compared between techniques. RESULTS: Mean lesion size was 1.5 ± 1.2 cm. Across the readers, the mean conspicuity ratings for 40, 45, and 50 keV half-dose DE-VM images were superior compared to other half-dose image sets (p < 0.0001). Per-lesion diagnostic confidence was similar between half-dose SE-LTP compared to half-dose DE-VM images (p ≥ 0.05; 1.19 vs. 1.24-1.32). However, SE-LTP images had less noise and artifacts and were sharper compared to DE-VM images less than 70 keV (p < 0.05). On a per-patient basis, radiologists preferred SE-LTP images the most and preferred 40-50 keV the least (p < 0.0001). Lesion CNR was also higher in SE-LTP images than DE-VM images (p < 0.01). CONCLUSION: For the same applied dose level, liver lesions were more conspicuous using DE-VM compared to SE-LTP; however, SE-LTP images were preferred more than any single DE-VM energy level, likely due to lower noise and artifacts. More... »

PAGES

1404-1412

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-017-1327-9

DOI

http://dx.doi.org/10.1007/s00261-017-1327-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092089404

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28983661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanson", 
        "givenName": "G. Jay", 
        "id": "sg:person.01215664505.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215664505.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michalak", 
        "givenName": "Gregory J.", 
        "id": "sg:person.01272072346.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272072346.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Childs", 
        "givenName": "Robert", 
        "id": "sg:person.011766364205.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011766364205.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCollough", 
        "givenName": "Brian", 
        "id": "sg:person.013113076535.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113076535.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurup", 
        "givenName": "Anil N.", 
        "id": "sg:person.01231224320.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231224320.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hough", 
        "givenName": "David M.", 
        "id": "sg:person.01211435451.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211435451.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frye", 
        "givenName": "Judson M.", 
        "id": "sg:person.0576651455.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576651455.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidler", 
        "givenName": "Jeff L.", 
        "id": "sg:person.0610637733.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610637733.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkatesh", 
        "givenName": "Sudhakar K.", 
        "id": "sg:person.01152463164.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leng", 
        "givenName": "Shuai", 
        "id": "sg:person.01076131742.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076131742.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Lifeng", 
        "id": "sg:person.01355701214.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355701214.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthcare, 40 Liberty Blvd, 19355, Malvern, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halaweish", 
        "givenName": "Ahmed F.", 
        "id": "sg:person.01244453704.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244453704.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harmsen", 
        "givenName": "W. Scott", 
        "id": "sg:person.01250740515.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250740515.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCollough", 
        "givenName": "Cynthia H.", 
        "id": "sg:person.010364077757.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364077757.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fletcher", 
        "givenName": "J. G.", 
        "id": "sg:person.0621221404.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3551999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004106606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3658568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011064442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011314087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11100978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012044446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013093943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013093943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3582701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017239123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-016-0966-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027821529", 
          "https://doi.org/10.1007/s00261-016-0966-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-016-0966-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027821529", 
          "https://doi.org/10.1007/s00261-016-0966-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318258e891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029823629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318258e891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029823629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31828f871f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031774546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31828f871f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031774546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041902355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044438312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318263cc1b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046789199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318263cc1b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046789199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049691233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049691233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2485-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052535693", 
          "https://doi.org/10.1007/s00330-012-2485-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2485-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052535693", 
          "https://doi.org/10.1007/s00330-012-2485-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/phh.0b013e3182751d6f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052766218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/phh.0b013e3182751d6f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052766218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/27844842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.6987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069301834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.10000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.11337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.12229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.15.15512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015141991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079094223"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "PURPOSE: Single-energy low tube potential (SE-LTP) and dual-energy virtual monoenergetic (DE-VM) CT images both increase the conspicuity of hepatic lesions by increasing iodine signal. Our purpose was to compare the conspicuity of proven liver lesions, artifacts, and radiologist preferences in dose-matched SE-LTP and DE-VM images.\nMETHODS: Thirty-one patients with 72 proven liver lesions (21 benign, 51 malignant) underwent full-dose contrast-enhanced dual-energy CT (DECT). Half-dose images were obtained using single tube reconstruction of the dual-source SE-LTP projection data (80 or 100\u00a0kV), and by inserting noise into dual-energy projection data, with DE-VM images reconstructed from 40 to 70\u00a0keV. Three blinded gastrointestinal radiologists evaluated half-dose SE-LTP and DE-VM images, ranking and grading liver lesion conspicuity and diagnostic confidence (4-point scale) on a per-lesion basis. Image quality (noise, artifacts, sharpness) was evaluated, and overall image preference was ranked on per-patient basis. Lesion-to-liver contrast-to-noise ratio (CNR) was compared between techniques.\nRESULTS: Mean lesion size was 1.5\u00a0\u00b1\u00a01.2\u00a0cm. Across the readers, the mean conspicuity ratings for 40, 45, and 50\u00a0keV half-dose DE-VM images were superior compared to other half-dose image sets (p\u00a0<\u00a00.0001). Per-lesion diagnostic confidence was similar between half-dose SE-LTP compared to half-dose DE-VM images (p\u00a0\u2265\u00a00.05; 1.19 vs. 1.24-1.32). However, SE-LTP images had less noise and artifacts and were sharper compared to DE-VM images less than 70\u00a0keV (p\u00a0<\u00a00.05). On a per-patient basis, radiologists preferred SE-LTP images the most and preferred 40-50\u00a0keV the least (p\u00a0<\u00a00.0001). Lesion CNR was also higher in SE-LTP images than DE-VM images (p\u00a0<\u00a00.01).\nCONCLUSION: For the same applied dose level, liver lesions were more conspicuous using DE-VM compared to SE-LTP; however, SE-LTP images were preferred more than any single DE-VM energy level, likely due to lower noise and artifacts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-017-1327-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2502171", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2690431", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: what are the advantages and trade-offs in conspicuity and image quality? A pilot study", 
    "pagination": "1404-1412", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d5f37cf0da63eee0e4c019ee62e5a1a13b3a413234af0fbb5e1039389e1e9d37"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28983661"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-017-1327-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092089404"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-017-1327-9", 
      "https://app.dimensions.ai/details/publication/pub.1092089404"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-017-1327-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1327-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1327-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1327-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1327-9'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-017-1327-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4d5c545897f24222bd87228182983a87
4 schema:citation sg:pub.10.1007/s00261-016-0966-6
5 sg:pub.10.1007/s00330-012-2485-3
6 https://doi.org/10.1016/j.ejrad.2016.01.007
7 https://doi.org/10.1097/phh.0b013e3182751d6f
8 https://doi.org/10.1097/rct.0b013e318258e891
9 https://doi.org/10.1097/rct.0b013e318263cc1b
10 https://doi.org/10.1097/rct.0b013e31828f871f
11 https://doi.org/10.1097/rli.0000000000000060
12 https://doi.org/10.1097/rli.0000000000000171
13 https://doi.org/10.1118/1.3551999
14 https://doi.org/10.1118/1.3582701
15 https://doi.org/10.1118/1.3658568
16 https://doi.org/10.1148/radiol.09090094
17 https://doi.org/10.1148/radiol.11100978
18 https://doi.org/10.1148/radiol.11110654
19 https://doi.org/10.1148/radiol.2015141991
20 https://doi.org/10.1259/bjr/27844842
21 https://doi.org/10.2214/ajr.11.6987
22 https://doi.org/10.2214/ajr.12.10000
23 https://doi.org/10.2214/ajr.12.9121
24 https://doi.org/10.2214/ajr.13.11337
25 https://doi.org/10.2214/ajr.13.12229
26 https://doi.org/10.2214/ajr.15.15512
27 schema:datePublished 2018-06
28 schema:datePublishedReg 2018-06-01
29 schema:description PURPOSE: Single-energy low tube potential (SE-LTP) and dual-energy virtual monoenergetic (DE-VM) CT images both increase the conspicuity of hepatic lesions by increasing iodine signal. Our purpose was to compare the conspicuity of proven liver lesions, artifacts, and radiologist preferences in dose-matched SE-LTP and DE-VM images. METHODS: Thirty-one patients with 72 proven liver lesions (21 benign, 51 malignant) underwent full-dose contrast-enhanced dual-energy CT (DECT). Half-dose images were obtained using single tube reconstruction of the dual-source SE-LTP projection data (80 or 100 kV), and by inserting noise into dual-energy projection data, with DE-VM images reconstructed from 40 to 70 keV. Three blinded gastrointestinal radiologists evaluated half-dose SE-LTP and DE-VM images, ranking and grading liver lesion conspicuity and diagnostic confidence (4-point scale) on a per-lesion basis. Image quality (noise, artifacts, sharpness) was evaluated, and overall image preference was ranked on per-patient basis. Lesion-to-liver contrast-to-noise ratio (CNR) was compared between techniques. RESULTS: Mean lesion size was 1.5 ± 1.2 cm. Across the readers, the mean conspicuity ratings for 40, 45, and 50 keV half-dose DE-VM images were superior compared to other half-dose image sets (p < 0.0001). Per-lesion diagnostic confidence was similar between half-dose SE-LTP compared to half-dose DE-VM images (p ≥ 0.05; 1.19 vs. 1.24-1.32). However, SE-LTP images had less noise and artifacts and were sharper compared to DE-VM images less than 70 keV (p < 0.05). On a per-patient basis, radiologists preferred SE-LTP images the most and preferred 40-50 keV the least (p < 0.0001). Lesion CNR was also higher in SE-LTP images than DE-VM images (p < 0.01). CONCLUSION: For the same applied dose level, liver lesions were more conspicuous using DE-VM compared to SE-LTP; however, SE-LTP images were preferred more than any single DE-VM energy level, likely due to lower noise and artifacts.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N64a96b4f9c68440c984ad413804a71f3
34 Ncc8fefe430514935b612f35c7ef1a7e6
35 sg:journal.1297457
36 schema:name Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: what are the advantages and trade-offs in conspicuity and image quality? A pilot study
37 schema:pagination 1404-1412
38 schema:productId N25dfc5df00ca453bb5fd83fdbb804a8e
39 N4f52ecf299aa4936a6e108ce6f98dcff
40 N5e3899ea579b4069bf2e0d8ebf00cd19
41 Nbecbe37990674a60ba595e194a99b093
42 Ne0dde4f15afb4aeb9bc42287225d5dc0
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092089404
44 https://doi.org/10.1007/s00261-017-1327-9
45 schema:sdDatePublished 2019-04-11T02:18
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N2e6e654cd8f340bf9c7c4b0ab6d9cdbd
48 schema:url https://link.springer.com/10.1007%2Fs00261-017-1327-9
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0bd12b379fbd4806acbc6b611e09d1c1 rdf:first sg:person.01272072346.44
53 rdf:rest N13d23a4d8725439ea73f7607d9abe8b4
54 N13d23a4d8725439ea73f7607d9abe8b4 rdf:first sg:person.011766364205.71
55 rdf:rest Nba93e0574d0444e8ab1273a0384085bb
56 N25dfc5df00ca453bb5fd83fdbb804a8e schema:name dimensions_id
57 schema:value pub.1092089404
58 rdf:type schema:PropertyValue
59 N2b250b3ccdbb4356a58f0a6f89dfbf89 rdf:first sg:person.0610637733.31
60 rdf:rest Nf74c7bb122424bd3b670ddfc479e9a7a
61 N2e6e654cd8f340bf9c7c4b0ab6d9cdbd schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N33cf38674ddc42dc91fa9fffeb781e7c rdf:first sg:person.01250740515.07
64 rdf:rest N562cc5f839bb4f5a8c219bcdb446fc70
65 N3f18ee4256ae4344beb489bc51d75f9a rdf:first sg:person.01211435451.32
66 rdf:rest N6dc3d764a2f145ea80dc0c9d1967fd49
67 N4d5c545897f24222bd87228182983a87 rdf:first sg:person.01215664505.24
68 rdf:rest N0bd12b379fbd4806acbc6b611e09d1c1
69 N4f52ecf299aa4936a6e108ce6f98dcff schema:name readcube_id
70 schema:value d5f37cf0da63eee0e4c019ee62e5a1a13b3a413234af0fbb5e1039389e1e9d37
71 rdf:type schema:PropertyValue
72 N562cc5f839bb4f5a8c219bcdb446fc70 rdf:first sg:person.010364077757.63
73 rdf:rest Ncac98933137e445fa5c7255a742d00b4
74 N56ec705645de47efbcbd792e1bde22ac rdf:first sg:person.01231224320.93
75 rdf:rest N3f18ee4256ae4344beb489bc51d75f9a
76 N5de94126512c4371af2236bfe0e44e67 rdf:first sg:person.01244453704.54
77 rdf:rest N33cf38674ddc42dc91fa9fffeb781e7c
78 N5e3899ea579b4069bf2e0d8ebf00cd19 schema:name doi
79 schema:value 10.1007/s00261-017-1327-9
80 rdf:type schema:PropertyValue
81 N64a96b4f9c68440c984ad413804a71f3 schema:volumeNumber 43
82 rdf:type schema:PublicationVolume
83 N6dc3d764a2f145ea80dc0c9d1967fd49 rdf:first sg:person.0576651455.50
84 rdf:rest N2b250b3ccdbb4356a58f0a6f89dfbf89
85 N787e10f90b9846e59fb698955071aa82 rdf:first sg:person.01355701214.64
86 rdf:rest N5de94126512c4371af2236bfe0e44e67
87 Nba93e0574d0444e8ab1273a0384085bb rdf:first sg:person.013113076535.97
88 rdf:rest N56ec705645de47efbcbd792e1bde22ac
89 Nbecbe37990674a60ba595e194a99b093 schema:name pubmed_id
90 schema:value 28983661
91 rdf:type schema:PropertyValue
92 Ncac98933137e445fa5c7255a742d00b4 rdf:first sg:person.0621221404.12
93 rdf:rest rdf:nil
94 Ncc8fefe430514935b612f35c7ef1a7e6 schema:issueNumber 6
95 rdf:type schema:PublicationIssue
96 Ne0dde4f15afb4aeb9bc42287225d5dc0 schema:name nlm_unique_id
97 schema:value 101674571
98 rdf:type schema:PropertyValue
99 Nf15fe0f2ea244920bb05f07a224452eb rdf:first sg:person.01076131742.53
100 rdf:rest N787e10f90b9846e59fb698955071aa82
101 Nf74c7bb122424bd3b670ddfc479e9a7a rdf:first sg:person.01152463164.49
102 rdf:rest Nf15fe0f2ea244920bb05f07a224452eb
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 sg:grant.2502171 http://pending.schema.org/fundedItem sg:pub.10.1007/s00261-017-1327-9
110 rdf:type schema:MonetaryGrant
111 sg:grant.2690431 http://pending.schema.org/fundedItem sg:pub.10.1007/s00261-017-1327-9
112 rdf:type schema:MonetaryGrant
113 sg:journal.1297457 schema:issn 2366-004X
114 2366-0058
115 schema:name Abdominal Radiology
116 rdf:type schema:Periodical
117 sg:person.010364077757.63 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
118 schema:familyName McCollough
119 schema:givenName Cynthia H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364077757.63
121 rdf:type schema:Person
122 sg:person.01076131742.53 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
123 schema:familyName Leng
124 schema:givenName Shuai
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076131742.53
126 rdf:type schema:Person
127 sg:person.01152463164.49 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
128 schema:familyName Venkatesh
129 schema:givenName Sudhakar K.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49
131 rdf:type schema:Person
132 sg:person.011766364205.71 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
133 schema:familyName Childs
134 schema:givenName Robert
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011766364205.71
136 rdf:type schema:Person
137 sg:person.01211435451.32 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
138 schema:familyName Hough
139 schema:givenName David M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211435451.32
141 rdf:type schema:Person
142 sg:person.01215664505.24 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
143 schema:familyName Hanson
144 schema:givenName G. Jay
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215664505.24
146 rdf:type schema:Person
147 sg:person.01231224320.93 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
148 schema:familyName Kurup
149 schema:givenName Anil N.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231224320.93
151 rdf:type schema:Person
152 sg:person.01244453704.54 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
153 schema:familyName Halaweish
154 schema:givenName Ahmed F.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244453704.54
156 rdf:type schema:Person
157 sg:person.01250740515.07 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
158 schema:familyName Harmsen
159 schema:givenName W. Scott
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250740515.07
161 rdf:type schema:Person
162 sg:person.01272072346.44 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
163 schema:familyName Michalak
164 schema:givenName Gregory J.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272072346.44
166 rdf:type schema:Person
167 sg:person.013113076535.97 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
168 schema:familyName McCollough
169 schema:givenName Brian
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113076535.97
171 rdf:type schema:Person
172 sg:person.01355701214.64 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
173 schema:familyName Yu
174 schema:givenName Lifeng
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355701214.64
176 rdf:type schema:Person
177 sg:person.0576651455.50 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
178 schema:familyName Frye
179 schema:givenName Judson M.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576651455.50
181 rdf:type schema:Person
182 sg:person.0610637733.31 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
183 schema:familyName Fidler
184 schema:givenName Jeff L.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610637733.31
186 rdf:type schema:Person
187 sg:person.0621221404.12 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
188 schema:familyName Fletcher
189 schema:givenName J. G.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12
191 rdf:type schema:Person
192 sg:pub.10.1007/s00261-016-0966-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027821529
193 https://doi.org/10.1007/s00261-016-0966-6
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00330-012-2485-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052535693
196 https://doi.org/10.1007/s00330-012-2485-3
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.ejrad.2016.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041902355
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1097/phh.0b013e3182751d6f schema:sameAs https://app.dimensions.ai/details/publication/pub.1052766218
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1097/rct.0b013e318258e891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029823629
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1097/rct.0b013e318263cc1b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046789199
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1097/rct.0b013e31828f871f schema:sameAs https://app.dimensions.ai/details/publication/pub.1031774546
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1097/rli.0000000000000060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049691233
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1097/rli.0000000000000171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013093943
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1118/1.3551999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004106606
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1118/1.3582701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017239123
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1118/1.3658568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011064442
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1148/radiol.09090094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011314087
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1148/radiol.11100978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012044446
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1148/radiol.11110654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044438312
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1148/radiol.2015141991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079094223
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1259/bjr/27844842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568787
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2214/ajr.11.6987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069301834
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2214/ajr.12.10000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302330
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2214/ajr.12.9121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302751
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2214/ajr.13.11337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303291
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2214/ajr.13.12229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303561
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2214/ajr.15.15512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304536
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
241 schema:name Siemens Healthcare, 40 Liberty Blvd, 19355, Malvern, PA, USA
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
244 schema:name Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
245 Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, USA
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...