Quantitative MRI of fatty liver disease in a large pediatric cohort: correlation between liver fat fraction, stiffness, volume, and patient-specific ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Madalsa Joshi, Jonathan R. Dillman, Kamalpreet Singh, Suraj D. Serai, Alexander J. Towbin, Stavra Xanthakos, Bin Zhang, Weizhe Su, Andrew T. Trout

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI) techniques are increasingly used to quantify and monitor liver tissue characteristics including fat fraction, stiffness, and liver volume. The purpose of this study was to assess the inter-relationships between multiple quantitative liver metrics and patient-specific factors in a large pediatric cohort with known or suspected fatty liver disease. MATERIALS AND METHODS: In this IRB-approved, HIPAA-compliant study, we retrospectively reviewed patient data and quantitative liver MRI results in children with known/suspected fatty liver disease. Relationships between liver MRI tissue characteristics and patient variables [sex, age, body mass index (BMI), diabetic status (no diabetes mellitus, insulin resistance/"prediabetes" diagnosis, or confirmed diabetes mellitus), and serum alanine transaminase (ALT)] were assessed using linear mixed models. RESULTS: 294 quantitative liver MRI examinations were performed in 202 patients [128/202 (63.4%) boys], with a mean age of 13.4 ± 2.9 years. Based on linear mixed models, liver fat fraction was influenced by age (-0.71%/+1 year, p = 0.0002), liver volume (+0.006%/+1 mL, p < 0.0001), liver stiffness (-2.80%/+1 kPa, p = 0.0006), and serum ALT (+0.02%/+1 U/L, p = 0.0019). Liver stiffness was influenced by liver volume (+0.0003 kPa/+1 mL, p = 0.001), fat fraction (-0.02 kPa/+1% fat, p = 0.0006), and ALT (0.002 kPa/+1 U/L, p = 0.0002). Liver volume was influenced by sex (-262.1 mL for girls, p = 0.0003), age (+51.8 mL/+1 year, p = 0.0001), BMI (+49.1 mL/+1 kg/m2, p < 0.0001), fat fraction (+30.5 mL/+1% fat, p < 0.0001), stiffness (+192.6 mL/+1 kPa, p = 0.001), and diabetic status (+518.94 mL for diabetics, p = 0.0009). CONCLUSIONS: Liver volume, fat fraction, and stiffness are inter-related and associated with multiple patient-specific factors. These relationships warrant further study as MRI is increasingly used as a non-invasive biomarker for fatty liver disease diagnosis and monitoring. More... »

PAGES

1168-1179

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-017-1289-y

DOI

http://dx.doi.org/10.1007/s00261-017-1289-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091292206

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28828531


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cincinnati Children's Hospital Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Department of Radiology, Cincinnati Children\u2019s Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, 45229-3026, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joshi", 
        "givenName": "Madalsa", 
        "id": "sg:person.01246377445.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246377445.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cincinnati Children's Hospital Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Department of Radiology, Cincinnati Children\u2019s Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, 45229-3026, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dillman", 
        "givenName": "Jonathan R.", 
        "id": "sg:person.0674332715.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674332715.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Allegheny General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413621.3", 
          "name": [
            "Department of Radiology, Allegheny General Hospital, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Kamalpreet", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cincinnati Children's Hospital Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Department of Radiology, Cincinnati Children\u2019s Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, 45229-3026, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serai", 
        "givenName": "Suraj D.", 
        "id": "sg:person.01372354351.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372354351.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cincinnati Children's Hospital Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Department of Radiology, Cincinnati Children\u2019s Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, 45229-3026, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Towbin", 
        "givenName": "Alexander J.", 
        "id": "sg:person.0601140311.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601140311.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cincinnati Children's Hospital Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children\u2019s Hospital Medical Center, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xanthakos", 
        "givenName": "Stavra", 
        "id": "sg:person.01355726057.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355726057.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cincinnati Children's Hospital Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Division of Biostatistics and Epidemiology, Cincinnati Children\u2019s Hospital Medical Center, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Bin", 
        "id": "sg:person.0774357154.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774357154.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Weizhe", 
        "id": "sg:person.011763201067.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763201067.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cincinnati Children's Hospital Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Department of Radiology, Cincinnati Children\u2019s Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, 45229-3026, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trout", 
        "givenName": "Andrew T.", 
        "id": "sg:person.0614425435.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614425435.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.dld.2016.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006757308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010803014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2016.09.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015260856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(00)00039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020723627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.27844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023894106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2014.08.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029963316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultras.2016.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033505116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.27362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035605719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.27362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035605719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2015.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036862888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4614-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038222638", 
          "https://doi.org/10.1007/s00330-016-4614-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4614-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038222638", 
          "https://doi.org/10.1007/s00330-016-4614-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2014.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041636741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/liv.13284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11101942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051224440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2013.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051847451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17235/reed.2016.3934/2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068310520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.16.16565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015142141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079115504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016160209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079283805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2016160042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079333720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079347467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017161786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083846663"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "PURPOSE: Magnetic resonance imaging (MRI) techniques are increasingly used to quantify and monitor liver tissue characteristics including fat fraction, stiffness, and liver volume. The purpose of this study was to assess the inter-relationships between multiple quantitative liver metrics and patient-specific factors in a large pediatric cohort with known or suspected fatty liver disease.\nMATERIALS AND METHODS: In this IRB-approved, HIPAA-compliant study, we retrospectively reviewed patient data and quantitative liver MRI results in children with known/suspected fatty liver disease. Relationships between liver MRI tissue characteristics and patient variables [sex, age, body mass index (BMI), diabetic status (no diabetes mellitus, insulin resistance/\"prediabetes\" diagnosis, or confirmed diabetes mellitus), and serum alanine transaminase (ALT)] were assessed using linear mixed models.\nRESULTS: 294 quantitative liver MRI examinations were performed in 202 patients [128/202 (63.4%) boys], with a mean age of 13.4\u00a0\u00b1\u00a02.9\u00a0years. Based on linear mixed models, liver fat fraction was influenced by age (-0.71%/+1\u00a0year, p\u00a0=\u00a00.0002), liver volume (+0.006%/+1\u00a0mL, p\u00a0<\u00a00.0001), liver stiffness (-2.80%/+1\u00a0kPa, p\u00a0=\u00a00.0006), and serum ALT (+0.02%/+1 U/L, p\u00a0=\u00a00.0019). Liver stiffness was influenced by liver volume (+0.0003\u00a0kPa/+1\u00a0mL, p\u00a0=\u00a00.001), fat fraction (-0.02\u00a0kPa/+1% fat, p\u00a0=\u00a00.0006), and ALT (0.002\u00a0kPa/+1 U/L, p\u00a0=\u00a00.0002). Liver volume was influenced by sex (-262.1\u00a0mL for girls, p\u00a0=\u00a00.0003), age (+51.8\u00a0mL/+1\u00a0year, p\u00a0=\u00a00.0001), BMI (+49.1\u00a0mL/+1\u00a0kg/m2, p\u00a0<\u00a00.0001), fat fraction (+30.5\u00a0mL/+1% fat, p\u00a0<\u00a00.0001), stiffness (+192.6\u00a0mL/+1\u00a0kPa, p\u00a0=\u00a00.001), and diabetic status (+518.94\u00a0mL for diabetics, p\u00a0=\u00a00.0009).\nCONCLUSIONS: Liver volume, fat fraction, and stiffness are inter-related and associated with multiple patient-specific factors. These relationships warrant further study as MRI is increasingly used as a non-invasive biomarker for fatty liver disease diagnosis and monitoring.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-017-1289-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Quantitative MRI of fatty liver disease in a large pediatric cohort: correlation between liver fat fraction, stiffness, volume, and patient-specific factors", 
    "pagination": "1168-1179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9f10c036de0cba3e76efa4e45e69fb47ef05d3582bc6c171fdfc069688d4c0a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28828531"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-017-1289-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091292206"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-017-1289-y", 
      "https://app.dimensions.ai/details/publication/pub.1091292206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-017-1289-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1289-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1289-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1289-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1289-y'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-017-1289-y schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N4d42359a38834ce8a6e6fc5c3bc1570c
4 schema:citation sg:pub.10.1007/s00330-016-4614-x
5 https://doi.org/10.1002/hep.27362
6 https://doi.org/10.1002/hep.27844
7 https://doi.org/10.1002/jmri.25550
8 https://doi.org/10.1016/j.cgh.2014.08.039
9 https://doi.org/10.1016/j.cgh.2016.09.150
10 https://doi.org/10.1016/j.dld.2016.07.020
11 https://doi.org/10.1016/j.jhep.2014.04.045
12 https://doi.org/10.1016/j.mric.2013.05.001
13 https://doi.org/10.1016/j.ultras.2016.10.009
14 https://doi.org/10.1016/j.ultrasmedbio.2015.07.025
15 https://doi.org/10.1016/s1361-8415(00)00039-6
16 https://doi.org/10.1111/liv.13284
17 https://doi.org/10.1148/radiol.11101942
18 https://doi.org/10.1148/radiol.2015142141
19 https://doi.org/10.1148/radiol.2016151570
20 https://doi.org/10.1148/radiol.2016160209
21 https://doi.org/10.1148/radiol.2017161786
22 https://doi.org/10.1148/rg.2016160042
23 https://doi.org/10.17235/reed.2016.3934/2015
24 https://doi.org/10.2214/ajr.16.16565
25 schema:datePublished 2018-05
26 schema:datePublishedReg 2018-05-01
27 schema:description PURPOSE: Magnetic resonance imaging (MRI) techniques are increasingly used to quantify and monitor liver tissue characteristics including fat fraction, stiffness, and liver volume. The purpose of this study was to assess the inter-relationships between multiple quantitative liver metrics and patient-specific factors in a large pediatric cohort with known or suspected fatty liver disease. MATERIALS AND METHODS: In this IRB-approved, HIPAA-compliant study, we retrospectively reviewed patient data and quantitative liver MRI results in children with known/suspected fatty liver disease. Relationships between liver MRI tissue characteristics and patient variables [sex, age, body mass index (BMI), diabetic status (no diabetes mellitus, insulin resistance/"prediabetes" diagnosis, or confirmed diabetes mellitus), and serum alanine transaminase (ALT)] were assessed using linear mixed models. RESULTS: 294 quantitative liver MRI examinations were performed in 202 patients [128/202 (63.4%) boys], with a mean age of 13.4 ± 2.9 years. Based on linear mixed models, liver fat fraction was influenced by age (-0.71%/+1 year, p = 0.0002), liver volume (+0.006%/+1 mL, p < 0.0001), liver stiffness (-2.80%/+1 kPa, p = 0.0006), and serum ALT (+0.02%/+1 U/L, p = 0.0019). Liver stiffness was influenced by liver volume (+0.0003 kPa/+1 mL, p = 0.001), fat fraction (-0.02 kPa/+1% fat, p = 0.0006), and ALT (0.002 kPa/+1 U/L, p = 0.0002). Liver volume was influenced by sex (-262.1 mL for girls, p = 0.0003), age (+51.8 mL/+1 year, p = 0.0001), BMI (+49.1 mL/+1 kg/m2, p < 0.0001), fat fraction (+30.5 mL/+1% fat, p < 0.0001), stiffness (+192.6 mL/+1 kPa, p = 0.001), and diabetic status (+518.94 mL for diabetics, p = 0.0009). CONCLUSIONS: Liver volume, fat fraction, and stiffness are inter-related and associated with multiple patient-specific factors. These relationships warrant further study as MRI is increasingly used as a non-invasive biomarker for fatty liver disease diagnosis and monitoring.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Ne03b5a3407c34392a19981fca2c7391c
32 Nf83c86c95c4f445098a38ae8eb16f527
33 sg:journal.1297457
34 schema:name Quantitative MRI of fatty liver disease in a large pediatric cohort: correlation between liver fat fraction, stiffness, volume, and patient-specific factors
35 schema:pagination 1168-1179
36 schema:productId N4322a739a5bd442384a151679a145610
37 N5b154805dcfb408ea534bafb89bef8a6
38 Nefec336e7bba4d7483f3b12af4980ca0
39 Nf5e42a6431b94957bf5f628fd6f19269
40 Nfc3350d0978e4b0c99c8ff347cd823ac
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091292206
42 https://doi.org/10.1007/s00261-017-1289-y
43 schema:sdDatePublished 2019-04-11T10:27
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N5e1f1fcc25b34bd5bbf8774b4d7f7448
46 schema:url https://link.springer.com/10.1007%2Fs00261-017-1289-y
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0feabed0883141568d665e096957bb41 rdf:first Ncc1e1d9e3dd04c37b70968cf89e12676
51 rdf:rest Nb9457ea89ec343e99a516fd8a94ff8b1
52 N25b55212936440f88c063f649a44ae01 rdf:first sg:person.011763201067.82
53 rdf:rest Nf9db71de01624be1be127f33cd166915
54 N4322a739a5bd442384a151679a145610 schema:name nlm_unique_id
55 schema:value 101674571
56 rdf:type schema:PropertyValue
57 N4d42359a38834ce8a6e6fc5c3bc1570c rdf:first sg:person.01246377445.27
58 rdf:rest Necd51c3f272d4eea9aec3792b7044132
59 N5b154805dcfb408ea534bafb89bef8a6 schema:name doi
60 schema:value 10.1007/s00261-017-1289-y
61 rdf:type schema:PropertyValue
62 N5b2225c639354952ba156304837e3c14 rdf:first sg:person.0601140311.54
63 rdf:rest Ndc3ea5b66c51497684f7430226a4493e
64 N5e1f1fcc25b34bd5bbf8774b4d7f7448 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N851991a2d738446799bccd7608dfd2f4 rdf:first sg:person.0774357154.65
67 rdf:rest N25b55212936440f88c063f649a44ae01
68 Nb9457ea89ec343e99a516fd8a94ff8b1 rdf:first sg:person.01372354351.09
69 rdf:rest N5b2225c639354952ba156304837e3c14
70 Ncc1e1d9e3dd04c37b70968cf89e12676 schema:affiliation https://www.grid.ac/institutes/grid.413621.3
71 schema:familyName Singh
72 schema:givenName Kamalpreet
73 rdf:type schema:Person
74 Ndc3ea5b66c51497684f7430226a4493e rdf:first sg:person.01355726057.75
75 rdf:rest N851991a2d738446799bccd7608dfd2f4
76 Ne03b5a3407c34392a19981fca2c7391c schema:volumeNumber 43
77 rdf:type schema:PublicationVolume
78 Necd51c3f272d4eea9aec3792b7044132 rdf:first sg:person.0674332715.36
79 rdf:rest N0feabed0883141568d665e096957bb41
80 Nefec336e7bba4d7483f3b12af4980ca0 schema:name pubmed_id
81 schema:value 28828531
82 rdf:type schema:PropertyValue
83 Nf5e42a6431b94957bf5f628fd6f19269 schema:name readcube_id
84 schema:value b9f10c036de0cba3e76efa4e45e69fb47ef05d3582bc6c171fdfc069688d4c0a
85 rdf:type schema:PropertyValue
86 Nf83c86c95c4f445098a38ae8eb16f527 schema:issueNumber 5
87 rdf:type schema:PublicationIssue
88 Nf9db71de01624be1be127f33cd166915 rdf:first sg:person.0614425435.19
89 rdf:rest rdf:nil
90 Nfc3350d0978e4b0c99c8ff347cd823ac schema:name dimensions_id
91 schema:value pub.1091292206
92 rdf:type schema:PropertyValue
93 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
94 schema:name Medical and Health Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
97 schema:name Clinical Sciences
98 rdf:type schema:DefinedTerm
99 sg:journal.1297457 schema:issn 2366-004X
100 2366-0058
101 schema:name Abdominal Radiology
102 rdf:type schema:Periodical
103 sg:person.011763201067.82 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
104 schema:familyName Su
105 schema:givenName Weizhe
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763201067.82
107 rdf:type schema:Person
108 sg:person.01246377445.27 schema:affiliation https://www.grid.ac/institutes/grid.239573.9
109 schema:familyName Joshi
110 schema:givenName Madalsa
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246377445.27
112 rdf:type schema:Person
113 sg:person.01355726057.75 schema:affiliation https://www.grid.ac/institutes/grid.239573.9
114 schema:familyName Xanthakos
115 schema:givenName Stavra
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355726057.75
117 rdf:type schema:Person
118 sg:person.01372354351.09 schema:affiliation https://www.grid.ac/institutes/grid.239573.9
119 schema:familyName Serai
120 schema:givenName Suraj D.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372354351.09
122 rdf:type schema:Person
123 sg:person.0601140311.54 schema:affiliation https://www.grid.ac/institutes/grid.239573.9
124 schema:familyName Towbin
125 schema:givenName Alexander J.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601140311.54
127 rdf:type schema:Person
128 sg:person.0614425435.19 schema:affiliation https://www.grid.ac/institutes/grid.239573.9
129 schema:familyName Trout
130 schema:givenName Andrew T.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614425435.19
132 rdf:type schema:Person
133 sg:person.0674332715.36 schema:affiliation https://www.grid.ac/institutes/grid.239573.9
134 schema:familyName Dillman
135 schema:givenName Jonathan R.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674332715.36
137 rdf:type schema:Person
138 sg:person.0774357154.65 schema:affiliation https://www.grid.ac/institutes/grid.239573.9
139 schema:familyName Zhang
140 schema:givenName Bin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774357154.65
142 rdf:type schema:Person
143 sg:pub.10.1007/s00330-016-4614-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038222638
144 https://doi.org/10.1007/s00330-016-4614-x
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/hep.27362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035605719
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/hep.27844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023894106
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/jmri.25550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010803014
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cgh.2014.08.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029963316
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.cgh.2016.09.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015260856
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.dld.2016.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006757308
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jhep.2014.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041636741
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.mric.2013.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051847451
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ultras.2016.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033505116
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ultrasmedbio.2015.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036862888
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s1361-8415(00)00039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020723627
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/liv.13284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049137738
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1148/radiol.11101942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051224440
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1148/radiol.2015142141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079115504
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1148/radiol.2016151570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079347467
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1148/radiol.2016160209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079283805
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1148/radiol.2017161786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083846663
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1148/rg.2016160042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079333720
181 rdf:type schema:CreativeWork
182 https://doi.org/10.17235/reed.2016.3934/2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068310520
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2214/ajr.16.16565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304809
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.239573.9 schema:alternateName Cincinnati Children's Hospital Medical Center
187 schema:name Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, 45229-3026, Cincinnati, OH, USA
188 Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
189 Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
192 schema:name Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.413621.3 schema:alternateName Allegheny General Hospital
195 schema:name Department of Radiology, Allegheny General Hospital, Pittsburgh, PA, USA
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...