Variable refocusing flip angle single-shot fast spin echo imaging of liver lesions: increased speed and lesion contrast View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Robert M. Hicks, Andreas M. Loening, Michael A. Ohliger, Shreyas S. Vasanawala, Thomas A. Hope

ABSTRACT

PURPOSE: To evaluate acquisition time and clinical image quality of a variable refocusing flip angle (vrf) single-shot fast spin echo (SSFSE) sequence in comparison with a conventional SSFSE sequence for imaging of liver lesions in patients undergoing whole-body PET/MRI for oncologic staging. METHODS: A vrfSSFSE sequence was acquired in 43 patients with known pancreatic neuroendocrine tumors undergoing 68Ga-DOTA-TOC PET on a simultaneous time-of-flight 3.0T PET/MRI. Liver lesions ≥1.5 cm with radionucleotide uptake were analyzed. Contrast-to-noise ratios (CNRs) were measured, and four blinded radiologists assessed overall image quality. Differences in repetition time and CNR were assessed using a paired Student's t test with p < 0.05 considered statistically significant. Inter-reader variability was assessed with Fleiss' kappa statistic. RESULTS: 53 eligible lesions in 27 patients were included for analysis. vrfSSFSE demonstrated higher mean lesion CNR compared to SSFSE (9.9 ± 4.1 vs. 6.7 ± 4.1, p < 0.001). Mean repetition time (TR) was 679 ± 97 ms for the vrfSSFSE sequence compared to 1139 ± 106 ms for SSFSE (p < 0.0001), corresponding to a 1.7-fold decrease in acquisition time. Overall quality of liver lesion and common bile duct images with the vrfSSFSE sequence was graded as superior than or equivalent to the SSFSE sequence for 59% and 67% of patients, respectively. CONCLUSIONS: Compared to conventional SSFSE, vrfSSFSE resulted in improved lesion contrast on simultaneous PET/MRI in patients with liver metastases. Due to decreased SAR demands, vrfSSFSE significantly decreased TR, allowing coverage of the entire liver in a single twenty-second breath hold. This may have important clinical implications in the setting of PET/MRI, where scan time is limited by the necessity of whole-body image acquisition in addition to bed specific imaging. More... »

PAGES

593-599

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-017-1252-y

DOI

http://dx.doi.org/10.1007/s00261-017-1252-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090386732

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28689221


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, 94143-0628, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hicks", 
        "givenName": "Robert M.", 
        "id": "sg:person.013115507741.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115507741.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loening", 
        "givenName": "Andreas M.", 
        "id": "sg:person.01173651326.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173651326.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "San Francisco General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416732.5", 
          "name": [
            "Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, 94143-0628, San Francisco, CA, USA", 
            "Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohliger", 
        "givenName": "Michael A.", 
        "id": "sg:person.01260302251.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260302251.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasanawala", 
        "givenName": "Shreyas S.", 
        "id": "sg:person.0645560304.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645560304.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, 94143-0628, San Francisco, CA, USA", 
            "Department of Radiology, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hope", 
        "givenName": "Thomas A.", 
        "id": "sg:person.010226432767.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226432767.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s40658-015-0125-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003427994", 
          "https://doi.org/10.1186/s40658-015-0125-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40658-015-0125-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003427994", 
          "https://doi.org/10.1186/s40658-015-0125-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.301095076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006780856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007615349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008415938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008415938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-004-1014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008953897", 
          "https://doi.org/10.1007/s10278-004-1014-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-004-1014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008953897", 
          "https://doi.org/10.1007/s10278-004-1014-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880060420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011787578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-014-3227-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012977986", 
          "https://doi.org/10.1007/s00247-014-3227-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2654-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012988412", 
          "https://doi.org/10.1007/s00259-013-2654-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013031723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020333030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2005.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023472214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025447521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031782257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2016.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034428424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2016.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034428424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03168596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034850502", 
          "https://doi.org/10.1007/bf03168596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03168596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034850502", 
          "https://doi.org/10.1007/bf03168596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.129239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038109163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-015-0409-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038952174", 
          "https://doi.org/10.1007/s00261-015-0409-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2929.2004.02012.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040397322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03168426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043349951", 
          "https://doi.org/10.1007/bf03168426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03168426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043349951", 
          "https://doi.org/10.1007/bf03168426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047710640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049850107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2537811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/33156643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064569106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.14.13022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2466/pms.108.1.37-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070782951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2466/pms.108.1.37-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070782951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.20.4.g00jl23939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074670815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079319751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781849208604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095900022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781849208604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095900022"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "PURPOSE: To evaluate acquisition time and clinical image quality of a variable refocusing flip angle (vrf) single-shot fast spin echo (SSFSE) sequence in comparison with a conventional SSFSE sequence for imaging of liver lesions in patients undergoing whole-body PET/MRI for oncologic staging.\nMETHODS: A vrfSSFSE sequence was acquired in 43 patients with known pancreatic neuroendocrine tumors undergoing 68Ga-DOTA-TOC PET on a simultaneous time-of-flight 3.0T PET/MRI. Liver lesions\u00a0\u22651.5\u00a0cm with radionucleotide uptake were analyzed. Contrast-to-noise ratios (CNRs) were measured, and four blinded radiologists assessed overall image quality. Differences in repetition time and CNR were assessed using a paired Student's t test with p\u00a0<\u00a00.05 considered statistically significant. Inter-reader variability was assessed with Fleiss' kappa statistic.\nRESULTS: 53 eligible lesions in 27 patients were included for analysis. vrfSSFSE demonstrated higher mean lesion CNR compared to SSFSE (9.9\u00a0\u00b1\u00a04.1 vs. 6.7\u00a0\u00b1\u00a04.1, p\u00a0<\u00a00.001). Mean repetition time (TR) was 679\u00a0\u00b1\u00a097\u00a0ms for the vrfSSFSE sequence compared to 1139\u00a0\u00b1\u00a0106\u00a0ms for SSFSE (p\u00a0<\u00a00.0001), corresponding to a 1.7-fold decrease in acquisition time. Overall quality of liver lesion and common bile duct images with the vrfSSFSE sequence was graded as superior than or equivalent to the SSFSE sequence for 59% and 67% of patients, respectively.\nCONCLUSIONS: Compared to conventional SSFSE, vrfSSFSE resulted in improved lesion contrast on simultaneous PET/MRI in patients with liver metastases. Due to decreased SAR demands, vrfSSFSE significantly decreased TR, allowing coverage of the entire liver in a single twenty-second breath hold. This may have important clinical implications in the setting of PET/MRI, where scan time is limited by the necessity of whole-body image acquisition in addition to bed specific imaging.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-017-1252-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Variable refocusing flip angle single-shot fast spin echo imaging of liver lesions: increased speed and lesion contrast", 
    "pagination": "593-599", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a99035846780dcea57a42af6e84e09d9143d6a489cf64a91dbfc81597c5b0c87"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28689221"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-017-1252-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090386732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-017-1252-y", 
      "https://app.dimensions.ai/details/publication/pub.1090386732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113679_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-017-1252-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1252-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1252-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1252-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1252-y'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-017-1252-y schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N9cedf96c74224336852f8ea27d69f60d
4 schema:citation sg:pub.10.1007/bf03168426
5 sg:pub.10.1007/bf03168596
6 sg:pub.10.1007/s00247-014-3227-2
7 sg:pub.10.1007/s00259-013-2654-x
8 sg:pub.10.1007/s00261-015-0409-9
9 sg:pub.10.1007/s10278-004-1014-6
10 sg:pub.10.1186/s40658-015-0125-0
11 https://doi.org/10.1002/jmri.1880060420
12 https://doi.org/10.1002/jmri.20269
13 https://doi.org/10.1002/jmri.24308
14 https://doi.org/10.1002/jmri.24941
15 https://doi.org/10.1002/jmri.25161
16 https://doi.org/10.1002/mrm.10391
17 https://doi.org/10.1002/mrm.20863
18 https://doi.org/10.1002/mrm.21680
19 https://doi.org/10.1016/j.ejrad.2005.11.041
20 https://doi.org/10.1016/j.mri.2008.02.001
21 https://doi.org/10.1016/j.mri.2016.04.007
22 https://doi.org/10.1109/tmi.2016.2537811
23 https://doi.org/10.1111/j.1365-2929.2004.02012.x
24 https://doi.org/10.1148/radiographics.20.4.g00jl23939
25 https://doi.org/10.1148/radiol.2016151574
26 https://doi.org/10.1148/rg.301095076
27 https://doi.org/10.1259/bjr/33156643
28 https://doi.org/10.2214/ajr.05.0932
29 https://doi.org/10.2214/ajr.14.13022
30 https://doi.org/10.2466/pms.108.1.37-42
31 https://doi.org/10.2967/jnumed.113.129239
32 https://doi.org/10.4135/9781849208604
33 schema:datePublished 2018-03
34 schema:datePublishedReg 2018-03-01
35 schema:description PURPOSE: To evaluate acquisition time and clinical image quality of a variable refocusing flip angle (vrf) single-shot fast spin echo (SSFSE) sequence in comparison with a conventional SSFSE sequence for imaging of liver lesions in patients undergoing whole-body PET/MRI for oncologic staging. METHODS: A vrfSSFSE sequence was acquired in 43 patients with known pancreatic neuroendocrine tumors undergoing 68Ga-DOTA-TOC PET on a simultaneous time-of-flight 3.0T PET/MRI. Liver lesions ≥1.5 cm with radionucleotide uptake were analyzed. Contrast-to-noise ratios (CNRs) were measured, and four blinded radiologists assessed overall image quality. Differences in repetition time and CNR were assessed using a paired Student's t test with p < 0.05 considered statistically significant. Inter-reader variability was assessed with Fleiss' kappa statistic. RESULTS: 53 eligible lesions in 27 patients were included for analysis. vrfSSFSE demonstrated higher mean lesion CNR compared to SSFSE (9.9 ± 4.1 vs. 6.7 ± 4.1, p < 0.001). Mean repetition time (TR) was 679 ± 97 ms for the vrfSSFSE sequence compared to 1139 ± 106 ms for SSFSE (p < 0.0001), corresponding to a 1.7-fold decrease in acquisition time. Overall quality of liver lesion and common bile duct images with the vrfSSFSE sequence was graded as superior than or equivalent to the SSFSE sequence for 59% and 67% of patients, respectively. CONCLUSIONS: Compared to conventional SSFSE, vrfSSFSE resulted in improved lesion contrast on simultaneous PET/MRI in patients with liver metastases. Due to decreased SAR demands, vrfSSFSE significantly decreased TR, allowing coverage of the entire liver in a single twenty-second breath hold. This may have important clinical implications in the setting of PET/MRI, where scan time is limited by the necessity of whole-body image acquisition in addition to bed specific imaging.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N21bbce41db3a439a96d7ec69d8b27ba0
40 N8f3f38e2577f4a0db2c5240613d3938c
41 sg:journal.1297457
42 schema:name Variable refocusing flip angle single-shot fast spin echo imaging of liver lesions: increased speed and lesion contrast
43 schema:pagination 593-599
44 schema:productId N005dc11578e24130bee4383318e0a3a4
45 N08bfe5fae0494068bef2268636085253
46 N108979e111a044cfbfa13aec94414df8
47 N237a21b2551047e1b0d6da1439e1a653
48 Nec7eb9d350fb4a42bc37a6a93284ea25
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090386732
50 https://doi.org/10.1007/s00261-017-1252-y
51 schema:sdDatePublished 2019-04-11T10:39
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N62b914eeb87e4ddc861cffb0a501d8d5
54 schema:url https://link.springer.com/10.1007%2Fs00261-017-1252-y
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N005dc11578e24130bee4383318e0a3a4 schema:name pubmed_id
59 schema:value 28689221
60 rdf:type schema:PropertyValue
61 N08bfe5fae0494068bef2268636085253 schema:name dimensions_id
62 schema:value pub.1090386732
63 rdf:type schema:PropertyValue
64 N108979e111a044cfbfa13aec94414df8 schema:name nlm_unique_id
65 schema:value 101674571
66 rdf:type schema:PropertyValue
67 N21bbce41db3a439a96d7ec69d8b27ba0 schema:issueNumber 3
68 rdf:type schema:PublicationIssue
69 N237a21b2551047e1b0d6da1439e1a653 schema:name readcube_id
70 schema:value a99035846780dcea57a42af6e84e09d9143d6a489cf64a91dbfc81597c5b0c87
71 rdf:type schema:PropertyValue
72 N62b914eeb87e4ddc861cffb0a501d8d5 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N8f3f38e2577f4a0db2c5240613d3938c schema:volumeNumber 43
75 rdf:type schema:PublicationVolume
76 N9cedf96c74224336852f8ea27d69f60d rdf:first sg:person.013115507741.43
77 rdf:rest Nb8f836ed642d4ea083a1751074cdbf7b
78 Nb4aa9743426b44f0814b1edda6cb80c5 rdf:first sg:person.010226432767.48
79 rdf:rest rdf:nil
80 Nb8f836ed642d4ea083a1751074cdbf7b rdf:first sg:person.01173651326.21
81 rdf:rest Ndacf677fff2d4389ba14c8c7019fc625
82 Ndacf677fff2d4389ba14c8c7019fc625 rdf:first sg:person.01260302251.51
83 rdf:rest Nf87a011657ff4e868a028b2eeef8c7cd
84 Nec7eb9d350fb4a42bc37a6a93284ea25 schema:name doi
85 schema:value 10.1007/s00261-017-1252-y
86 rdf:type schema:PropertyValue
87 Nf87a011657ff4e868a028b2eeef8c7cd rdf:first sg:person.0645560304.68
88 rdf:rest Nb4aa9743426b44f0814b1edda6cb80c5
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Clinical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1297457 schema:issn 2366-004X
96 2366-0058
97 schema:name Abdominal Radiology
98 rdf:type schema:Periodical
99 sg:person.010226432767.48 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
100 schema:familyName Hope
101 schema:givenName Thomas A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226432767.48
103 rdf:type schema:Person
104 sg:person.01173651326.21 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
105 schema:familyName Loening
106 schema:givenName Andreas M.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173651326.21
108 rdf:type schema:Person
109 sg:person.01260302251.51 schema:affiliation https://www.grid.ac/institutes/grid.416732.5
110 schema:familyName Ohliger
111 schema:givenName Michael A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260302251.51
113 rdf:type schema:Person
114 sg:person.013115507741.43 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
115 schema:familyName Hicks
116 schema:givenName Robert M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115507741.43
118 rdf:type schema:Person
119 sg:person.0645560304.68 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
120 schema:familyName Vasanawala
121 schema:givenName Shreyas S.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645560304.68
123 rdf:type schema:Person
124 sg:pub.10.1007/bf03168426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043349951
125 https://doi.org/10.1007/bf03168426
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf03168596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034850502
128 https://doi.org/10.1007/bf03168596
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00247-014-3227-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012977986
131 https://doi.org/10.1007/s00247-014-3227-2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00259-013-2654-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012988412
134 https://doi.org/10.1007/s00259-013-2654-x
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00261-015-0409-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038952174
137 https://doi.org/10.1007/s00261-015-0409-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10278-004-1014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008953897
140 https://doi.org/10.1007/s10278-004-1014-6
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/s40658-015-0125-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003427994
143 https://doi.org/10.1186/s40658-015-0125-0
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/jmri.1880060420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011787578
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/jmri.20269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025447521
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/jmri.24308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020333030
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/jmri.24941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031782257
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/jmri.25161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047710640
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/mrm.10391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007615349
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/mrm.20863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008415938
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/mrm.21680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049850107
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ejrad.2005.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023472214
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.mri.2008.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013031723
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.mri.2016.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034428424
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tmi.2016.2537811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696718
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1365-2929.2004.02012.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040397322
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1148/radiographics.20.4.g00jl23939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074670815
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1148/radiol.2016151574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079319751
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1148/rg.301095076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006780856
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1259/bjr/33156643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569106
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2214/ajr.05.0932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297731
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2214/ajr.14.13022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303836
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2466/pms.108.1.37-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070782951
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2967/jnumed.113.129239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038109163
186 rdf:type schema:CreativeWork
187 https://doi.org/10.4135/9781849208604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095900022
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
190 schema:name Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
193 schema:name Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, 94143-0628, San Francisco, CA, USA
194 Department of Radiology, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.416732.5 schema:alternateName San Francisco General Hospital
197 schema:name Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, 94143-0628, San Francisco, CA, USA
198 Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...