Assessment of liver iron overload by 3 T MRI View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-21

AUTHORS

A Paisant, A. Boulic, E. Bardou-Jacquet, E. Bannier, G. d’Assignies, F. Lainé, B. Turlin, Y. Gandon

ABSTRACT

Purpose To evaluate the performance and limitations of the signal intensity ratio method for quantifying liver iron overload at 3 T.MethodsInstitutional review board approval and written informed consent from all participants were obtained. One hundred and five patients were included prospectively. All patients underwent a liver biopsy with biochemical assessment of hepatic iron concentration and a 3 T MRI scan with 5 breath-hold single-echo gradient-echo sequences. Linear correlation between liver-to-muscle signal intensity ratio and liver iron concentration was calculated. The algorithm for calculating magnetic resonance hepatic iron concentration was adapted from the method described by Gandon et al. with echo times divided by 2. Sensitivity and specificity were calculated.ResultsFive patients were excluded (coil selection failure or missing sequence) and 100 patients were analyzed, 64 men and 36 women, 52 ± 13.3 years old, with a biochemical hepatic iron concentration range of 0–630 µmol/g. Linear correlation between biochemical hepatic iron concentration and MR-hepatic iron concentration was excellent with a correlation coefficient = 0.96, p < 0.0001. Sensitivity and specificity were, respectively, 83% (0.70–0.92) and 96% (0.85–0.99), with a pathological threshold of 36 µmol/g.ConclusionSignal intensity ratio method for quantifying liver iron overload can be used at 3 T with echo times divided by 2. More... »

PAGES

1713-1720

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-017-1077-8

DOI

http://dx.doi.org/10.1007/s00261-017-1077-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083855034

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28224171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron Overload", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hepatic Disease Unit, Clinical investigation center, H\u00f4pital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Digestive Unit, Department of Radiology, H\u00f4pital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Hepatic Disease Unit, Clinical investigation center, H\u00f4pital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paisant", 
        "givenName": "A", 
        "id": "sg:person.011726357455.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726357455.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Digestive Unit, Department of Radiology, H\u00f4pital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Digestive Unit, Department of Radiology, H\u00f4pital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boulic", 
        "givenName": "A.", 
        "id": "sg:person.01356710473.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356710473.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Hepatic Disease Unit, Clinical investigation center, H\u00f4pital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardou-Jacquet", 
        "givenName": "E.", 
        "id": "sg:person.01264364006.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264364006.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "VisAGeS U746 Unit/Project, INSERM/INRIAIRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
            "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bannier", 
        "givenName": "E.", 
        "id": "sg:person.0732662415.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732662415.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "Digestive Unit, Department of Radiology, H\u00f4pital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "d\u2019Assignies", 
        "givenName": "G.", 
        "id": "sg:person.0673552165.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673552165.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Hepatic Disease Unit, Clinical investigation center, H\u00f4pital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lain\u00e9", 
        "givenName": "F.", 
        "id": "sg:person.01205113376.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205113376.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service d\u2019anatomie et de cytologie, H\u00f4pital Pontchaillou, CHU Rennes, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
            "Department of Pathology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Service d\u2019anatomie et de cytologie, H\u00f4pital Pontchaillou, CHU Rennes, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turlin", 
        "givenName": "B.", 
        "id": "sg:person.01102421206.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102421206.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "Digestive Unit, Department of Radiology, H\u00f4pital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Hepatic Disease Unit, Clinical investigation center, H\u00f4pital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandon", 
        "givenName": "Y.", 
        "id": "sg:person.01034246047.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034246047.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1111/j.1572-0241.2007.01192.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040909965", 
          "https://doi.org/10.1111/j.1572-0241.2007.01192.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002470100547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015116075", 
          "https://doi.org/10.1007/s002470100547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-16-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021796480", 
          "https://doi.org/10.1186/1532-429x-16-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1899-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051544141", 
          "https://doi.org/10.1007/s00330-010-1899-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-21", 
    "datePublishedReg": "2017-02-21", 
    "description": "Purpose To evaluate the performance and limitations of the signal intensity ratio method for quantifying liver iron overload at 3\u00a0T.MethodsInstitutional review board approval and written informed consent from all participants were obtained. One hundred and five patients were included prospectively. All patients underwent a liver biopsy with biochemical assessment of hepatic iron concentration and a 3\u00a0T MRI scan with 5 breath-hold single-echo gradient-echo sequences. Linear correlation between liver-to-muscle signal intensity ratio and liver iron concentration was calculated. The algorithm for calculating magnetic resonance hepatic iron concentration was adapted from the method described by Gandon et al. with echo times divided by 2. Sensitivity and specificity were calculated.ResultsFive patients were excluded (coil selection failure or missing sequence) and 100 patients were analyzed, 64 men and 36 women, 52\u00a0\u00b1\u00a013.3 years old, with a biochemical hepatic iron concentration range of 0\u2013630 \u00b5mol/g. Linear correlation between biochemical hepatic iron concentration and MR-hepatic iron concentration was excellent with a correlation coefficient = 0.96, p\u00a0<\u00a00.0001. Sensitivity and specificity were, respectively, 83% (0.70\u20130.92) and 96% (0.85\u20130.99), with a pathological threshold of 36\u00a0\u00b5mol/g.ConclusionSignal intensity ratio method for quantifying liver iron overload can be used at 3\u00a0T with echo times divided by 2.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00261-017-1077-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "hepatic iron concentration", 
      "liver iron overload", 
      "iron overload", 
      "T MRI", 
      "muscle signal intensity ratio", 
      "MethodsInstitutional review board approval", 
      "liver iron concentration", 
      "review board approval", 
      "signal intensity ratio method", 
      "liver biopsy", 
      "ResultsFive patients", 
      "signal intensity ratio", 
      "board approval", 
      "biochemical assessment", 
      "patients", 
      "informed consent", 
      "iron concentration", 
      "gradient echo sequence", 
      "pathological threshold", 
      "MRI", 
      "echo time", 
      "overload", 
      "linear correlation", 
      "biopsy", 
      "specificity", 
      "liver", 
      "women", 
      "assessment", 
      "correlation coefficient", 
      "men", 
      "consent", 
      "concentration", 
      "approval", 
      "sensitivity", 
      "correlation", 
      "participants", 
      "years", 
      "time", 
      "threshold", 
      "purpose", 
      "method", 
      "concentration range", 
      "ratio", 
      "limitations", 
      "iron concentration range", 
      "ratio method", 
      "et al", 
      "sequence", 
      "range", 
      "intensity ratio", 
      "coefficient", 
      "performance", 
      "al", 
      "intensity ratio method", 
      "algorithm"
    ], 
    "name": "Assessment of liver iron overload by 3 T MRI", 
    "pagination": "1713-1720", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083855034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-017-1077-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28224171"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-017-1077-8", 
      "https://app.dimensions.ai/details/publication/pub.1083855034"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_753.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00261-017-1077-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1077-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1077-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1077-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1077-8'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      94 URIs      82 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-017-1077-8 schema:about N02d3afebbd2546cea40e0d6d1ffec59d
2 N2cc7607640cd4ef784343d1a797ae517
3 N3fa379e19ad44d51b983720de09b6022
4 N449e191e28d44e05ab17e4e87097ed6a
5 N61e0a28cbbf54936b92e3fcaa27e3686
6 Naaa6d076fb1e42e9b48950dad6ce4c02
7 Nc000ddb3393b4171b87a6bac7d5de0cb
8 Nec0279b5993140c6821c72475e5abf9d
9 Nf735249863c544d28d420409b0c01bf4
10 Nfcb114f8f2bf4b738641c8375e78eba8
11 anzsrc-for:11
12 anzsrc-for:1103
13 schema:author N5a3afcae7b4c43ceba9cbfe0cbedffff
14 schema:citation sg:pub.10.1007/s002470100547
15 sg:pub.10.1007/s00330-010-1899-z
16 sg:pub.10.1111/j.1572-0241.2007.01192.x
17 sg:pub.10.1186/1532-429x-16-40
18 schema:datePublished 2017-02-21
19 schema:datePublishedReg 2017-02-21
20 schema:description Purpose To evaluate the performance and limitations of the signal intensity ratio method for quantifying liver iron overload at 3 T.MethodsInstitutional review board approval and written informed consent from all participants were obtained. One hundred and five patients were included prospectively. All patients underwent a liver biopsy with biochemical assessment of hepatic iron concentration and a 3 T MRI scan with 5 breath-hold single-echo gradient-echo sequences. Linear correlation between liver-to-muscle signal intensity ratio and liver iron concentration was calculated. The algorithm for calculating magnetic resonance hepatic iron concentration was adapted from the method described by Gandon et al. with echo times divided by 2. Sensitivity and specificity were calculated.ResultsFive patients were excluded (coil selection failure or missing sequence) and 100 patients were analyzed, 64 men and 36 women, 52 ± 13.3 years old, with a biochemical hepatic iron concentration range of 0–630 µmol/g. Linear correlation between biochemical hepatic iron concentration and MR-hepatic iron concentration was excellent with a correlation coefficient = 0.96, p < 0.0001. Sensitivity and specificity were, respectively, 83% (0.70–0.92) and 96% (0.85–0.99), with a pathological threshold of 36 µmol/g.ConclusionSignal intensity ratio method for quantifying liver iron overload can be used at 3 T with echo times divided by 2.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N15922054f0f94444a3844a6164f54c9b
24 Nf2a9c71284f0463c8f89ff1a156c4511
25 sg:journal.1297457
26 schema:keywords MRI
27 MethodsInstitutional review board approval
28 ResultsFive patients
29 T MRI
30 al
31 algorithm
32 approval
33 assessment
34 biochemical assessment
35 biopsy
36 board approval
37 coefficient
38 concentration
39 concentration range
40 consent
41 correlation
42 correlation coefficient
43 echo time
44 et al
45 gradient echo sequence
46 hepatic iron concentration
47 informed consent
48 intensity ratio
49 intensity ratio method
50 iron concentration
51 iron concentration range
52 iron overload
53 limitations
54 linear correlation
55 liver
56 liver biopsy
57 liver iron concentration
58 liver iron overload
59 men
60 method
61 muscle signal intensity ratio
62 overload
63 participants
64 pathological threshold
65 patients
66 performance
67 purpose
68 range
69 ratio
70 ratio method
71 review board approval
72 sensitivity
73 sequence
74 signal intensity ratio
75 signal intensity ratio method
76 specificity
77 threshold
78 time
79 women
80 years
81 schema:name Assessment of liver iron overload by 3 T MRI
82 schema:pagination 1713-1720
83 schema:productId N2d4dc05f0f8b497286c75d16b9cdb7a9
84 N6e5e2314f1124367b2c9d2fcba50a60d
85 Nb1fba5ca8c264b859189eb07ade6cdac
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083855034
87 https://doi.org/10.1007/s00261-017-1077-8
88 schema:sdDatePublished 2022-10-01T06:44
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N157659db6e274dd1b24f8641f8687b44
91 schema:url https://doi.org/10.1007/s00261-017-1077-8
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N02d3afebbd2546cea40e0d6d1ffec59d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Magnetic Resonance Imaging
97 rdf:type schema:DefinedTerm
98 N157659db6e274dd1b24f8641f8687b44 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N15922054f0f94444a3844a6164f54c9b schema:volumeNumber 42
101 rdf:type schema:PublicationVolume
102 N1c73cc2cf41a4e09b3a9da9b6c0da813 rdf:first sg:person.01205113376.22
103 rdf:rest N78ca622ab3b8450da9b16a6a308669aa
104 N2cc7607640cd4ef784343d1a797ae517 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Liver Diseases
106 rdf:type schema:DefinedTerm
107 N2d4dc05f0f8b497286c75d16b9cdb7a9 schema:name pubmed_id
108 schema:value 28224171
109 rdf:type schema:PropertyValue
110 N3fa379e19ad44d51b983720de09b6022 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Sensitivity and Specificity
112 rdf:type schema:DefinedTerm
113 N449e191e28d44e05ab17e4e87097ed6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Middle Aged
115 rdf:type schema:DefinedTerm
116 N5a3afcae7b4c43ceba9cbfe0cbedffff rdf:first sg:person.011726357455.77
117 rdf:rest N8ff3749e205a4ac68d6dd1028ae32917
118 N61e0a28cbbf54936b92e3fcaa27e3686 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Biopsy
120 rdf:type schema:DefinedTerm
121 N6e5e2314f1124367b2c9d2fcba50a60d schema:name doi
122 schema:value 10.1007/s00261-017-1077-8
123 rdf:type schema:PropertyValue
124 N714f8796747e428abc234de6ed36630a rdf:first sg:person.0732662415.32
125 rdf:rest Nf49599a0a1514cbbaca4379ef0cf3f78
126 N78ca622ab3b8450da9b16a6a308669aa rdf:first sg:person.01102421206.14
127 rdf:rest Nc6581ff9e20d44459511a8b864975d72
128 N8ff3749e205a4ac68d6dd1028ae32917 rdf:first sg:person.01356710473.59
129 rdf:rest N9380149a8b8043b4b5090fc0e5c8ddec
130 N9380149a8b8043b4b5090fc0e5c8ddec rdf:first sg:person.01264364006.16
131 rdf:rest N714f8796747e428abc234de6ed36630a
132 Naaa6d076fb1e42e9b48950dad6ce4c02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Iron Overload
134 rdf:type schema:DefinedTerm
135 Nb1fba5ca8c264b859189eb07ade6cdac schema:name dimensions_id
136 schema:value pub.1083855034
137 rdf:type schema:PropertyValue
138 Nc000ddb3393b4171b87a6bac7d5de0cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 Nc6581ff9e20d44459511a8b864975d72 rdf:first sg:person.01034246047.41
142 rdf:rest rdf:nil
143 Nec0279b5993140c6821c72475e5abf9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Algorithms
145 rdf:type schema:DefinedTerm
146 Nf2a9c71284f0463c8f89ff1a156c4511 schema:issueNumber 6
147 rdf:type schema:PublicationIssue
148 Nf49599a0a1514cbbaca4379ef0cf3f78 rdf:first sg:person.0673552165.51
149 rdf:rest N1c73cc2cf41a4e09b3a9da9b6c0da813
150 Nf735249863c544d28d420409b0c01bf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Male
152 rdf:type schema:DefinedTerm
153 Nfcb114f8f2bf4b738641c8375e78eba8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Female
155 rdf:type schema:DefinedTerm
156 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
157 schema:name Medical and Health Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
160 schema:name Clinical Sciences
161 rdf:type schema:DefinedTerm
162 sg:journal.1297457 schema:issn 2366-004X
163 2366-0058
164 schema:name Abdominal Radiology
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01034246047.41 schema:affiliation grid-institutes:grid.463996.7
168 schema:familyName Gandon
169 schema:givenName Y.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034246047.41
171 rdf:type schema:Person
172 sg:person.01102421206.14 schema:affiliation grid-institutes:grid.414271.5
173 schema:familyName Turlin
174 schema:givenName B.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102421206.14
176 rdf:type schema:Person
177 sg:person.011726357455.77 schema:affiliation grid-institutes:grid.414271.5
178 schema:familyName Paisant
179 schema:givenName A
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726357455.77
181 rdf:type schema:Person
182 sg:person.01205113376.22 schema:affiliation grid-institutes:grid.411154.4
183 schema:familyName Lainé
184 schema:givenName F.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205113376.22
186 rdf:type schema:Person
187 sg:person.01264364006.16 schema:affiliation grid-institutes:grid.411154.4
188 schema:familyName Bardou-Jacquet
189 schema:givenName E.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264364006.16
191 rdf:type schema:Person
192 sg:person.01356710473.59 schema:affiliation grid-institutes:grid.414271.5
193 schema:familyName Boulic
194 schema:givenName A.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356710473.59
196 rdf:type schema:Person
197 sg:person.0673552165.51 schema:affiliation grid-institutes:grid.463996.7
198 schema:familyName d’Assignies
199 schema:givenName G.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673552165.51
201 rdf:type schema:Person
202 sg:person.0732662415.32 schema:affiliation grid-institutes:grid.411154.4
203 schema:familyName Bannier
204 schema:givenName E.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732662415.32
206 rdf:type schema:Person
207 sg:pub.10.1007/s002470100547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015116075
208 https://doi.org/10.1007/s002470100547
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s00330-010-1899-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051544141
211 https://doi.org/10.1007/s00330-010-1899-z
212 rdf:type schema:CreativeWork
213 sg:pub.10.1111/j.1572-0241.2007.01192.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040909965
214 https://doi.org/10.1111/j.1572-0241.2007.01192.x
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/1532-429x-16-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796480
217 https://doi.org/10.1186/1532-429x-16-40
218 rdf:type schema:CreativeWork
219 grid-institutes:grid.411154.4 schema:alternateName Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
220 Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
221 INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
222 schema:name Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
223 Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
224 Hepatic Disease Unit, Clinical investigation center, Hôpital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France
225 INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
226 VisAGeS U746 Unit/Project, INSERM/INRIAIRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
227 rdf:type schema:Organization
228 grid-institutes:grid.414271.5 schema:alternateName Digestive Unit, Department of Radiology, Hôpital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
229 Hepatic Disease Unit, Clinical investigation center, Hôpital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France
230 Service d’anatomie et de cytologie, Hôpital Pontchaillou, CHU Rennes, 2 rue H. Le Guilloux, 35033, Rennes, France
231 schema:name Department of Pathology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
232 Digestive Unit, Department of Radiology, Hôpital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
233 Hepatic Disease Unit, Clinical investigation center, Hôpital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France
234 LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
235 Service d’anatomie et de cytologie, Hôpital Pontchaillou, CHU Rennes, 2 rue H. Le Guilloux, 35033, Rennes, France
236 rdf:type schema:Organization
237 grid-institutes:grid.463996.7 schema:alternateName LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
238 schema:name Digestive Unit, Department of Radiology, Hôpital Pontchaillou, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
239 Hepatic Disease Unit, Clinical investigation center, Hôpital Pontchaillou, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France
240 LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...