Ontology type: schema:ScholarlyArticle
2017-05
AUTHORSSeo-Youn Choi, Jung Hoon Kim, Mi Hye Yu, Hyo Won Eun, Hae Kyung Lee, Joon Koo Han
ABSTRACTPURPOSE: To compare diagnostic performance for prediction of malignant potential in IPMNs between EUS, contrast-enhanced CT and MRI. MATERIALS AND METHODS: 76 patients with IPMN (benign = 37, malignant = 39) underwent EUS, contrast-enhanced CT, and MRI. EUS was analyzed based on formal reports and contrast-enhanced CT and MRI were retrospectively analyzed by two radiologists according to the consensus guidelines 2012. Diagnostic performance and imaging features of malignant IPMNs were analyzed using ROC analysis and multivariate analyses. RESULTS: Diagnostic performance of contrast-enhanced CT (AUC = 0.792 in R1, 0.830 in R2), MRI (AUC = 0.742 in R1, 0.776 in R2), and EUS (AUC = 0.733) for predicting malignant IPMNs were comparable without significant difference (p > 0.05). In multivariable analysis, enhancing solid component in contrast-enhanced CT and MRI and mural nodule in EUS (OR 1.8 in CT, 1.36 in MRI, 1.47 in EUS), MPD diameter ≥ 10 mm (OR 1.3 in CT, 1.4 in MRI, 1.66 in EUS), MPD diameter of 5-9 mm (OR 1.23 in CT, 1.31 in MRI), and thickened septa or wall (OR 1.3 in CT and MRI) were significant variables (p < 0.05). Interobserver agreement of thickened cyst septa or wall (k = 0.579-0.617) and abrupt caliber change of MPD (k = 0.689-0.788) was lower than other variables (k > 0.80). CONCLUSION: Diagnostic performance of contrast-enhanced CT, MRI, and EUS for predicting malignant IPMNs was comparable with each modalities without significant difference. More... »
PAGES1449-1458
http://scigraph.springernature.com/pub.10.1007/s00261-017-1053-3
DOIhttp://dx.doi.org/10.1007/s00261-017-1053-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1083400127
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/28144718
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cardiorespiratory Medicine and Haematology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adenocarcinoma, Mucinous",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged, 80 and over",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carcinoma, Pancreatic Ductal",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carcinoma, Papillary",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Contrast Media",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Endosonography",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Magnetic Resonance Imaging",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Retrospective Studies",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Tomography, X-Ray Computed",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Soonchunhyang University Hospital",
"id": "https://www.grid.ac/institutes/grid.412678.e",
"name": [
"Department of Radiology, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, 420-767, Bucheon, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Choi",
"givenName": "Seo-Youn",
"id": "sg:person.0701343356.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701343356.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Seoul National University",
"id": "https://www.grid.ac/institutes/grid.31501.36",
"name": [
"Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehang-no, Chongno-gu, 110-744, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Jung Hoon",
"id": "sg:person.014534173224.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Konkuk University Medical Center",
"id": "https://www.grid.ac/institutes/grid.411120.7",
"name": [
"Department of Radiology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Yu",
"givenName": "Mi Hye",
"id": "sg:person.0647654606.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647654606.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Samsung Medical Center",
"id": "https://www.grid.ac/institutes/grid.414964.a",
"name": [
"Department of Radiology, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, 135-710, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Eun",
"givenName": "Hyo Won",
"id": "sg:person.01140634343.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140634343.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Soonchunhyang University Hospital",
"id": "https://www.grid.ac/institutes/grid.412678.e",
"name": [
"Department of Radiology, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, 420-767, Bucheon, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Lee",
"givenName": "Hae Kyung",
"id": "sg:person.01237760103.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237760103.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Seoul National University",
"id": "https://www.grid.ac/institutes/grid.31501.36",
"name": [
"Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehang-no, Chongno-gu, 110-744, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Han",
"givenName": "Joon Koo",
"id": "sg:person.0647723014.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/ajg.2010.122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002034543",
"https://doi.org/10.1038/ajg.2010.122"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ajg.2010.122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002034543",
"https://doi.org/10.1038/ajg.2010.122"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.7863/jum.2013.32.1.61",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009420393"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/bjs.4265",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010017418"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0b013e318155a9e5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011983061"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0b013e318155a9e5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011983061"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0016-5107(97)70269-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015102699"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2014/765451",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016841752"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.suc.2009.12.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025810819"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.2531080604",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027078293"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amjsurg.2013.09.031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028614781"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0b013e31829385f7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028746729"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0b013e31829385f7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028746729"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0b013e3181a189a8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029570799"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0b013e3181a189a8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029570799"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0b013e3181a189a8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029570799"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.2232010815",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032215669"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0000000000001217",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033003678"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/sla.0000000000001217",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033003678"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00595-009-4227-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034073689",
"https://doi.org/10.1007/s00595-009-4227-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00595-009-4227-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034073689",
"https://doi.org/10.1007/s00595-009-4227-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11605-013-2444-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036937013",
"https://doi.org/10.1007/s11605-013-2444-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrgastro.2010.193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038847006",
"https://doi.org/10.1038/nrgastro.2010.193"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrgastro.2010.193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038847006",
"https://doi.org/10.1038/nrgastro.2010.193"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1111/j.1572-0241.2001.05328.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039193282",
"https://doi.org/10.1111/j.1572-0241.2001.05328.x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/bjs.9491",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039582301"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1159/000090023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044342668"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00534-009-0068-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044440337",
"https://doi.org/10.1007/s00534-009-0068-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00534-009-0068-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044440337",
"https://doi.org/10.1007/s00534-009-0068-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00534-009-0068-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044440337",
"https://doi.org/10.1007/s00534-009-0068-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.2482071578",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049618323"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pan.2012.04.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051606692"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/mpa.0000000000000199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051623947"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/mpa.0000000000000199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051623947"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1055/s-0029-1214952",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057187154"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1055/s-0033-1353603",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057296704"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2214/ajr.12.9511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069302875"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2214/ajr.13.11490",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069303342"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3748/wjg.v20.i24.7785",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071371018"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4240/wjgs.v2.i10.319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072397744"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.14132960",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1078986204"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-05",
"datePublishedReg": "2017-05-01",
"description": "PURPOSE: To compare diagnostic performance for prediction of malignant potential in IPMNs between EUS, contrast-enhanced CT and MRI.\nMATERIALS AND METHODS: 76 patients with IPMN (benign\u00a0=\u00a037, malignant\u00a0=\u00a039) underwent EUS, contrast-enhanced CT, and MRI. EUS was analyzed based on formal reports and contrast-enhanced CT and MRI were retrospectively analyzed by two radiologists according to the consensus guidelines 2012. Diagnostic performance and imaging features of malignant IPMNs were analyzed using ROC analysis and multivariate analyses.\nRESULTS: Diagnostic performance of contrast-enhanced CT (AUC\u00a0=\u00a00.792 in R1, 0.830 in R2), MRI (AUC\u00a0=\u00a00.742 in R1, 0.776 in R2), and EUS (AUC\u00a0=\u00a00.733) for predicting malignant IPMNs were comparable without significant difference (p\u00a0>\u00a00.05). In multivariable analysis, enhancing solid component in contrast-enhanced CT and MRI and mural nodule in EUS (OR 1.8 in CT, 1.36 in MRI, 1.47 in EUS), MPD diameter\u00a0\u2265\u00a010\u00a0mm (OR 1.3 in CT, 1.4 in MRI, 1.66 in EUS), MPD diameter of 5-9\u00a0mm (OR 1.23 in CT, 1.31 in MRI), and thickened septa or wall (OR 1.3 in CT and MRI) were significant variables (p\u00a0<\u00a00.05). Interobserver agreement of thickened cyst septa or wall (k\u00a0=\u00a00.579-0.617) and abrupt caliber change of MPD (k\u00a0=\u00a00.689-0.788) was lower than other variables (k\u00a0>\u00a00.80).\nCONCLUSION: Diagnostic performance of contrast-enhanced CT, MRI, and EUS for predicting malignant IPMNs was comparable with each modalities without significant difference.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00261-017-1053-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297457",
"issn": [
"2366-004X",
"2366-0058"
],
"name": "Abdominal Radiology",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "42"
}
],
"name": "Diagnostic performance and imaging features for predicting the malignant potential of intraductal papillary mucinous neoplasm of the pancreas: a comparison of EUS, contrast-enhanced CT and MRI",
"pagination": "1449-1458",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"c6744cad4b2049e2d89a702db6d335b8336e681740b6c8e70e20bb6ab54d2559"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"28144718"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101674571"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00261-017-1053-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1083400127"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00261-017-1053-3",
"https://app.dimensions.ai/details/publication/pub.1083400127"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000003.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00261-017-1053-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1053-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1053-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1053-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-017-1053-3'
This table displays all metadata directly associated to this object as RDF triples.
269 TRIPLES
21 PREDICATES
74 URIs
36 LITERALS
24 BLANK NODES