Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01-08

AUTHORS

Ji Hoon Park, Bohyoung Kim, Mi Sung Kim, Hyuk Jung Kim, Yousun Ko, Soyeon Ahn, Murat Karul, Joel G. Fletcher, Kyoung Ho Lee

ABSTRACT

PurposeTo compare radiologists’ diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT.MethodsThe institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8 ± 8.5 years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose4, Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon’s signed-rank tests, and McNemar’s tests.ResultsThe pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, −0.02, 0.02; P = 0.73). The AUC difference was not significant in any of the individual readers (P ≥ 0.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P ≤ 0.70), showing significant differences for four readers (P ≤ 0.040).ConclusionWhen diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists’ diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP. More... »

PAGES

1227-1236

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4

DOI

http://dx.doi.org/10.1007/s00261-015-0632-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035553053

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27315093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Appendicitis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Competence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ji Hoon", 
        "id": "sg:person.01300550161.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300550161.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Bohyoung", 
        "id": "sg:person.01055167234.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055167234.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Mi Sung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.413128.d", 
          "name": [
            "Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyuk Jung", 
        "id": "sg:person.01176053311.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176053311.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Yousun", 
        "id": "sg:person.01137623345.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137623345.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Soyeon", 
        "id": "sg:person.0612662613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.13648.38", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karul", 
        "givenName": "Murat", 
        "id": "sg:person.01276234350.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276234350.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fletcher", 
        "givenName": "Joel G.", 
        "id": "sg:person.0621221404.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
            "Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kyoung Ho", 
        "id": "sg:person.01171415634.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171415634.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1745-6215-15-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040694798", 
          "https://doi.org/10.1186/1745-6215-15-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2764-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030686127", 
          "https://doi.org/10.1007/s00330-012-2764-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-005-5163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005450663", 
          "https://doi.org/10.1007/s10278-005-5163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2186-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042133471", 
          "https://doi.org/10.1007/s00330-011-2186-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-014-3109-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042118800", 
          "https://doi.org/10.1007/s00247-014-3109-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-008-9649-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016220362", 
          "https://doi.org/10.1007/s00268-008-9649-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01-08", 
    "datePublishedReg": "2016-01-08", 
    "description": "PurposeTo compare radiologists\u2019 diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT.MethodsThe institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8\u00a0\u00b1\u00a08.5\u00a0years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose4, Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using\u00a0the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon\u2019s signed-rank tests, and McNemar\u2019s tests.ResultsThe pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, \u22120.02, 0.02; P\u00a0=\u00a00.73). The AUC difference was not significant in any of the individual readers (P\u00a0\u2265\u00a00.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P\u00a0\u2264\u00a00.70), showing significant differences for four readers (P\u00a0\u2264\u00a00.040).ConclusionWhen diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists\u2019 diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00261-015-0632-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "likelihood of appendicitis", 
      "signed-rank test", 
      "diagnostic performance", 
      "subjective image quality", 
      "MethodsThe institutional review board", 
      "institutional review board", 
      "young adults", 
      "diagnostic confidence", 
      "Wilcoxon signed-rank test", 
      "iterative reconstruction", 
      "appendiceal CT", 
      "CT", 
      "review board", 
      "retrospective study", 
      "informed consent", 
      "appendicitis", 
      "different experience levels", 
      "indeterminate interpretations", 
      "visualization scores", 
      "McNemar test", 
      "characteristic curve", 
      "AUC differences", 
      "significant differences", 
      "PurposeTo", 
      "radiologists", 
      "image quality", 
      "adolescents", 
      "adults", 
      "patients", 
      "experience level", 
      "CT images", 
      "Likert scale", 
      "characteristic analysis", 
      "ConclusionWhen", 
      "higher subjective image quality", 
      "confidence", 
      "quality", 
      "reconstruction", 
      "study", 
      "consent", 
      "levels", 
      "FBP", 
      "likelihood", 
      "proportion", 
      "scores", 
      "test", 
      "differences", 
      "majority", 
      "projections", 
      "scale", 
      "receiver", 
      "analysis", 
      "area", 
      "curves", 
      "individual readers", 
      "comparison", 
      "board", 
      "requirements", 
      "readers", 
      "images", 
      "interpretation", 
      "reconstruction method", 
      "method", 
      "performance"
    ], 
    "name": "Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT", 
    "pagination": "1227-1236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035553053"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-015-0632-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27315093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-015-0632-4", 
      "https://app.dimensions.ai/details/publication/pub.1035553053"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_716.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00261-015-0632-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      22 PREDICATES      106 URIs      92 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-015-0632-4 schema:about N11b7ebc8f24a4303a4ca5fe4cfa7b2d8
2 N2363fb42e6e3463ea97bba0529f52321
3 N4fb720549d5341d7afeabdd5dc07ee1e
4 N55e399c4d22b4f22a727961417ef68c4
5 N708acb985ded45dbb8690924df8dc77e
6 N95df5294f60a40759e2a6671357fc51d
7 N97a861ddb71d4873874857077b7ed905
8 Nb70aea151c8b42e1bcd8c8c3db4b7592
9 Nbb2d4fb7ed3a4e9990577737d784d0fd
10 Ne3a2e1e9d70840ebaa7962ab10e9ea46
11 anzsrc-for:11
12 anzsrc-for:1103
13 schema:author Ne649e18a439545c6ab3136890f2826bf
14 schema:citation sg:pub.10.1007/s00247-014-3109-7
15 sg:pub.10.1007/s00268-008-9649-y
16 sg:pub.10.1007/s00330-011-2186-3
17 sg:pub.10.1007/s00330-012-2764-z
18 sg:pub.10.1007/s10278-005-5163-z
19 sg:pub.10.1186/1745-6215-15-28
20 schema:datePublished 2016-01-08
21 schema:datePublishedReg 2016-01-08
22 schema:description PurposeTo compare radiologists’ diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT.MethodsThe institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8 ± 8.5 years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose4, Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon’s signed-rank tests, and McNemar’s tests.ResultsThe pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, −0.02, 0.02; P = 0.73). The AUC difference was not significant in any of the individual readers (P ≥ 0.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P ≤ 0.70), showing significant differences for four readers (P ≤ 0.040).ConclusionWhen diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists’ diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N4ec3b115ede244dca16884c9f3173cab
27 N6179926713b64a63bd7ec1af263b512a
28 sg:journal.1297457
29 schema:keywords AUC differences
30 CT
31 CT images
32 ConclusionWhen
33 FBP
34 Likert scale
35 McNemar test
36 MethodsThe institutional review board
37 PurposeTo
38 Wilcoxon signed-rank test
39 adolescents
40 adults
41 analysis
42 appendiceal CT
43 appendicitis
44 area
45 board
46 characteristic analysis
47 characteristic curve
48 comparison
49 confidence
50 consent
51 curves
52 diagnostic confidence
53 diagnostic performance
54 differences
55 different experience levels
56 experience level
57 higher subjective image quality
58 image quality
59 images
60 indeterminate interpretations
61 individual readers
62 informed consent
63 institutional review board
64 interpretation
65 iterative reconstruction
66 levels
67 likelihood
68 likelihood of appendicitis
69 majority
70 method
71 patients
72 performance
73 projections
74 proportion
75 quality
76 radiologists
77 readers
78 receiver
79 reconstruction
80 reconstruction method
81 requirements
82 retrospective study
83 review board
84 scale
85 scores
86 signed-rank test
87 significant differences
88 study
89 subjective image quality
90 test
91 visualization scores
92 young adults
93 schema:name Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT
94 schema:pagination 1227-1236
95 schema:productId N2691e71cbee84263a4b571438fa78d66
96 N5ab0c278f2a648ff9ee7be58581b4010
97 Ndfa256dc696642e08dfdaa2631b2feb5
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035553053
99 https://doi.org/10.1007/s00261-015-0632-4
100 schema:sdDatePublished 2022-05-20T07:32
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N5c4140c26e4348cfb97f8a73dd9ae942
103 schema:url https://doi.org/10.1007/s00261-015-0632-4
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N11b7ebc8f24a4303a4ca5fe4cfa7b2d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Appendicitis
109 rdf:type schema:DefinedTerm
110 N21c964ce8cec45fea3838d3f2573a691 rdf:first sg:person.01276234350.40
111 rdf:rest N720948ace2f248678526aadf05071c17
112 N2363fb42e6e3463ea97bba0529f52321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Male
114 rdf:type schema:DefinedTerm
115 N2691e71cbee84263a4b571438fa78d66 schema:name dimensions_id
116 schema:value pub.1035553053
117 rdf:type schema:PropertyValue
118 N3901f5eb83e74dad85edd9e87b04f125 rdf:first sg:person.01055167234.42
119 rdf:rest Nd35290343b3f403c840d9df5fd45c90d
120 N4ec3b115ede244dca16884c9f3173cab schema:volumeNumber 41
121 rdf:type schema:PublicationVolume
122 N4fb720549d5341d7afeabdd5dc07ee1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Adult
124 rdf:type schema:DefinedTerm
125 N55e399c4d22b4f22a727961417ef68c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Female
127 rdf:type schema:DefinedTerm
128 N5ab0c278f2a648ff9ee7be58581b4010 schema:name doi
129 schema:value 10.1007/s00261-015-0632-4
130 rdf:type schema:PropertyValue
131 N5c4140c26e4348cfb97f8a73dd9ae942 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N6179926713b64a63bd7ec1af263b512a schema:issueNumber 7
134 rdf:type schema:PublicationIssue
135 N675866b42d6944239ecb2e340bf1903d rdf:first sg:person.0612662613.04
136 rdf:rest N21c964ce8cec45fea3838d3f2573a691
137 N708acb985ded45dbb8690924df8dc77e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Radiographic Image Interpretation, Computer-Assisted
139 rdf:type schema:DefinedTerm
140 N720948ace2f248678526aadf05071c17 rdf:first sg:person.0621221404.12
141 rdf:rest N7f3fcd49eec446a8bc944ad9bf0282a6
142 N7f3fcd49eec446a8bc944ad9bf0282a6 rdf:first sg:person.01171415634.68
143 rdf:rest rdf:nil
144 N8f49b790188a4e71b9a4d7c89aced8fa rdf:first sg:person.01176053311.45
145 rdf:rest Nc37e9a77fce94de6a9b4f31676d5215b
146 N95df5294f60a40759e2a6671357fc51d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Clinical Competence
148 rdf:type schema:DefinedTerm
149 N97a861ddb71d4873874857077b7ed905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Tomography, X-Ray Computed
151 rdf:type schema:DefinedTerm
152 Nb70aea151c8b42e1bcd8c8c3db4b7592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Humans
154 rdf:type schema:DefinedTerm
155 Nbb2d4fb7ed3a4e9990577737d784d0fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Adolescent
157 rdf:type schema:DefinedTerm
158 Nc37e9a77fce94de6a9b4f31676d5215b rdf:first sg:person.01137623345.18
159 rdf:rest N675866b42d6944239ecb2e340bf1903d
160 Nd35290343b3f403c840d9df5fd45c90d rdf:first Nfe035b58a3614d4a86e2e3b0d3d53eb6
161 rdf:rest N8f49b790188a4e71b9a4d7c89aced8fa
162 Ndfa256dc696642e08dfdaa2631b2feb5 schema:name pubmed_id
163 schema:value 27315093
164 rdf:type schema:PropertyValue
165 Ne3a2e1e9d70840ebaa7962ab10e9ea46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Retrospective Studies
167 rdf:type schema:DefinedTerm
168 Ne649e18a439545c6ab3136890f2826bf rdf:first sg:person.01300550161.94
169 rdf:rest N3901f5eb83e74dad85edd9e87b04f125
170 Nfe035b58a3614d4a86e2e3b0d3d53eb6 schema:affiliation grid-institutes:grid.264381.a
171 schema:familyName Kim
172 schema:givenName Mi Sung
173 rdf:type schema:Person
174 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
175 schema:name Medical and Health Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
178 schema:name Clinical Sciences
179 rdf:type schema:DefinedTerm
180 sg:journal.1297457 schema:issn 2366-004X
181 2366-0058
182 schema:name Abdominal Radiology
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.01055167234.42 schema:affiliation grid-institutes:grid.412480.b
186 schema:familyName Kim
187 schema:givenName Bohyoung
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055167234.42
189 rdf:type schema:Person
190 sg:person.01137623345.18 schema:affiliation grid-institutes:grid.412480.b
191 schema:familyName Ko
192 schema:givenName Yousun
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137623345.18
194 rdf:type schema:Person
195 sg:person.01171415634.68 schema:affiliation grid-institutes:grid.31501.36
196 schema:familyName Lee
197 schema:givenName Kyoung Ho
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171415634.68
199 rdf:type schema:Person
200 sg:person.01176053311.45 schema:affiliation grid-institutes:grid.413128.d
201 schema:familyName Kim
202 schema:givenName Hyuk Jung
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176053311.45
204 rdf:type schema:Person
205 sg:person.01276234350.40 schema:affiliation grid-institutes:grid.13648.38
206 schema:familyName Karul
207 schema:givenName Murat
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276234350.40
209 rdf:type schema:Person
210 sg:person.01300550161.94 schema:affiliation grid-institutes:grid.412480.b
211 schema:familyName Park
212 schema:givenName Ji Hoon
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300550161.94
214 rdf:type schema:Person
215 sg:person.0612662613.04 schema:affiliation grid-institutes:grid.412480.b
216 schema:familyName Ahn
217 schema:givenName Soyeon
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04
219 rdf:type schema:Person
220 sg:person.0621221404.12 schema:affiliation grid-institutes:grid.66875.3a
221 schema:familyName Fletcher
222 schema:givenName Joel G.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12
224 rdf:type schema:Person
225 sg:pub.10.1007/s00247-014-3109-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042118800
226 https://doi.org/10.1007/s00247-014-3109-7
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00268-008-9649-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016220362
229 https://doi.org/10.1007/s00268-008-9649-y
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s00330-011-2186-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042133471
232 https://doi.org/10.1007/s00330-011-2186-3
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s00330-012-2764-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030686127
235 https://doi.org/10.1007/s00330-012-2764-z
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s10278-005-5163-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005450663
238 https://doi.org/10.1007/s10278-005-5163-z
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1745-6215-15-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040694798
241 https://doi.org/10.1186/1745-6215-15-28
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.13648.38 schema:alternateName Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
244 schema:name Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
245 rdf:type schema:Organization
246 grid-institutes:grid.264381.a schema:alternateName Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
247 schema:name Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
248 rdf:type schema:Organization
249 grid-institutes:grid.31501.36 schema:alternateName Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea
250 schema:name Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
251 Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea
252 rdf:type schema:Organization
253 grid-institutes:grid.412480.b schema:alternateName Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
254 Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
255 schema:name Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
256 Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
257 rdf:type schema:Organization
258 grid-institutes:grid.413128.d schema:alternateName Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea
259 schema:name Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea
260 rdf:type schema:Organization
261 grid-institutes:grid.66875.3a schema:alternateName Department of Radiology, Mayo Clinic, Rochester, MN, USA
262 schema:name Department of Radiology, Mayo Clinic, Rochester, MN, USA
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...