Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01-08

AUTHORS

Ji Hoon Park, Bohyoung Kim, Mi Sung Kim, Hyuk Jung Kim, Yousun Ko, Soyeon Ahn, Murat Karul, Joel G. Fletcher, Kyoung Ho Lee

ABSTRACT

PurposeTo compare radiologists’ diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT.MethodsThe institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8 ± 8.5 years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose4, Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon’s signed-rank tests, and McNemar’s tests.ResultsThe pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, −0.02, 0.02; P = 0.73). The AUC difference was not significant in any of the individual readers (P ≥ 0.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P ≤ 0.70), showing significant differences for four readers (P ≤ 0.040).ConclusionWhen diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists’ diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP. More... »

PAGES

1227-1236

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4

DOI

http://dx.doi.org/10.1007/s00261-015-0632-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035553053

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27315093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Appendicitis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Competence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ji Hoon", 
        "id": "sg:person.01300550161.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300550161.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Bohyoung", 
        "id": "sg:person.01055167234.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055167234.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Mi Sung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.413128.d", 
          "name": [
            "Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyuk Jung", 
        "id": "sg:person.01176053311.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176053311.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Yousun", 
        "id": "sg:person.01137623345.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137623345.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Soyeon", 
        "id": "sg:person.0612662613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.13648.38", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karul", 
        "givenName": "Murat", 
        "id": "sg:person.01276234350.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276234350.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fletcher", 
        "givenName": "Joel G.", 
        "id": "sg:person.0621221404.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea", 
            "Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kyoung Ho", 
        "id": "sg:person.01171415634.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171415634.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-012-2764-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030686127", 
          "https://doi.org/10.1007/s00330-012-2764-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-008-9649-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016220362", 
          "https://doi.org/10.1007/s00268-008-9649-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6215-15-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040694798", 
          "https://doi.org/10.1186/1745-6215-15-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-005-5163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005450663", 
          "https://doi.org/10.1007/s10278-005-5163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2186-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042133471", 
          "https://doi.org/10.1007/s00330-011-2186-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-014-3109-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042118800", 
          "https://doi.org/10.1007/s00247-014-3109-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01-08", 
    "datePublishedReg": "2016-01-08", 
    "description": "PurposeTo compare radiologists\u2019 diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT.MethodsThe institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8\u00a0\u00b1\u00a08.5\u00a0years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose4, Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using\u00a0the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon\u2019s signed-rank tests, and McNemar\u2019s tests.ResultsThe pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, \u22120.02, 0.02; P\u00a0=\u00a00.73). The AUC difference was not significant in any of the individual readers (P\u00a0\u2265\u00a00.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P\u00a0\u2264\u00a00.70), showing significant differences for four readers (P\u00a0\u2264\u00a00.040).ConclusionWhen diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists\u2019 diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00261-015-0632-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "likelihood of appendicitis", 
      "signed-rank test", 
      "subjective image quality", 
      "young adults", 
      "diagnostic performance", 
      "diagnostic confidence", 
      "institutional review board", 
      "Wilcoxon signed-rank test", 
      "iterative reconstruction", 
      "appendiceal CT", 
      "retrospective study", 
      "appendicitis", 
      "CT", 
      "review board", 
      "informed consent", 
      "visualization scores", 
      "McNemar test", 
      "characteristic curve", 
      "AUC differences", 
      "significant differences", 
      "indeterminate interpretations", 
      "radiologists", 
      "adolescents", 
      "adults", 
      "different experience levels", 
      "CT images", 
      "Likert scale", 
      "characteristic analysis", 
      "higher subjective image quality", 
      "image quality", 
      "patients", 
      "PurposeTo", 
      "experience level", 
      "FBP", 
      "ConclusionWhen", 
      "consent", 
      "likelihood", 
      "scores", 
      "test", 
      "differences", 
      "quality", 
      "reconstruction", 
      "proportion", 
      "majority", 
      "confidence", 
      "study", 
      "levels", 
      "projections", 
      "receiver", 
      "scale", 
      "analysis", 
      "area", 
      "curves", 
      "individual readers", 
      "comparison", 
      "readers", 
      "board", 
      "method", 
      "images", 
      "interpretation", 
      "reconstruction method", 
      "performance", 
      "requirements", 
      "MethodsThe institutional review board", 
      "normal appendix visualization score", 
      "appendix visualization score"
    ], 
    "name": "Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT", 
    "pagination": "1227-1236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035553053"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-015-0632-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27315093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-015-0632-4", 
      "https://app.dimensions.ai/details/publication/pub.1035553053"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_707.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00261-015-0632-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0632-4'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      22 PREDICATES      108 URIs      94 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-015-0632-4 schema:about N104313f966d04d689ff47f26be01d415
2 N2187d1283d0f41cb8fcbabd23579d133
3 N411b881739ba450caa94a80c5d65d56a
4 N463e2b70949d42ee8c884f3e26962971
5 N5cdacbfcbbd84211a268ea8f8f203ad7
6 Na65b8a6f9b4d413487a2ab36964ef3e9
7 Naf4b180fb83641f98722424d03bfd31b
8 Nb4b94a4618eb402ba5614a5d28dc75cb
9 Nde71885bd8b04a94806a25562bcbd3d3
10 Nf1d09dcdb2a94d4e99f75213cf410c94
11 anzsrc-for:11
12 anzsrc-for:1103
13 schema:author Nb026727cb1a54f2488250ff90ec7547f
14 schema:citation sg:pub.10.1007/s00247-014-3109-7
15 sg:pub.10.1007/s00268-008-9649-y
16 sg:pub.10.1007/s00330-011-2186-3
17 sg:pub.10.1007/s00330-012-2764-z
18 sg:pub.10.1007/s10278-005-5163-z
19 sg:pub.10.1186/1745-6215-15-28
20 schema:datePublished 2016-01-08
21 schema:datePublishedReg 2016-01-08
22 schema:description PurposeTo compare radiologists’ diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT.MethodsThe institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8 ± 8.5 years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose4, Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon’s signed-rank tests, and McNemar’s tests.ResultsThe pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, −0.02, 0.02; P = 0.73). The AUC difference was not significant in any of the individual readers (P ≥ 0.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P ≤ 0.70), showing significant differences for four readers (P ≤ 0.040).ConclusionWhen diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists’ diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N781892b48d3c41b68ec2e378e4cae17f
27 N8276986cde5a4338929b3ec1664414ce
28 sg:journal.1297457
29 schema:keywords AUC differences
30 CT
31 CT images
32 ConclusionWhen
33 FBP
34 Likert scale
35 McNemar test
36 MethodsThe institutional review board
37 PurposeTo
38 Wilcoxon signed-rank test
39 adolescents
40 adults
41 analysis
42 appendiceal CT
43 appendicitis
44 appendix visualization score
45 area
46 board
47 characteristic analysis
48 characteristic curve
49 comparison
50 confidence
51 consent
52 curves
53 diagnostic confidence
54 diagnostic performance
55 differences
56 different experience levels
57 experience level
58 higher subjective image quality
59 image quality
60 images
61 indeterminate interpretations
62 individual readers
63 informed consent
64 institutional review board
65 interpretation
66 iterative reconstruction
67 levels
68 likelihood
69 likelihood of appendicitis
70 majority
71 method
72 normal appendix visualization score
73 patients
74 performance
75 projections
76 proportion
77 quality
78 radiologists
79 readers
80 receiver
81 reconstruction
82 reconstruction method
83 requirements
84 retrospective study
85 review board
86 scale
87 scores
88 signed-rank test
89 significant differences
90 study
91 subjective image quality
92 test
93 visualization scores
94 young adults
95 schema:name Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT
96 schema:pagination 1227-1236
97 schema:productId N8c76b021497c4c78994f0a051ef411a7
98 N91ce7b49c09b4e00b33b61862be32bf9
99 Nea2dff9f03ce426ba1e89ce4532763fa
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035553053
101 https://doi.org/10.1007/s00261-015-0632-4
102 schema:sdDatePublished 2022-01-01T18:40
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N45019d9ea9a94d2d8cfc4921db096ed0
105 schema:url https://doi.org/10.1007/s00261-015-0632-4
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N03d1be9a6f174539a10cecee4bd1a44d rdf:first sg:person.01176053311.45
110 rdf:rest N5a52ccc4d4ce4caaa76ca2235f1c7871
111 N104313f966d04d689ff47f26be01d415 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Appendicitis
113 rdf:type schema:DefinedTerm
114 N1f5e53a4780f4133b852f873d8ca8c75 rdf:first sg:person.01055167234.42
115 rdf:rest Nbd5484b5610a4fe7afeb1ba4e061ec7d
116 N2187d1283d0f41cb8fcbabd23579d133 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Radiographic Image Interpretation, Computer-Assisted
118 rdf:type schema:DefinedTerm
119 N26ddde463b434238b0dd6f34ceefaf39 rdf:first sg:person.0621221404.12
120 rdf:rest Nf4af0c02ee674de59f0addef0e6892e4
121 N411b881739ba450caa94a80c5d65d56a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Adolescent
123 rdf:type schema:DefinedTerm
124 N44d6d8e0762540b9829848eda6afbfa2 schema:affiliation grid-institutes:grid.264381.a
125 schema:familyName Kim
126 schema:givenName Mi Sung
127 rdf:type schema:Person
128 N45019d9ea9a94d2d8cfc4921db096ed0 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N463e2b70949d42ee8c884f3e26962971 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Female
132 rdf:type schema:DefinedTerm
133 N5a52ccc4d4ce4caaa76ca2235f1c7871 rdf:first sg:person.01137623345.18
134 rdf:rest N66675d741e634180b797e06bb71a0632
135 N5cdacbfcbbd84211a268ea8f8f203ad7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Retrospective Studies
137 rdf:type schema:DefinedTerm
138 N66675d741e634180b797e06bb71a0632 rdf:first sg:person.0612662613.04
139 rdf:rest N6aec03941e894336aea21208d676c262
140 N6aec03941e894336aea21208d676c262 rdf:first sg:person.01276234350.40
141 rdf:rest N26ddde463b434238b0dd6f34ceefaf39
142 N781892b48d3c41b68ec2e378e4cae17f schema:issueNumber 7
143 rdf:type schema:PublicationIssue
144 N8276986cde5a4338929b3ec1664414ce schema:volumeNumber 41
145 rdf:type schema:PublicationVolume
146 N8c76b021497c4c78994f0a051ef411a7 schema:name dimensions_id
147 schema:value pub.1035553053
148 rdf:type schema:PropertyValue
149 N91ce7b49c09b4e00b33b61862be32bf9 schema:name doi
150 schema:value 10.1007/s00261-015-0632-4
151 rdf:type schema:PropertyValue
152 Na65b8a6f9b4d413487a2ab36964ef3e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Tomography, X-Ray Computed
154 rdf:type schema:DefinedTerm
155 Naf4b180fb83641f98722424d03bfd31b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Male
157 rdf:type schema:DefinedTerm
158 Nb026727cb1a54f2488250ff90ec7547f rdf:first sg:person.01300550161.94
159 rdf:rest N1f5e53a4780f4133b852f873d8ca8c75
160 Nb4b94a4618eb402ba5614a5d28dc75cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 Nbd5484b5610a4fe7afeb1ba4e061ec7d rdf:first N44d6d8e0762540b9829848eda6afbfa2
164 rdf:rest N03d1be9a6f174539a10cecee4bd1a44d
165 Nde71885bd8b04a94806a25562bcbd3d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Clinical Competence
167 rdf:type schema:DefinedTerm
168 Nea2dff9f03ce426ba1e89ce4532763fa schema:name pubmed_id
169 schema:value 27315093
170 rdf:type schema:PropertyValue
171 Nf1d09dcdb2a94d4e99f75213cf410c94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Adult
173 rdf:type schema:DefinedTerm
174 Nf4af0c02ee674de59f0addef0e6892e4 rdf:first sg:person.01171415634.68
175 rdf:rest rdf:nil
176 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
177 schema:name Medical and Health Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
180 schema:name Clinical Sciences
181 rdf:type schema:DefinedTerm
182 sg:journal.1297457 schema:issn 2366-004X
183 2366-0058
184 schema:name Abdominal Radiology
185 schema:publisher Springer Nature
186 rdf:type schema:Periodical
187 sg:person.01055167234.42 schema:affiliation grid-institutes:grid.412480.b
188 schema:familyName Kim
189 schema:givenName Bohyoung
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055167234.42
191 rdf:type schema:Person
192 sg:person.01137623345.18 schema:affiliation grid-institutes:grid.412480.b
193 schema:familyName Ko
194 schema:givenName Yousun
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137623345.18
196 rdf:type schema:Person
197 sg:person.01171415634.68 schema:affiliation grid-institutes:grid.31501.36
198 schema:familyName Lee
199 schema:givenName Kyoung Ho
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171415634.68
201 rdf:type schema:Person
202 sg:person.01176053311.45 schema:affiliation grid-institutes:grid.413128.d
203 schema:familyName Kim
204 schema:givenName Hyuk Jung
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176053311.45
206 rdf:type schema:Person
207 sg:person.01276234350.40 schema:affiliation grid-institutes:grid.13648.38
208 schema:familyName Karul
209 schema:givenName Murat
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276234350.40
211 rdf:type schema:Person
212 sg:person.01300550161.94 schema:affiliation grid-institutes:grid.412480.b
213 schema:familyName Park
214 schema:givenName Ji Hoon
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300550161.94
216 rdf:type schema:Person
217 sg:person.0612662613.04 schema:affiliation grid-institutes:grid.412480.b
218 schema:familyName Ahn
219 schema:givenName Soyeon
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04
221 rdf:type schema:Person
222 sg:person.0621221404.12 schema:affiliation grid-institutes:grid.66875.3a
223 schema:familyName Fletcher
224 schema:givenName Joel G.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12
226 rdf:type schema:Person
227 sg:pub.10.1007/s00247-014-3109-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042118800
228 https://doi.org/10.1007/s00247-014-3109-7
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s00268-008-9649-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016220362
231 https://doi.org/10.1007/s00268-008-9649-y
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00330-011-2186-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042133471
234 https://doi.org/10.1007/s00330-011-2186-3
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s00330-012-2764-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030686127
237 https://doi.org/10.1007/s00330-012-2764-z
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/s10278-005-5163-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005450663
240 https://doi.org/10.1007/s10278-005-5163-z
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1745-6215-15-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040694798
243 https://doi.org/10.1186/1745-6215-15-28
244 rdf:type schema:CreativeWork
245 grid-institutes:grid.13648.38 schema:alternateName Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
246 schema:name Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
247 rdf:type schema:Organization
248 grid-institutes:grid.264381.a schema:alternateName Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
249 schema:name Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
250 rdf:type schema:Organization
251 grid-institutes:grid.31501.36 schema:alternateName Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea
252 schema:name Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
253 Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University, Seoul, Korea
254 rdf:type schema:Organization
255 grid-institutes:grid.412480.b schema:alternateName Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
256 Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
257 schema:name Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, 463-707, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
258 Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
259 rdf:type schema:Organization
260 grid-institutes:grid.413128.d schema:alternateName Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea
261 schema:name Department of Radiology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Korea
262 rdf:type schema:Organization
263 grid-institutes:grid.66875.3a schema:alternateName Department of Radiology, Mayo Clinic, Rochester, MN, USA
264 schema:name Department of Radiology, Mayo Clinic, Rochester, MN, USA
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...