Optimal visualization of focal nodular hyperplasia: quantitative and qualitative evaluation of single and multiphasic arterial phase acquisition at 1.5 T ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

Caroline Rousseau, Maxime Ronot, Valérie Vilgrain, Marc Zins

ABSTRACT

PURPOSE: To evaluate the qualitative and quantitative benefit of multiple arterial phase acquisitions for the depiction of hypervascularity in FNH explored MR imaging using an extracellular contrast agent. METHODS: Between 2007 and 2014, all patients who underwent MR imaging for the exploration of FNH were included. The protocol included a single or a triple arterial phase ("single" and "triple" group, respectively). Arterial phases were visually divided into four types: (1) angiographic, (2) early, (3) late, and (4) portal. Signal intensity on arterial phase images was visually recorded as intense, moderate, or low for each lesion. Lesion-to-liver contrast (LLC) and relative lesion enhancement (RE) were calculated and compared between the two groups using the Mann-Whitney test. RESULTS: Thirty-five women were included (mean 45-year old, range 20-66), with 50 FNH (mean size 30 mm). Single and triple groups included 20 patients (30 FNH) and 15 patients (20 FNH), respectively. Signal intensity was intense in all lesions in the triple group and in 22/30 (73%) in the single group (p = 0.041). Intense signals were more frequently found in the early arterial phase (p < 0.001). RE was not significantly different (1.78 ± 0.84 vs. 1.98 ± 1.81 p = 0.430, in the single and triple groups, respectively) but LLC was significantly higher in the triple group (0.32 ± 0.10 vs. 0.22 ± 0.10, p = 0.005). LLC was significantly higher in the first two arterial phases in the triple group (p < 0.001). CONCLUSION: Acquisition of three arterial phases improves the visualization of hypervascularity of FNH, as lesions show high visual signal intensity and contrast. Optimal visualization is obtained in the early arterial phase. More... »

PAGES

990-1000

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-015-0630-6

DOI

http://dx.doi.org/10.1007/s00261-015-0630-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017656705

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27193796


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Focal Nodular Hyperplasia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meglumine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, Fondation H\u00f4pital Saint-Joseph, 185 rue Raymond Losserand, 75674, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "Caroline", 
        "id": "sg:person.01014074077.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014074077.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Research on Inflammation", 
          "id": "https://www.grid.ac/institutes/grid.462374.0", 
          "name": [
            "Department of Radiology, H\u00f4pital Beaujon, HUPNVS, 100, Bd du G\u00e9n\u00e9ral Leclerc, Clichy, France", 
            "University Paris Diderot, Sorbonne Paris Cite, Paris, France", 
            "INSERM U1149, CRI, 75018, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronot", 
        "givenName": "Maxime", 
        "id": "sg:person.01025534354.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Research on Inflammation", 
          "id": "https://www.grid.ac/institutes/grid.462374.0", 
          "name": [
            "Department of Radiology, H\u00f4pital Beaujon, HUPNVS, 100, Bd du G\u00e9n\u00e9ral Leclerc, Clichy, France", 
            "University Paris Diderot, Sorbonne Paris Cite, Paris, France", 
            "INSERM U1149, CRI, 75018, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilgrain", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.0761705775.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, Fondation H\u00f4pital Saint-Joseph, 185 rue Raymond Losserand, 75674, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zins", 
        "givenName": "Marc", 
        "id": "sg:person.01360232034.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-014-3363-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002966087", 
          "https://doi.org/10.1007/s00330-014-3363-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007021893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.218.3.r01mr39763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012040939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2262011593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014795167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinre.2014.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016319006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-001-0140-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021041467", 
          "https://doi.org/10.1007/s00261-001-0140-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1700-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024121080", 
          "https://doi.org/10.1007/s00330-009-1700-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1700-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024121080", 
          "https://doi.org/10.1007/s00330-009-1700-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2453062151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028424161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028590882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2005.11.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.241035050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029325825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029594797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2586(199904)9:4<562::aid-jmri9>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030953682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3280-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031411119", 
          "https://doi.org/10.1007/s00330-014-3280-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032105058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2014.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037809039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045607575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048140435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053349646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.2507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.179.6.1791447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.184.1.01840063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.202.1.8988222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083027710"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "PURPOSE: To evaluate the qualitative and quantitative benefit of multiple arterial phase acquisitions for the depiction of hypervascularity in FNH explored MR imaging using an extracellular contrast agent.\nMETHODS: Between 2007 and 2014, all patients who underwent MR imaging for the exploration of FNH were included. The protocol included a single or a triple arterial phase (\"single\" and \"triple\" group, respectively). Arterial phases were visually divided into four types: (1) angiographic, (2) early, (3) late, and (4) portal. Signal intensity on arterial phase images was visually recorded as intense, moderate, or low for each lesion. Lesion-to-liver contrast (LLC) and relative lesion enhancement (RE) were calculated and compared between the two groups using the Mann-Whitney test.\nRESULTS: Thirty-five women were included (mean 45-year old, range 20-66), with 50 FNH (mean size 30\u00a0mm). Single and triple groups included 20 patients (30 FNH) and 15 patients (20 FNH), respectively. Signal intensity was intense in all lesions in the triple group and in 22/30 (73%) in the single group (p\u00a0=\u00a00.041). Intense signals were more frequently found in the early arterial phase (p\u00a0<\u00a00.001). RE was not significantly different (1.78\u00a0\u00b1\u00a00.84 vs. 1.98\u00a0\u00b1\u00a01.81 p\u00a0=\u00a00.430, in the single and triple groups, respectively) but LLC was significantly higher in the triple group (0.32\u00a0\u00b1\u00a00.10 vs. 0.22\u00a0\u00b1\u00a00.10, p\u00a0=\u00a00.005). LLC was significantly higher in the first two arterial phases in the triple group (p\u00a0<\u00a00.001).\nCONCLUSION: Acquisition of three arterial phases improves the visualization of hypervascularity of FNH, as lesions show high visual signal intensity and contrast. Optimal visualization is obtained in the early arterial phase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-015-0630-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Optimal visualization of focal nodular hyperplasia: quantitative and qualitative evaluation of single and multiphasic arterial phase acquisition at 1.5 T MR imaging", 
    "pagination": "990-1000", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5420123effdec2b92853e2092bf281022006c365fcb3233f30f72d78993beb0d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27193796"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-015-0630-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017656705"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-015-0630-6", 
      "https://app.dimensions.ai/details/publication/pub.1017656705"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00261-015-0630-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0630-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0630-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0630-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-015-0630-6'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      65 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-015-0630-6 schema:about N015b25e26d0942b48d716f3ad1942907
2 N34f3d6f71bdd42d993e009d736ca362b
3 N43eeddfe14374c86940cc23a970aed19
4 N4af17c5102464a48bca6b4ebb20edf2e
5 N69df6c4296d746e08100dab5169c3a85
6 N7771a98d86b94178aaafc02e4cf1a0c2
7 N94032c7589294cf9b3838831c8c545d2
8 N97a1f590042945de82a803a45d0e5c9b
9 N983afeb88e34446a91f7dbe2b97610a1
10 Na266a6e7e60347709d2c7122211c2691
11 Naa5b860ac19c4e40af2f407849171ff2
12 Ne15fb99142274c02b806dead23487edd
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author N6424462be7424450b0f9368cfe3b298c
16 schema:citation sg:pub.10.1007/s00261-001-0140-6
17 sg:pub.10.1007/s00330-009-1700-3
18 sg:pub.10.1007/s00330-014-3280-0
19 sg:pub.10.1007/s00330-014-3363-y
20 https://doi.org/10.1002/(sici)1522-2586(199904)9:4<562::aid-jmri9>3.0.co;2-x
21 https://doi.org/10.1002/jmri.10146
22 https://doi.org/10.1002/jmri.10319
23 https://doi.org/10.1002/jmri.20969
24 https://doi.org/10.1002/jmri.21442
25 https://doi.org/10.1002/jmri.24048
26 https://doi.org/10.1002/mrm.25195
27 https://doi.org/10.1016/j.clinre.2014.01.014
28 https://doi.org/10.1016/j.ejrad.2005.11.043
29 https://doi.org/10.1016/j.ejrad.2014.08.003
30 https://doi.org/10.1016/j.mri.2008.11.003
31 https://doi.org/10.1148/radiol.2262011593
32 https://doi.org/10.1148/radiol.2453062151
33 https://doi.org/10.1148/radiology.202.1.8988222
34 https://doi.org/10.1148/radiology.218.3.r01mr39763
35 https://doi.org/10.1148/rg.241035050
36 https://doi.org/10.2214/ajr.05.0522
37 https://doi.org/10.2214/ajr.09.2507
38 https://doi.org/10.2214/ajr.179.6.1791447
39 https://doi.org/10.2214/ajr.184.1.01840063
40 schema:datePublished 2016-05
41 schema:datePublishedReg 2016-05-01
42 schema:description PURPOSE: To evaluate the qualitative and quantitative benefit of multiple arterial phase acquisitions for the depiction of hypervascularity in FNH explored MR imaging using an extracellular contrast agent. METHODS: Between 2007 and 2014, all patients who underwent MR imaging for the exploration of FNH were included. The protocol included a single or a triple arterial phase ("single" and "triple" group, respectively). Arterial phases were visually divided into four types: (1) angiographic, (2) early, (3) late, and (4) portal. Signal intensity on arterial phase images was visually recorded as intense, moderate, or low for each lesion. Lesion-to-liver contrast (LLC) and relative lesion enhancement (RE) were calculated and compared between the two groups using the Mann-Whitney test. RESULTS: Thirty-five women were included (mean 45-year old, range 20-66), with 50 FNH (mean size 30 mm). Single and triple groups included 20 patients (30 FNH) and 15 patients (20 FNH), respectively. Signal intensity was intense in all lesions in the triple group and in 22/30 (73%) in the single group (p = 0.041). Intense signals were more frequently found in the early arterial phase (p < 0.001). RE was not significantly different (1.78 ± 0.84 vs. 1.98 ± 1.81 p = 0.430, in the single and triple groups, respectively) but LLC was significantly higher in the triple group (0.32 ± 0.10 vs. 0.22 ± 0.10, p = 0.005). LLC was significantly higher in the first two arterial phases in the triple group (p < 0.001). CONCLUSION: Acquisition of three arterial phases improves the visualization of hypervascularity of FNH, as lesions show high visual signal intensity and contrast. Optimal visualization is obtained in the early arterial phase.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N1b6623ea3eed40aa9f94f3be9e8b32ff
47 Nfd988838bda14a829c6e7d9c637920e7
48 sg:journal.1297457
49 schema:name Optimal visualization of focal nodular hyperplasia: quantitative and qualitative evaluation of single and multiphasic arterial phase acquisition at 1.5 T MR imaging
50 schema:pagination 990-1000
51 schema:productId N289ec1616d0b42e296226f09fbd46278
52 N2f031b629e2f4240a8f1caee27ebdef1
53 N41ce6eb426544bfb9037986ab7952b29
54 N5fcb31f1955f476591fb39339bfa4c0d
55 Nc3eecb330557495bbff383ec47656293
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017656705
57 https://doi.org/10.1007/s00261-015-0630-6
58 schema:sdDatePublished 2019-04-10T21:36
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N3a036de89f914dd1b58b702faab5d8f4
61 schema:url http://link.springer.com/10.1007%2Fs00261-015-0630-6
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N015b25e26d0942b48d716f3ad1942907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Magnetic Resonance Imaging
67 rdf:type schema:DefinedTerm
68 N1b6623ea3eed40aa9f94f3be9e8b32ff schema:volumeNumber 41
69 rdf:type schema:PublicationVolume
70 N289ec1616d0b42e296226f09fbd46278 schema:name readcube_id
71 schema:value 5420123effdec2b92853e2092bf281022006c365fcb3233f30f72d78993beb0d
72 rdf:type schema:PropertyValue
73 N2f031b629e2f4240a8f1caee27ebdef1 schema:name doi
74 schema:value 10.1007/s00261-015-0630-6
75 rdf:type schema:PropertyValue
76 N34f3d6f71bdd42d993e009d736ca362b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Organometallic Compounds
78 rdf:type schema:DefinedTerm
79 N3a036de89f914dd1b58b702faab5d8f4 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N3f2a421fb3c143a5a412c6868effce5c rdf:first sg:person.0761705775.52
82 rdf:rest N746697339b184273ba18563d7c510861
83 N41ce6eb426544bfb9037986ab7952b29 schema:name nlm_unique_id
84 schema:value 101674571
85 rdf:type schema:PropertyValue
86 N43eeddfe14374c86940cc23a970aed19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Adult
88 rdf:type schema:DefinedTerm
89 N4af17c5102464a48bca6b4ebb20edf2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Humans
91 rdf:type schema:DefinedTerm
92 N5fcb31f1955f476591fb39339bfa4c0d schema:name dimensions_id
93 schema:value pub.1017656705
94 rdf:type schema:PropertyValue
95 N6424462be7424450b0f9368cfe3b298c rdf:first sg:person.01014074077.98
96 rdf:rest Nba08ad7eb7f8433ba53c9cd704392676
97 N69df6c4296d746e08100dab5169c3a85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Image Enhancement
99 rdf:type schema:DefinedTerm
100 N746697339b184273ba18563d7c510861 rdf:first sg:person.01360232034.15
101 rdf:rest rdf:nil
102 N7771a98d86b94178aaafc02e4cf1a0c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Retrospective Studies
104 rdf:type schema:DefinedTerm
105 N94032c7589294cf9b3838831c8c545d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Aged
107 rdf:type schema:DefinedTerm
108 N97a1f590042945de82a803a45d0e5c9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Meglumine
110 rdf:type schema:DefinedTerm
111 N983afeb88e34446a91f7dbe2b97610a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Contrast Media
113 rdf:type schema:DefinedTerm
114 Na266a6e7e60347709d2c7122211c2691 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Middle Aged
116 rdf:type schema:DefinedTerm
117 Naa5b860ac19c4e40af2f407849171ff2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Female
119 rdf:type schema:DefinedTerm
120 Nba08ad7eb7f8433ba53c9cd704392676 rdf:first sg:person.01025534354.12
121 rdf:rest N3f2a421fb3c143a5a412c6868effce5c
122 Nc3eecb330557495bbff383ec47656293 schema:name pubmed_id
123 schema:value 27193796
124 rdf:type schema:PropertyValue
125 Ne15fb99142274c02b806dead23487edd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Focal Nodular Hyperplasia
127 rdf:type schema:DefinedTerm
128 Nfd988838bda14a829c6e7d9c637920e7 schema:issueNumber 5
129 rdf:type schema:PublicationIssue
130 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
131 schema:name Medical and Health Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
134 schema:name Clinical Sciences
135 rdf:type schema:DefinedTerm
136 sg:journal.1297457 schema:issn 2366-004X
137 2366-0058
138 schema:name Abdominal Radiology
139 rdf:type schema:Periodical
140 sg:person.01014074077.98 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
141 schema:familyName Rousseau
142 schema:givenName Caroline
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014074077.98
144 rdf:type schema:Person
145 sg:person.01025534354.12 schema:affiliation https://www.grid.ac/institutes/grid.462374.0
146 schema:familyName Ronot
147 schema:givenName Maxime
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12
149 rdf:type schema:Person
150 sg:person.01360232034.15 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
151 schema:familyName Zins
152 schema:givenName Marc
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15
154 rdf:type schema:Person
155 sg:person.0761705775.52 schema:affiliation https://www.grid.ac/institutes/grid.462374.0
156 schema:familyName Vilgrain
157 schema:givenName Valérie
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52
159 rdf:type schema:Person
160 sg:pub.10.1007/s00261-001-0140-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021041467
161 https://doi.org/10.1007/s00261-001-0140-6
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00330-009-1700-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024121080
164 https://doi.org/10.1007/s00330-009-1700-3
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s00330-014-3280-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031411119
167 https://doi.org/10.1007/s00330-014-3280-0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00330-014-3363-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002966087
170 https://doi.org/10.1007/s00330-014-3363-y
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/(sici)1522-2586(199904)9:4<562::aid-jmri9>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030953682
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/jmri.10146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007021893
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/jmri.10319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032105058
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/jmri.20969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053349646
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/jmri.21442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028590882
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/jmri.24048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029594797
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/mrm.25195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045607575
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.clinre.2014.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016319006
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ejrad.2005.11.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635430
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ejrad.2014.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037809039
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.mri.2008.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048140435
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1148/radiol.2262011593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795167
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1148/radiol.2453062151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028424161
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiology.202.1.8988222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083027710
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiology.218.3.r01mr39763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012040939
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/rg.241035050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029325825
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2214/ajr.05.0522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297582
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2214/ajr.09.2507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300118
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2214/ajr.179.6.1791447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325108
209 rdf:type schema:CreativeWork
210 https://doi.org/10.2214/ajr.184.1.01840063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326568
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.414363.7 schema:alternateName Hôpital Saint-Joseph
213 schema:name Department of Radiology, Fondation Hôpital Saint-Joseph, 185 rue Raymond Losserand, 75674, Paris, France
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.462374.0 schema:alternateName Center for Research on Inflammation
216 schema:name Department of Radiology, Hôpital Beaujon, HUPNVS, 100, Bd du Général Leclerc, Clichy, France
217 INSERM U1149, CRI, 75018, Paris, France
218 University Paris Diderot, Sorbonne Paris Cite, Paris, France
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...