Influence of the adaptive iterative dose reduction 3D algorithm on the detectability of low-contrast lesions and radiation dose repeatability in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08

AUTHORS

Jeong Hee Yoon, Jeong Min Lee, Bo Yun Hur, Jeehyun Baek, Hackjoon Shim, Joon Koo Han, Byung Ihn Choi

ABSTRACT

PURPOSE: The purpose of the study is to evaluate the influence of the adaptive iterative dose reduction (AIDR 3D) algorithm on the detectability of low-contrast focal liver lesions (FLLs) and the radiation dose repeatability of automatic tube current modulation (ATCM) in abdominal CT scans using anthropomorphic phantoms. MATERIALS AND METHODS: Three different sizes of anthropomorphic phantoms, each with 4 low-contrast FLLs, were scanned on a 320-channel CT scanner using the ATCM technique and AIDR 3D, at different radiation doses: full-dose, half-dose, and quarter-dose. Scans were repeated three times and reconstructed with filtered back projection (FBP) and AIDR 3D. Radiation dose repeatability was assessed using the intraclass correlation coefficient (ICC). Image noise, quality, and lesion conspicuity were assessed by four reviewers and the number of invisible FLLs was compared among different radiation doses and reconstruction methods. RESULTS: ICCs of radiation dose among the three CT scans were excellent in all phantoms (0.99). Image noise, quality, and lesion conspicuity in the half-dose group were comparable with full-dose FBP after applying AIDR 3D in all phantoms. In small phantoms, the half-dose group reconstructed with AIDR 3D showed similar sensitivity in visualizing low-contrast FLLs compared to full-dose FBP (P = 0.77-0.84). In medium and large phantoms, AIDR 3D reduced the number of missing low-contrast FLLs [3.1% (9/288), 11.5% (33/288), respectively], compared to FBP [10.4% (30/288), 21.9% (63/288), respectively] in the full-dose group. CONCLUSION: By applying AIDR 3D, half-dose CT scans may be achievable in small-sized patients without hampering diagnostic performance, while it may improve diagnostic performance in medium- and large-sized patients without increasing the radiation dose. More... »

PAGES

1843-1852

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-014-0333-4

DOI

http://dx.doi.org/10.1007/s00261-014-0333-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027211894

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25526686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Jeong Hee", 
        "id": "sg:person.01020423064.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul, Korea", 
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeong Min", 
        "id": "sg:person.01266602714.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boramae Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412479.d", 
          "name": [
            "Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hur", 
        "givenName": "Bo Yun", 
        "id": "sg:person.01074174141.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074174141.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Human Medical Imaging & Intervention Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baek", 
        "givenName": "Jeehyun", 
        "id": "sg:person.0715473441.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715473441.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Toshiba Medical Systems Korea Co. Ltd, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shim", 
        "givenName": "Hackjoon", 
        "id": "sg:person.01366377013.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366377013.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul, Korea", 
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul, Korea", 
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byung Ihn", 
        "id": "sg:person.0716036214.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.14131928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001364946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2511081296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007510175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2014.15.2.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007648861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.262055138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010655375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2009.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010758320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2362041327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019280938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2765-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022014391", 
          "https://doi.org/10.1007/s00330-012-2765-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/174_2011_501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023599132", 
          "https://doi.org/10.1007/174_2011_501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31827b8f61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026218365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31827b8f61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026218365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027471507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027471507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2764-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030686127", 
          "https://doi.org/10.1007/s00330-012-2764-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13122349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31827e0e93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041444261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31827e0e93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041444261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041973878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041973878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182899104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045321990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182899104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045321990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2009.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047591515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049804078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049804078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2271-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051991976", 
          "https://doi.org/10.1007/s00330-011-2271-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.10000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.8986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02841851003698206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078153286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02841851003698206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078153286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185113488576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078742995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185113488576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078742995"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08", 
    "datePublishedReg": "2015-08-01", 
    "description": "PURPOSE: The purpose of the study is to evaluate the influence of the adaptive iterative dose reduction (AIDR 3D) algorithm on the detectability of low-contrast focal liver lesions (FLLs) and the radiation dose repeatability of automatic tube current modulation (ATCM) in abdominal CT scans using anthropomorphic phantoms.\nMATERIALS AND METHODS: Three different sizes of anthropomorphic phantoms, each with 4 low-contrast FLLs, were scanned on a 320-channel CT scanner using the ATCM technique and AIDR 3D, at different radiation doses: full-dose, half-dose, and quarter-dose. Scans were repeated three times and reconstructed with filtered back projection (FBP) and AIDR 3D. Radiation dose repeatability was assessed using the intraclass correlation coefficient (ICC). Image noise, quality, and lesion conspicuity were assessed by four reviewers and the number of invisible FLLs was compared among different radiation doses and reconstruction methods.\nRESULTS: ICCs of radiation dose among the three CT scans were excellent in all phantoms (0.99). Image noise, quality, and lesion conspicuity in the half-dose group were comparable with full-dose FBP after applying AIDR 3D in all phantoms. In small phantoms, the half-dose group reconstructed with AIDR 3D showed similar sensitivity in visualizing low-contrast FLLs compared to full-dose FBP (P = 0.77-0.84). In medium and large phantoms, AIDR 3D reduced the number of missing low-contrast FLLs [3.1% (9/288), 11.5% (33/288), respectively], compared to FBP [10.4% (30/288), 21.9% (63/288), respectively] in the full-dose group.\nCONCLUSION: By applying AIDR 3D, half-dose CT scans may be achievable in small-sized patients without hampering diagnostic performance, while it may improve diagnostic performance in medium- and large-sized patients without increasing the radiation dose.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-014-0333-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Influence of the adaptive iterative dose reduction 3D algorithm on the detectability of low-contrast lesions and radiation dose repeatability in abdominal computed tomography: a phantom study", 
    "pagination": "1843-1852", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81a031b125a925b69225b83b0adbac5b7f19e0ab83b1c12b5804b41e6c4cccee"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25526686"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9303672"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-014-0333-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027211894"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-014-0333-4", 
      "https://app.dimensions.ai/details/publication/pub.1027211894"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00261-014-0333-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0333-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0333-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0333-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0333-4'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      57 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-014-0333-4 schema:about N4bc7331888ee4596b9347874109b1d9a
2 N6104f396871446b7aac7ca19651c6d14
3 N6e2fd23809bd4e6cac568e044f8c964c
4 Nac795aa102dc400787d16925038b08f1
5 Nbced576bf66646a7b45c231e8c71e962
6 Ne1fcedc91ecf4648aae99d48706b15cb
7 anzsrc-for:02
8 anzsrc-for:0299
9 schema:author N035e387373c942eb8fe26016933cf59f
10 schema:citation sg:pub.10.1007/174_2011_501
11 sg:pub.10.1007/s00330-011-2271-7
12 sg:pub.10.1007/s00330-012-2764-z
13 sg:pub.10.1007/s00330-012-2765-y
14 https://doi.org/10.1001/archinternmed.2009.427
15 https://doi.org/10.1001/archinternmed.2009.440
16 https://doi.org/10.1097/rct.0000000000000145
17 https://doi.org/10.1097/rct.0b013e31827e0e93
18 https://doi.org/10.1097/rli.0000000000000014
19 https://doi.org/10.1097/rli.0000000000000017
20 https://doi.org/10.1097/rli.0b013e31827b8f61
21 https://doi.org/10.1097/rli.0b013e3182899104
22 https://doi.org/10.1148/radiol.13122349
23 https://doi.org/10.1148/radiol.14131928
24 https://doi.org/10.1148/radiol.2362041327
25 https://doi.org/10.1148/radiol.2511081296
26 https://doi.org/10.1148/rg.262055138
27 https://doi.org/10.1177/0284185113488576
28 https://doi.org/10.2214/ajr.12.10000
29 https://doi.org/10.2214/ajr.12.8986
30 https://doi.org/10.3109/02841851003698206
31 https://doi.org/10.3348/kjr.2014.15.2.195
32 schema:datePublished 2015-08
33 schema:datePublishedReg 2015-08-01
34 schema:description PURPOSE: The purpose of the study is to evaluate the influence of the adaptive iterative dose reduction (AIDR 3D) algorithm on the detectability of low-contrast focal liver lesions (FLLs) and the radiation dose repeatability of automatic tube current modulation (ATCM) in abdominal CT scans using anthropomorphic phantoms. MATERIALS AND METHODS: Three different sizes of anthropomorphic phantoms, each with 4 low-contrast FLLs, were scanned on a 320-channel CT scanner using the ATCM technique and AIDR 3D, at different radiation doses: full-dose, half-dose, and quarter-dose. Scans were repeated three times and reconstructed with filtered back projection (FBP) and AIDR 3D. Radiation dose repeatability was assessed using the intraclass correlation coefficient (ICC). Image noise, quality, and lesion conspicuity were assessed by four reviewers and the number of invisible FLLs was compared among different radiation doses and reconstruction methods. RESULTS: ICCs of radiation dose among the three CT scans were excellent in all phantoms (0.99). Image noise, quality, and lesion conspicuity in the half-dose group were comparable with full-dose FBP after applying AIDR 3D in all phantoms. In small phantoms, the half-dose group reconstructed with AIDR 3D showed similar sensitivity in visualizing low-contrast FLLs compared to full-dose FBP (P = 0.77-0.84). In medium and large phantoms, AIDR 3D reduced the number of missing low-contrast FLLs [3.1% (9/288), 11.5% (33/288), respectively], compared to FBP [10.4% (30/288), 21.9% (63/288), respectively] in the full-dose group. CONCLUSION: By applying AIDR 3D, half-dose CT scans may be achievable in small-sized patients without hampering diagnostic performance, while it may improve diagnostic performance in medium- and large-sized patients without increasing the radiation dose.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nd820e7e485c04581831b09dc5b421e63
39 Nf55b4fae23f7494da1748336bad14397
40 sg:journal.1297457
41 schema:name Influence of the adaptive iterative dose reduction 3D algorithm on the detectability of low-contrast lesions and radiation dose repeatability in abdominal computed tomography: a phantom study
42 schema:pagination 1843-1852
43 schema:productId N0bd334dac827407fa98d5dc7a4c14a97
44 N852e4b94d5bd451080e6ccbc91b2a0e8
45 N9ca6d4e7ad0a42d586f9eafaf3f3251a
46 Naf214d35c9a341ddab37ed14b60eec74
47 Nd3a9bfa130804752aa1a8d44e6991c6b
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027211894
49 https://doi.org/10.1007/s00261-014-0333-4
50 schema:sdDatePublished 2019-04-10T14:10
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nbe5182108ddf4e5da3c04770f8f9ec13
53 schema:url http://link.springer.com/10.1007%2Fs00261-014-0333-4
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N035e387373c942eb8fe26016933cf59f rdf:first sg:person.01020423064.40
58 rdf:rest Nf219981196ad4a9d97f0161d1297e21d
59 N0a16ec5fdc3f46a1ba4bddee5cc8deb4 rdf:first sg:person.0647723014.95
60 rdf:rest Ne4cbf781fd7b4d5c9fde236807f8ebfc
61 N0bd334dac827407fa98d5dc7a4c14a97 schema:name doi
62 schema:value 10.1007/s00261-014-0333-4
63 rdf:type schema:PropertyValue
64 N4bc7331888ee4596b9347874109b1d9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Radiation Dosage
66 rdf:type schema:DefinedTerm
67 N6104f396871446b7aac7ca19651c6d14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Tomography, X-Ray Computed
69 rdf:type schema:DefinedTerm
70 N6e2fd23809bd4e6cac568e044f8c964c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Algorithms
72 rdf:type schema:DefinedTerm
73 N852e4b94d5bd451080e6ccbc91b2a0e8 schema:name dimensions_id
74 schema:value pub.1027211894
75 rdf:type schema:PropertyValue
76 N912f06d3e45840f89d16b022ec41fcce rdf:first sg:person.01366377013.30
77 rdf:rest N0a16ec5fdc3f46a1ba4bddee5cc8deb4
78 N9ca6d4e7ad0a42d586f9eafaf3f3251a schema:name readcube_id
79 schema:value 81a031b125a925b69225b83b0adbac5b7f19e0ab83b1c12b5804b41e6c4cccee
80 rdf:type schema:PropertyValue
81 Na13b6f869a0d4970b06c469e2ca42eda schema:name Toshiba Medical Systems Korea Co. Ltd, Seoul, Korea
82 rdf:type schema:Organization
83 Nac795aa102dc400787d16925038b08f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Imaging, Three-Dimensional
85 rdf:type schema:DefinedTerm
86 Naf214d35c9a341ddab37ed14b60eec74 schema:name pubmed_id
87 schema:value 25526686
88 rdf:type schema:PropertyValue
89 Nbced576bf66646a7b45c231e8c71e962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Phantoms, Imaging
91 rdf:type schema:DefinedTerm
92 Nbe5182108ddf4e5da3c04770f8f9ec13 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nc7174c7b21b340e1b4bfd2c24bf9467d schema:name Human Medical Imaging & Intervention Center, Seoul, Korea
95 rdf:type schema:Organization
96 Ncf819467a8f949a6ad7cd7418fe310c3 rdf:first sg:person.0715473441.22
97 rdf:rest N912f06d3e45840f89d16b022ec41fcce
98 Nd3a9bfa130804752aa1a8d44e6991c6b schema:name nlm_unique_id
99 schema:value 9303672
100 rdf:type schema:PropertyValue
101 Nd820e7e485c04581831b09dc5b421e63 schema:issueNumber 6
102 rdf:type schema:PublicationIssue
103 Ne1fcedc91ecf4648aae99d48706b15cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Radiography, Abdominal
105 rdf:type schema:DefinedTerm
106 Ne41df54d2384414e93ffdd76f650b498 rdf:first sg:person.01074174141.03
107 rdf:rest Ncf819467a8f949a6ad7cd7418fe310c3
108 Ne4cbf781fd7b4d5c9fde236807f8ebfc rdf:first sg:person.0716036214.08
109 rdf:rest rdf:nil
110 Nf219981196ad4a9d97f0161d1297e21d rdf:first sg:person.01266602714.81
111 rdf:rest Ne41df54d2384414e93ffdd76f650b498
112 Nf55b4fae23f7494da1748336bad14397 schema:volumeNumber 40
113 rdf:type schema:PublicationVolume
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
118 schema:name Other Physical Sciences
119 rdf:type schema:DefinedTerm
120 sg:journal.1297457 schema:issn 2366-004X
121 2366-0058
122 schema:name Abdominal Radiology
123 rdf:type schema:Periodical
124 sg:person.01020423064.40 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
125 schema:familyName Yoon
126 schema:givenName Jeong Hee
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40
128 rdf:type schema:Person
129 sg:person.01074174141.03 schema:affiliation https://www.grid.ac/institutes/grid.412479.d
130 schema:familyName Hur
131 schema:givenName Bo Yun
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074174141.03
133 rdf:type schema:Person
134 sg:person.01266602714.81 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
135 schema:familyName Lee
136 schema:givenName Jeong Min
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81
138 rdf:type schema:Person
139 sg:person.01366377013.30 schema:affiliation Na13b6f869a0d4970b06c469e2ca42eda
140 schema:familyName Shim
141 schema:givenName Hackjoon
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366377013.30
143 rdf:type schema:Person
144 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
145 schema:familyName Han
146 schema:givenName Joon Koo
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
148 rdf:type schema:Person
149 sg:person.0715473441.22 schema:affiliation Nc7174c7b21b340e1b4bfd2c24bf9467d
150 schema:familyName Baek
151 schema:givenName Jeehyun
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715473441.22
153 rdf:type schema:Person
154 sg:person.0716036214.08 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
155 schema:familyName Choi
156 schema:givenName Byung Ihn
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08
158 rdf:type schema:Person
159 sg:pub.10.1007/174_2011_501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023599132
160 https://doi.org/10.1007/174_2011_501
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00330-011-2271-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051991976
163 https://doi.org/10.1007/s00330-011-2271-7
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00330-012-2764-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030686127
166 https://doi.org/10.1007/s00330-012-2764-z
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00330-012-2765-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014391
169 https://doi.org/10.1007/s00330-012-2765-y
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1001/archinternmed.2009.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010758320
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1001/archinternmed.2009.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047591515
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1097/rct.0000000000000145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027471507
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1097/rct.0b013e31827e0e93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041444261
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1097/rli.0000000000000014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041973878
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1097/rli.0000000000000017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049804078
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1097/rli.0b013e31827b8f61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026218365
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1097/rli.0b013e3182899104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045321990
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1148/radiol.13122349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041215586
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1148/radiol.14131928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001364946
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1148/radiol.2362041327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019280938
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1148/radiol.2511081296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007510175
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1148/rg.262055138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010655375
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1177/0284185113488576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078742995
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2214/ajr.12.10000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302330
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2214/ajr.12.8986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302697
202 rdf:type schema:CreativeWork
203 https://doi.org/10.3109/02841851003698206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078153286
204 rdf:type schema:CreativeWork
205 https://doi.org/10.3348/kjr.2014.15.2.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007648861
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
208 schema:name Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
209 Department of Radiology, Seoul National University Hospital, Seoul, Korea
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.412479.d schema:alternateName Boramae Medical Center
212 schema:name Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Korea
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
215 schema:name Department of Radiology, Seoul National University Hospital, Seoul, Korea
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...