High-resolution T1-weighted gradient echo imaging for liver MRI using parallel imaging at high-acceleration factors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

Jeong Hee Yoon, Jeong Min Lee, Mi Hye Yu, Eun Ju Kim, Joon Koo Han, Byung Ihn Choi

ABSTRACT

PURPOSE: To determine whether application of a high-acceleration parallel acquisition can provide three-dimensional (3D)-fat-suppressed T1-weighted gradient-recalled-echo (T1W-GRE) imaging at 3T for liver MR imaging. MATERIALS AND METHODS: This retrospective study was approved by our institutional review board. Seventy patients underwent liver MRI at a 3T scanner. After administration of a standard dose of Gadoxetic acid for 20 min, 3D-T1W-GRE images were obtained twice using sensitivity encoding with acceleration factors (AFs) 2.6 [332 × 298 matrix, 3-mm slice thickness (ST)] and 4 (380 × 320 matrix, 1.5-mm ST). The image qualities of the two image sets were graded using a five-point scale. RESULTS: The high-resolution (HR) 3D-T1W-GRE image sets were obtained with an AF 4 within a single breath-hold (18.5 s). It showed a better anatomic depiction than conventional 3D-T1W-GRE image sets with an AF 2.6 (p < 0.05). Although the image noise was higher on the HR image sets (p < 0.05), the HR image sets showed better lesion conspicuity and overall image quality than the conventional image sets (p < 0.05). CONCLUSION: With the use of high AFs, HR 3D-T1W-GRE imaging was demonstrated to be clinically more feasible and advantageous than the conventional 3D-T1W-GRE. More... »

PAGES

711-721

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-014-0099-8

DOI

http://dx.doi.org/10.1007/s00261-014-0099-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027476957

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24557640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echo-Planar Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Jeong Hee", 
        "id": "sg:person.01020423064.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeong Min", 
        "id": "sg:person.01266602714.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Mi Hye", 
        "id": "sg:person.0647654606.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647654606.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Philips Healthcare Korea, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Eun Ju", 
        "id": "sg:person.0703336346.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703336346.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byung Ihn", 
        "id": "sg:person.0716036214.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2463/mrms.6.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001375554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0016-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001818751", 
          "https://doi.org/10.1007/s00330-005-0016-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0016-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001818751", 
          "https://doi.org/10.1007/s00330-005-0016-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910290516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004695954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300050150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005502152", 
          "https://doi.org/10.1007/s003300050150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006369760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2007.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007367539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2678-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008323156", 
          "https://doi.org/10.1007/s00330-005-2678-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02668182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008764795", 
          "https://doi.org/10.1007/bf02668182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02668182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008764795", 
          "https://doi.org/10.1007/bf02668182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2011.12.4.403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009002308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0455.2000.041003255.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009342516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0455.2000.041003255.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009342516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.255045180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010782624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011584812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012449961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015240436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2392050551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015395792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12112715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016200704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017734220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910380414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018509237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002619900492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021231351", 
          "https://doi.org/10.1007/s002619900492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910340618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022046371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000197978.88991.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024705058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000197978.88991.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024705058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000197978.88991.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024705058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025287295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025287295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029323697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31828654ff", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029640337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31828654ff", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029640337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2008.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031349771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.24199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032908435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034475123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034475123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.261055134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034753537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.261055134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034753537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035744390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0730-725x(01)00419-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035996944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036210677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1432-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036360627", 
          "https://doi.org/10.1007/s00330-009-1432-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1432-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036360627", 
          "https://doi.org/10.1007/s00330-009-1432-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1432-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036360627", 
          "https://doi.org/10.1007/s00330-009-1432-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037838340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000073442.88269.c9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038666797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000073442.88269.c9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038666797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2006.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043385486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2010.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044151449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044451360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048524958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049796358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12112308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050069052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2863-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050576355", 
          "https://doi.org/10.1007/s00330-005-2863-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2863-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050576355", 
          "https://doi.org/10.1007/s00330-005-2863-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051454600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10092127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051616092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052882937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053349646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.04.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.10.5881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069301391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.181.3.1810809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075195828", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.163.3.3554340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079818493"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "PURPOSE: To determine whether application of a high-acceleration parallel acquisition can provide three-dimensional (3D)-fat-suppressed T1-weighted gradient-recalled-echo (T1W-GRE) imaging at 3T for liver MR imaging.\nMATERIALS AND METHODS: This retrospective study was approved by our institutional review board. Seventy patients underwent liver MRI at a 3T scanner. After administration of a standard dose of Gadoxetic acid for 20 min, 3D-T1W-GRE images were obtained twice using sensitivity encoding with acceleration factors (AFs) 2.6 [332 \u00d7 298 matrix, 3-mm slice thickness (ST)] and 4 (380 \u00d7 320 matrix, 1.5-mm ST). The image qualities of the two image sets were graded using a five-point scale.\nRESULTS: The high-resolution (HR) 3D-T1W-GRE image sets were obtained with an AF 4 within a single breath-hold (18.5 s). It showed a better anatomic depiction than conventional 3D-T1W-GRE image sets with an AF 2.6 (p < 0.05). Although the image noise was higher on the HR image sets (p < 0.05), the HR image sets showed better lesion conspicuity and overall image quality than the conventional image sets (p < 0.05).\nCONCLUSION: With the use of high AFs, HR 3D-T1W-GRE imaging was demonstrated to be clinically more feasible and advantageous than the conventional 3D-T1W-GRE.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-014-0099-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "High-resolution T1-weighted gradient echo imaging for liver MRI using parallel imaging at high-acceleration factors", 
    "pagination": "711-721", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82e4276798d8d674048a53ec780646aecc4bc1e735cf1c13caa4e7985b9aeba8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24557640"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9303672"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-014-0099-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027476957"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-014-0099-8", 
      "https://app.dimensions.ai/details/publication/pub.1027476957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00261-014-0099-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0099-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0099-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0099-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-014-0099-8'


 

This table displays all metadata directly associated to this object as RDF triples.

356 TRIPLES      21 PREDICATES      102 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-014-0099-8 schema:about N0775260cb1ed4ecabde79491cec480a7
2 N09f675d2e9ce4a5d88b288762a8579bf
3 N10eccf68051b4a51ba5150406b7ff381
4 N29b8c22d2d3c403db07fb9e9c5cd68df
5 N3477c3821e674b4889f4f906f51009a2
6 N676f394b5ccf4418af06fbfb2aa2edd4
7 N73e2126d28bc4bb8bcfd1abe616f9a80
8 N83c671a586c949cb8cc5ba0c42bc7c03
9 N85a20d33109d40fc8208242c73c939bf
10 N87fbbb4ec33541658757d0d6d4eaed02
11 N88428a2ba5834c1cb1f2014e4f43d128
12 Na086c467ffd74a719bd88836996abbb2
13 Nbaf9f3a1a8aa44b19fbd45b9ed024b39
14 Nbbb133ff8f7c432393a67709527c5cbf
15 Nc0c18e54805f400890f83035079fd2be
16 Ncfcd7b6f469547438741df36d6651351
17 Nf2115c3324384703b8f2c3d6375e0709
18 Nf8049e4cb175466bb8e5541f61a917b0
19 Nfbc9151db16843ab93262f3e17343c22
20 Nff9d6066936340d08605fc70c1b86317
21 anzsrc-for:08
22 anzsrc-for:0801
23 schema:author N1749266e0cb34c569c7cf0f21fd22007
24 schema:citation sg:pub.10.1007/bf02668182
25 sg:pub.10.1007/s002619900492
26 sg:pub.10.1007/s00330-005-0016-1
27 sg:pub.10.1007/s00330-005-2678-0
28 sg:pub.10.1007/s00330-005-2863-1
29 sg:pub.10.1007/s00330-009-1432-4
30 sg:pub.10.1007/s003300050150
31 https://app.dimensions.ai/details/publication/pub.1075195828
32 https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s
33 https://doi.org/10.1002/hep.24199
34 https://doi.org/10.1002/jmri.20288
35 https://doi.org/10.1002/jmri.20969
36 https://doi.org/10.1002/jmri.21964
37 https://doi.org/10.1002/jmri.23571
38 https://doi.org/10.1002/jmri.23683
39 https://doi.org/10.1002/mrm.10171
40 https://doi.org/10.1002/mrm.10678
41 https://doi.org/10.1002/mrm.1910290516
42 https://doi.org/10.1002/mrm.1910340618
43 https://doi.org/10.1002/mrm.1910380414
44 https://doi.org/10.1002/mrm.21120
45 https://doi.org/10.1002/mrm.21391
46 https://doi.org/10.1002/mrm.21435
47 https://doi.org/10.1002/mrm.21477
48 https://doi.org/10.1002/mrm.21757
49 https://doi.org/10.1002/mrm.24400
50 https://doi.org/10.1016/j.ejmp.2008.01.011
51 https://doi.org/10.1016/j.ejrad.2006.11.015
52 https://doi.org/10.1016/j.ejrad.2012.03.026
53 https://doi.org/10.1016/j.mric.2007.06.002
54 https://doi.org/10.1016/j.mric.2010.07.010
55 https://doi.org/10.1016/s0720-048x(02)00333-9
56 https://doi.org/10.1016/s0730-725x(01)00419-2
57 https://doi.org/10.1034/j.1600-0455.2000.041003255.x
58 https://doi.org/10.1097/01.rli.0000073442.88269.c9
59 https://doi.org/10.1097/01.rli.0000197978.88991.17
60 https://doi.org/10.1097/rli.0b013e31828654ff
61 https://doi.org/10.1148/radiol.09090021
62 https://doi.org/10.1148/radiol.10092127
63 https://doi.org/10.1148/radiol.12112308
64 https://doi.org/10.1148/radiol.12112715
65 https://doi.org/10.1148/radiol.2392050551
66 https://doi.org/10.1148/radiology.163.3.3554340
67 https://doi.org/10.1148/rg.255045180
68 https://doi.org/10.1148/rg.261055134
69 https://doi.org/10.2214/ajr.04.1206
70 https://doi.org/10.2214/ajr.05.0932
71 https://doi.org/10.2214/ajr.08.1262
72 https://doi.org/10.2214/ajr.10.5881
73 https://doi.org/10.2214/ajr.181.3.1810809
74 https://doi.org/10.2307/2529786
75 https://doi.org/10.2463/mrms.6.43
76 https://doi.org/10.3348/kjr.2011.12.4.403
77 schema:datePublished 2014-08
78 schema:datePublishedReg 2014-08-01
79 schema:description PURPOSE: To determine whether application of a high-acceleration parallel acquisition can provide three-dimensional (3D)-fat-suppressed T1-weighted gradient-recalled-echo (T1W-GRE) imaging at 3T for liver MR imaging. MATERIALS AND METHODS: This retrospective study was approved by our institutional review board. Seventy patients underwent liver MRI at a 3T scanner. After administration of a standard dose of Gadoxetic acid for 20 min, 3D-T1W-GRE images were obtained twice using sensitivity encoding with acceleration factors (AFs) 2.6 [332 × 298 matrix, 3-mm slice thickness (ST)] and 4 (380 × 320 matrix, 1.5-mm ST). The image qualities of the two image sets were graded using a five-point scale. RESULTS: The high-resolution (HR) 3D-T1W-GRE image sets were obtained with an AF 4 within a single breath-hold (18.5 s). It showed a better anatomic depiction than conventional 3D-T1W-GRE image sets with an AF 2.6 (p < 0.05). Although the image noise was higher on the HR image sets (p < 0.05), the HR image sets showed better lesion conspicuity and overall image quality than the conventional image sets (p < 0.05). CONCLUSION: With the use of high AFs, HR 3D-T1W-GRE imaging was demonstrated to be clinically more feasible and advantageous than the conventional 3D-T1W-GRE.
80 schema:genre research_article
81 schema:inLanguage en
82 schema:isAccessibleForFree false
83 schema:isPartOf N8e1c7e2286204e5c8232f48c48d8b4e2
84 Nc28fbe5ebf4d45e7ac2c8ac52f19b753
85 sg:journal.1297457
86 schema:name High-resolution T1-weighted gradient echo imaging for liver MRI using parallel imaging at high-acceleration factors
87 schema:pagination 711-721
88 schema:productId N0338808bb4674b46b541a19814972690
89 N25ba771349054781a07b98a2a61d0b31
90 N3056dadc0e294dccaa7b9dcf05bcad2b
91 N32169fa1ca0147f2ab8550d34722c406
92 Nb54783b6ef0f45adab406da3ee4253be
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027476957
94 https://doi.org/10.1007/s00261-014-0099-8
95 schema:sdDatePublished 2019-04-10T15:52
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N4ea5adf71913475c9e954f742dc215c2
98 schema:url http://link.springer.com/10.1007%2Fs00261-014-0099-8
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0338808bb4674b46b541a19814972690 schema:name pubmed_id
103 schema:value 24557640
104 rdf:type schema:PropertyValue
105 N0775260cb1ed4ecabde79491cec480a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Contrast Media
107 rdf:type schema:DefinedTerm
108 N09f675d2e9ce4a5d88b288762a8579bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Liver
110 rdf:type schema:DefinedTerm
111 N10eccf68051b4a51ba5150406b7ff381 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Liver Neoplasms
113 rdf:type schema:DefinedTerm
114 N1749266e0cb34c569c7cf0f21fd22007 rdf:first sg:person.01020423064.40
115 rdf:rest N69ce133416924809a7abca279eab477e
116 N25ba771349054781a07b98a2a61d0b31 schema:name nlm_unique_id
117 schema:value 9303672
118 rdf:type schema:PropertyValue
119 N29b8c22d2d3c403db07fb9e9c5cd68df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Imaging, Three-Dimensional
121 rdf:type schema:DefinedTerm
122 N3056dadc0e294dccaa7b9dcf05bcad2b schema:name dimensions_id
123 schema:value pub.1027476957
124 rdf:type schema:PropertyValue
125 N32169fa1ca0147f2ab8550d34722c406 schema:name doi
126 schema:value 10.1007/s00261-014-0099-8
127 rdf:type schema:PropertyValue
128 N3477c3821e674b4889f4f906f51009a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 N4ea5adf71913475c9e954f742dc215c2 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N5450bee62bbd41399a7218fc31409a6d schema:name Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
134 rdf:type schema:Organization
135 N676f394b5ccf4418af06fbfb2aa2edd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Image Enhancement
137 rdf:type schema:DefinedTerm
138 N692b787658e0454490fa1224d166509f rdf:first sg:person.0703336346.76
139 rdf:rest Na26b7ffcbd414fd0ab7eafc91b3055fb
140 N69ce133416924809a7abca279eab477e rdf:first sg:person.01266602714.81
141 rdf:rest N722d534389cc4d65b3c7cd328de5baea
142 N722d534389cc4d65b3c7cd328de5baea rdf:first sg:person.0647654606.75
143 rdf:rest N692b787658e0454490fa1224d166509f
144 N73e2126d28bc4bb8bcfd1abe616f9a80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Phantoms, Imaging
146 rdf:type schema:DefinedTerm
147 N753f7f39e2f9414c880e94f6bd508ca2 schema:name Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
148 rdf:type schema:Organization
149 N8248db10902a4267a0868d47c1cabd73 rdf:first sg:person.0716036214.08
150 rdf:rest rdf:nil
151 N83c671a586c949cb8cc5ba0c42bc7c03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Echo-Planar Imaging
153 rdf:type schema:DefinedTerm
154 N85a20d33109d40fc8208242c73c939bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Gadolinium DTPA
156 rdf:type schema:DefinedTerm
157 N87fbbb4ec33541658757d0d6d4eaed02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Female
159 rdf:type schema:DefinedTerm
160 N88428a2ba5834c1cb1f2014e4f43d128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Sensitivity and Specificity
162 rdf:type schema:DefinedTerm
163 N8e1c7e2286204e5c8232f48c48d8b4e2 schema:volumeNumber 39
164 rdf:type schema:PublicationVolume
165 Na086c467ffd74a719bd88836996abbb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Image Processing, Computer-Assisted
167 rdf:type schema:DefinedTerm
168 Na26b7ffcbd414fd0ab7eafc91b3055fb rdf:first sg:person.0647723014.95
169 rdf:rest N8248db10902a4267a0868d47c1cabd73
170 Nae5df9b2c72f432da94bed1efd4ae771 schema:name Philips Healthcare Korea, Seoul, Korea
171 rdf:type schema:Organization
172 Nb54783b6ef0f45adab406da3ee4253be schema:name readcube_id
173 schema:value 82e4276798d8d674048a53ec780646aecc4bc1e735cf1c13caa4e7985b9aeba8
174 rdf:type schema:PropertyValue
175 Nbaf9f3a1a8aa44b19fbd45b9ed024b39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Middle Aged
177 rdf:type schema:DefinedTerm
178 Nbbb133ff8f7c432393a67709527c5cbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged, 80 and over
180 rdf:type schema:DefinedTerm
181 Nc0c18e54805f400890f83035079fd2be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Adult
183 rdf:type schema:DefinedTerm
184 Nc28fbe5ebf4d45e7ac2c8ac52f19b753 schema:issueNumber 4
185 rdf:type schema:PublicationIssue
186 Ncfcd7b6f469547438741df36d6651351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Humans
188 rdf:type schema:DefinedTerm
189 Nf2115c3324384703b8f2c3d6375e0709 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Reproducibility of Results
191 rdf:type schema:DefinedTerm
192 Nf8049e4cb175466bb8e5541f61a917b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Retrospective Studies
194 rdf:type schema:DefinedTerm
195 Nfbc9151db16843ab93262f3e17343c22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Aged
197 rdf:type schema:DefinedTerm
198 Nff9d6066936340d08605fc70c1b86317 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Observer Variation
200 rdf:type schema:DefinedTerm
201 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
202 schema:name Information and Computing Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
205 schema:name Artificial Intelligence and Image Processing
206 rdf:type schema:DefinedTerm
207 sg:journal.1297457 schema:issn 2366-004X
208 2366-0058
209 schema:name Abdominal Radiology
210 rdf:type schema:Periodical
211 sg:person.01020423064.40 schema:affiliation N5450bee62bbd41399a7218fc31409a6d
212 schema:familyName Yoon
213 schema:givenName Jeong Hee
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40
215 rdf:type schema:Person
216 sg:person.01266602714.81 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
217 schema:familyName Lee
218 schema:givenName Jeong Min
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81
220 rdf:type schema:Person
221 sg:person.0647654606.75 schema:affiliation N753f7f39e2f9414c880e94f6bd508ca2
222 schema:familyName Yu
223 schema:givenName Mi Hye
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647654606.75
225 rdf:type schema:Person
226 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
227 schema:familyName Han
228 schema:givenName Joon Koo
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
230 rdf:type schema:Person
231 sg:person.0703336346.76 schema:affiliation Nae5df9b2c72f432da94bed1efd4ae771
232 schema:familyName Kim
233 schema:givenName Eun Ju
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703336346.76
235 rdf:type schema:Person
236 sg:person.0716036214.08 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
237 schema:familyName Choi
238 schema:givenName Byung Ihn
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08
240 rdf:type schema:Person
241 sg:pub.10.1007/bf02668182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008764795
242 https://doi.org/10.1007/bf02668182
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s002619900492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021231351
245 https://doi.org/10.1007/s002619900492
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s00330-005-0016-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001818751
248 https://doi.org/10.1007/s00330-005-0016-1
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/s00330-005-2678-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008323156
251 https://doi.org/10.1007/s00330-005-2678-0
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s00330-005-2863-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050576355
254 https://doi.org/10.1007/s00330-005-2863-1
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s00330-009-1432-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036360627
257 https://doi.org/10.1007/s00330-009-1432-4
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s003300050150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005502152
260 https://doi.org/10.1007/s003300050150
261 rdf:type schema:CreativeWork
262 https://app.dimensions.ai/details/publication/pub.1075195828 schema:CreativeWork
263 https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1029323697
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1002/hep.24199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032908435
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1002/jmri.20288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052882937
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1002/jmri.20969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053349646
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1002/jmri.21964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034475123
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1002/jmri.23571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049796358
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1002/jmri.23683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006369760
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1002/mrm.10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012449961
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1002/mrm.10678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048524958
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1002/mrm.1910290516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695954
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1002/mrm.1910340618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022046371
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1002/mrm.1910380414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018509237
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1002/mrm.21120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015240436
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1002/mrm.21391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037838340
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1002/mrm.21435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011584812
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1002/mrm.21477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017734220
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1002/mrm.21757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044451360
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1002/mrm.24400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035744390
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/j.ejmp.2008.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031349771
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1016/j.ejrad.2006.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043385486
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1016/j.ejrad.2012.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036210677
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1016/j.mric.2007.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367539
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1016/j.mric.2010.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044151449
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1016/s0720-048x(02)00333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025287295
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1016/s0730-725x(01)00419-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035996944
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1034/j.1600-0455.2000.041003255.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009342516
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1097/01.rli.0000073442.88269.c9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038666797
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1097/01.rli.0000197978.88991.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024705058
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1097/rli.0b013e31828654ff schema:sameAs https://app.dimensions.ai/details/publication/pub.1029640337
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1148/radiol.09090021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051454600
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1148/radiol.10092127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051616092
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1148/radiol.12112308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050069052
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1148/radiol.12112715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016200704
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1148/radiol.2392050551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015395792
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1148/radiology.163.3.3554340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079818493
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1148/rg.255045180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010782624
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1148/rg.261055134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034753537
336 rdf:type schema:CreativeWork
337 https://doi.org/10.2214/ajr.04.1206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297117
338 rdf:type schema:CreativeWork
339 https://doi.org/10.2214/ajr.05.0932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297731
340 rdf:type schema:CreativeWork
341 https://doi.org/10.2214/ajr.08.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299615
342 rdf:type schema:CreativeWork
343 https://doi.org/10.2214/ajr.10.5881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069301391
344 rdf:type schema:CreativeWork
345 https://doi.org/10.2214/ajr.181.3.1810809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325683
346 rdf:type schema:CreativeWork
347 https://doi.org/10.2307/2529786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975393
348 rdf:type schema:CreativeWork
349 https://doi.org/10.2463/mrms.6.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001375554
350 rdf:type schema:CreativeWork
351 https://doi.org/10.3348/kjr.2011.12.4.403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009002308
352 rdf:type schema:CreativeWork
353 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
354 schema:name Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
355 Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
356 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...