Cell Irradiation caused by diagnostic nuclear medicine procedures: dose heterogeneity and biological consequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

Isabelle Gardin, Marc Faraggi, Dominique Le Guludec, Bernard Bok

ABSTRACT

. Most radionuclides used for diagnostic imaging emit Auger electrons (technetium-99m, iodine-123, indium-111, gallium-67 and thallium-201). Their very short range in biological tissues may lead to dose heterogeneity at the cellular level with radiobiological consequences. This report describes the dosimetric models used to calculate the mean dose absorbed by the cell nucleus from Auger radionuclides. The techniques used to determine the biodistribution of radiopharmaceuticals at the subcellular level are also described and compared. Published examples of cellular dosimetry computations performed with radiotracers are reviewed in various clinical settings.Finally, the biological implications of the subcellular localization of Auger emitters are examined. While a number of efforts have been made to obtain dosimetric models and to estimate subcellular distribution of radioactivity, little is known of the cellular dosimetry of most radiopharmaceuticals used in diagnostic imaging. However, biological examples of selective radiotracer uptake have been shown, leading to extremely strong cell-cell dose heterogeneity. Furthermore, radiobiological experiments show that the biological effects of Auger emitters incorporated into DNA can be severe, with relative biological effectiveness greater than 1 compared with external X-rays. These findings clearly show that the assessment of biological risks associated with internal administration of diagnostic radiopharmaceuticals must focus not only on target organs as a whole, but also on the cellular level. This review proposes the most appropriate model for dosimetric computations (cellular or conventional) according to the subcellular distribution of radiotracers. The radionuclide of choice and the general strategy used to design new diagnostic radiopharmaceuticals are also discussed. More... »

PAGES

1617-1626

References to SciGraph publications

  • 1998-03. Comparison of cellular and conventional dosimetry in assessing self-dose and cross-dose delivered to the cell nucleus by electron emissions of 99mTC, 123I, 111In, 67Ga and 201Tl in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1995-02. Labelling of leucocytes with colloidal tech netium-99m-SnF2: an investigation of the labelling process by autoradiography in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1996-12. In vitro and in vivo studies with pentavalent technetium-99m dimercaptosuccinic acid in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1994-11. Autoradiography and density gradient separation of technetium-99m-Exametazime (HMPAO) labelled leucocytes reveals selectivity for eosinophils in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1981-03. The role of subcellular localization in assessing the cytotoxicity of iodine-125 labeled iododeoxyuridine, iodotamoxifen, and iodoantipyrine in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 1996-11. Radioimagers as an alternative to film autoradiography forin situ quantitative analysis of125I-ligand receptor binding and pharmacological studies in JOURNAL OF MOLECULAR HISTOLOGY
  • 1990-06. Auger electron emitters: Insights gained from in vitro experiments in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 1998-09. Biological consequences of the heterogeneous irradiation of lymphocytes during technetium-99m hexamethylpropylene amine oxime white blood cell labelling in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1994-12. Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002590050504

    DOI

    http://dx.doi.org/10.1007/s002590050504

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022030403

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10638416


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Leukocytes, Mononuclear", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiation Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radionuclide Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Subcellular Fractions", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardin", 
            "givenName": "Isabelle", 
            "id": "sg:person.01250435545.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250435545.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Faraggi", 
            "givenName": "Marc", 
            "id": "sg:person.01263111341.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263111341.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Guludec", 
            "givenName": "Dominique", 
            "id": "sg:person.01160571575.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160571575.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de Chimie et de Biophysique des Traceurs, Universit\u00e9 X. Bichat, F-75018 Paris, France, FR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bok", 
            "givenName": "Bernard", 
            "id": "sg:person.0627637664.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627637664.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002590050218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016157503", 
              "https://doi.org/10.1007/s002590050218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02272153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037899394", 
              "https://doi.org/10.1007/bf02272153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02516105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034881679", 
              "https://doi.org/10.1007/bf02516105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01249619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022018052", 
              "https://doi.org/10.1007/bf01249619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002590050318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017955111", 
              "https://doi.org/10.1007/s002590050318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01210552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024348589", 
              "https://doi.org/10.1007/bf01210552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00838938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044718164", 
              "https://doi.org/10.1007/bf00838938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02426701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001848051", 
              "https://doi.org/10.1007/bf02426701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00182350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029909059", 
              "https://doi.org/10.1007/bf00182350"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-12", 
        "datePublishedReg": "1999-12-01", 
        "description": "Abstract. Most radionuclides used for diagnostic imaging emit Auger electrons (technetium-99m, iodine-123, indium-111, gallium-67 and thallium-201). Their very short range in biological tissues may lead to dose heterogeneity at the cellular level with radiobiological consequences. This report describes the dosimetric models used to calculate the mean dose absorbed by the cell nucleus from Auger radionuclides. The techniques used to determine the biodistribution of radiopharmaceuticals at the subcellular level are also described and compared. Published examples of cellular dosimetry computations performed with radiotracers are reviewed in various clinical settings.Finally, the biological implications of the subcellular localization of Auger emitters are examined. While a number of efforts have been made to obtain dosimetric models and to estimate subcellular distribution of radioactivity, little is known of the cellular dosimetry of most radiopharmaceuticals used in diagnostic imaging. However, biological examples of selective radiotracer uptake have been shown, leading to extremely strong cell-cell dose heterogeneity. Furthermore, radiobiological experiments show that the biological effects of Auger emitters incorporated into DNA can be severe, with relative biological effectiveness greater than 1 compared with external X-rays. These findings clearly show that the assessment of biological risks associated with internal administration of diagnostic radiopharmaceuticals must focus not only on target organs as a whole, but also on the cellular level. This review proposes the most appropriate model for dosimetric computations (cellular or conventional) according to the subcellular distribution of radiotracers. The radionuclide of choice and the general strategy used to design new diagnostic radiopharmaceuticals are also discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s002590050504", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "dose heterogeneity", 
          "diagnostic nuclear medicine procedures", 
          "biodistribution of radiopharmaceuticals", 
          "dosimetric models", 
          "mean dose", 
          "nuclear medicine procedures", 
          "cellular level", 
          "radiotracer uptake", 
          "target organs", 
          "clinical setting", 
          "diagnostic imaging", 
          "radionuclide of choice", 
          "diagnostic radiopharmaceuticals", 
          "radiobiological consequences", 
          "subcellular distribution", 
          "most radiopharmaceuticals", 
          "radiopharmaceuticals", 
          "biological effects", 
          "relative biological effectiveness", 
          "Auger emitters", 
          "radiotracer", 
          "biological risk", 
          "biological effectiveness", 
          "levels", 
          "dose", 
          "subcellular level", 
          "administration", 
          "risk", 
          "biodistribution", 
          "cell irradiation", 
          "cell nuclei", 
          "organs", 
          "biological consequences", 
          "tissue", 
          "heterogeneity", 
          "subcellular localization", 
          "report", 
          "imaging", 
          "review", 
          "findings", 
          "radioactivity", 
          "setting", 
          "internal administration", 
          "uptake", 
          "assessment", 
          "consequences", 
          "radiobiological experiments", 
          "nucleus", 
          "dosimetry", 
          "biological implications", 
          "effect", 
          "radionuclides", 
          "localization", 
          "cellular dosimetry", 
          "procedure", 
          "appropriate model", 
          "DNA", 
          "strategies", 
          "number", 
          "most radionuclides", 
          "number of efforts", 
          "effectiveness", 
          "irradiation", 
          "model", 
          "choice", 
          "implications", 
          "efforts", 
          "rays", 
          "technique", 
          "distribution", 
          "whole", 
          "general strategy", 
          "biological tissues", 
          "range", 
          "dosimetry computation", 
          "experiments", 
          "example", 
          "Auger electrons", 
          "short range", 
          "emitters", 
          "computation", 
          "electrons", 
          "biological examples", 
          "diagnostic imaging emit Auger electrons", 
          "imaging emit Auger electrons", 
          "emit Auger electrons", 
          "Auger radionuclides", 
          "cellular dosimetry computations", 
          "selective radiotracer uptake", 
          "strong cell-cell dose heterogeneity", 
          "cell-cell dose heterogeneity", 
          "dosimetric computations", 
          "new diagnostic radiopharmaceuticals", 
          "medicine procedures"
        ], 
        "name": "Cell Irradiation caused by diagnostic nuclear medicine procedures: dose heterogeneity and biological consequences", 
        "pagination": "1617-1626", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022030403"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002590050504"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10638416"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002590050504", 
          "https://app.dimensions.ai/details/publication/pub.1022030403"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_330.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s002590050504"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050504'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050504'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050504'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050504'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      22 PREDICATES      138 URIs      121 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002590050504 schema:about N0e38d5e8b5474145b250f61400504358
    2 N1d8d32d869044ddba19654fa269ff60f
    3 N37983a27e9ee4fa68926551dcf4a1b11
    4 N5812ebfba6484581a39636f39ce29456
    5 N72d03d6dc1284c15a10a339820144161
    6 N9584cce35bd14b879095b407570b947c
    7 N9c9769c65b79412180aa78c58b9c1d76
    8 Nb9b9ca404acc41879c1da1d3f6267649
    9 anzsrc-for:02
    10 anzsrc-for:0299
    11 schema:author N328b5e11f10f4a1da967b0d4156c9960
    12 schema:citation sg:pub.10.1007/bf00182350
    13 sg:pub.10.1007/bf00838938
    14 sg:pub.10.1007/bf01210552
    15 sg:pub.10.1007/bf01249619
    16 sg:pub.10.1007/bf02272153
    17 sg:pub.10.1007/bf02426701
    18 sg:pub.10.1007/bf02516105
    19 sg:pub.10.1007/s002590050218
    20 sg:pub.10.1007/s002590050318
    21 schema:datePublished 1999-12
    22 schema:datePublishedReg 1999-12-01
    23 schema:description Abstract. Most radionuclides used for diagnostic imaging emit Auger electrons (technetium-99m, iodine-123, indium-111, gallium-67 and thallium-201). Their very short range in biological tissues may lead to dose heterogeneity at the cellular level with radiobiological consequences. This report describes the dosimetric models used to calculate the mean dose absorbed by the cell nucleus from Auger radionuclides. The techniques used to determine the biodistribution of radiopharmaceuticals at the subcellular level are also described and compared. Published examples of cellular dosimetry computations performed with radiotracers are reviewed in various clinical settings.Finally, the biological implications of the subcellular localization of Auger emitters are examined. While a number of efforts have been made to obtain dosimetric models and to estimate subcellular distribution of radioactivity, little is known of the cellular dosimetry of most radiopharmaceuticals used in diagnostic imaging. However, biological examples of selective radiotracer uptake have been shown, leading to extremely strong cell-cell dose heterogeneity. Furthermore, radiobiological experiments show that the biological effects of Auger emitters incorporated into DNA can be severe, with relative biological effectiveness greater than 1 compared with external X-rays. These findings clearly show that the assessment of biological risks associated with internal administration of diagnostic radiopharmaceuticals must focus not only on target organs as a whole, but also on the cellular level. This review proposes the most appropriate model for dosimetric computations (cellular or conventional) according to the subcellular distribution of radiotracers. The radionuclide of choice and the general strategy used to design new diagnostic radiopharmaceuticals are also discussed.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N3d420a8b13e749a1a4da60bf46a6da2c
    28 Nb75f55af150e4affa18fe8c2a5247528
    29 sg:journal.1297401
    30 schema:keywords Auger electrons
    31 Auger emitters
    32 Auger radionuclides
    33 DNA
    34 administration
    35 appropriate model
    36 assessment
    37 biodistribution
    38 biodistribution of radiopharmaceuticals
    39 biological consequences
    40 biological effectiveness
    41 biological effects
    42 biological examples
    43 biological implications
    44 biological risk
    45 biological tissues
    46 cell irradiation
    47 cell nuclei
    48 cell-cell dose heterogeneity
    49 cellular dosimetry
    50 cellular dosimetry computations
    51 cellular level
    52 choice
    53 clinical setting
    54 computation
    55 consequences
    56 diagnostic imaging
    57 diagnostic imaging emit Auger electrons
    58 diagnostic nuclear medicine procedures
    59 diagnostic radiopharmaceuticals
    60 distribution
    61 dose
    62 dose heterogeneity
    63 dosimetric computations
    64 dosimetric models
    65 dosimetry
    66 dosimetry computation
    67 effect
    68 effectiveness
    69 efforts
    70 electrons
    71 emit Auger electrons
    72 emitters
    73 example
    74 experiments
    75 findings
    76 general strategy
    77 heterogeneity
    78 imaging
    79 imaging emit Auger electrons
    80 implications
    81 internal administration
    82 irradiation
    83 levels
    84 localization
    85 mean dose
    86 medicine procedures
    87 model
    88 most radionuclides
    89 most radiopharmaceuticals
    90 new diagnostic radiopharmaceuticals
    91 nuclear medicine procedures
    92 nucleus
    93 number
    94 number of efforts
    95 organs
    96 procedure
    97 radioactivity
    98 radiobiological consequences
    99 radiobiological experiments
    100 radionuclide of choice
    101 radionuclides
    102 radiopharmaceuticals
    103 radiotracer
    104 radiotracer uptake
    105 range
    106 rays
    107 relative biological effectiveness
    108 report
    109 review
    110 risk
    111 selective radiotracer uptake
    112 setting
    113 short range
    114 strategies
    115 strong cell-cell dose heterogeneity
    116 subcellular distribution
    117 subcellular level
    118 subcellular localization
    119 target organs
    120 technique
    121 tissue
    122 uptake
    123 whole
    124 schema:name Cell Irradiation caused by diagnostic nuclear medicine procedures: dose heterogeneity and biological consequences
    125 schema:pagination 1617-1626
    126 schema:productId Naa41e2339c8a4dc7820dcc490d6ede7b
    127 Nb989891e62664992bac4c1754494a512
    128 Nccbda8627ab142f188e295a269638c3f
    129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022030403
    130 https://doi.org/10.1007/s002590050504
    131 schema:sdDatePublished 2022-01-01T18:10
    132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    133 schema:sdPublisher N5ca119c86ee04aa593c5237068e4c7f6
    134 schema:url https://doi.org/10.1007/s002590050504
    135 sgo:license sg:explorer/license/
    136 sgo:sdDataset articles
    137 rdf:type schema:ScholarlyArticle
    138 N0e38d5e8b5474145b250f61400504358 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Lung
    140 rdf:type schema:DefinedTerm
    141 N1d8d32d869044ddba19654fa269ff60f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Radiopharmaceuticals
    143 rdf:type schema:DefinedTerm
    144 N328b5e11f10f4a1da967b0d4156c9960 rdf:first sg:person.01250435545.82
    145 rdf:rest Nbeac7bb5b2644e1188d4e7c84ffe6c49
    146 N36a1211e89ca42e597ef4d71b1fd2107 rdf:first sg:person.01160571575.67
    147 rdf:rest Nbcece93b7b074f6c87cf466aa560276a
    148 N37983a27e9ee4fa68926551dcf4a1b11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Humans
    150 rdf:type schema:DefinedTerm
    151 N3d420a8b13e749a1a4da60bf46a6da2c schema:issueNumber 12
    152 rdf:type schema:PublicationIssue
    153 N5812ebfba6484581a39636f39ce29456 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Liver
    155 rdf:type schema:DefinedTerm
    156 N5ca119c86ee04aa593c5237068e4c7f6 schema:name Springer Nature - SN SciGraph project
    157 rdf:type schema:Organization
    158 N72d03d6dc1284c15a10a339820144161 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Radionuclide Imaging
    160 rdf:type schema:DefinedTerm
    161 N9584cce35bd14b879095b407570b947c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Radiation Dosage
    163 rdf:type schema:DefinedTerm
    164 N9c9769c65b79412180aa78c58b9c1d76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Subcellular Fractions
    166 rdf:type schema:DefinedTerm
    167 Naa41e2339c8a4dc7820dcc490d6ede7b schema:name doi
    168 schema:value 10.1007/s002590050504
    169 rdf:type schema:PropertyValue
    170 Nb75f55af150e4affa18fe8c2a5247528 schema:volumeNumber 26
    171 rdf:type schema:PublicationVolume
    172 Nb989891e62664992bac4c1754494a512 schema:name pubmed_id
    173 schema:value 10638416
    174 rdf:type schema:PropertyValue
    175 Nb9b9ca404acc41879c1da1d3f6267649 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Leukocytes, Mononuclear
    177 rdf:type schema:DefinedTerm
    178 Nbcece93b7b074f6c87cf466aa560276a rdf:first sg:person.0627637664.57
    179 rdf:rest rdf:nil
    180 Nbeac7bb5b2644e1188d4e7c84ffe6c49 rdf:first sg:person.01263111341.75
    181 rdf:rest N36a1211e89ca42e597ef4d71b1fd2107
    182 Nccbda8627ab142f188e295a269638c3f schema:name dimensions_id
    183 schema:value pub.1022030403
    184 rdf:type schema:PropertyValue
    185 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Physical Sciences
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Other Physical Sciences
    190 rdf:type schema:DefinedTerm
    191 sg:journal.1297401 schema:issn 1619-7070
    192 1619-7089
    193 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    194 schema:publisher Springer Nature
    195 rdf:type schema:Periodical
    196 sg:person.01160571575.67 schema:affiliation grid-institutes:None
    197 schema:familyName Le Guludec
    198 schema:givenName Dominique
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160571575.67
    200 rdf:type schema:Person
    201 sg:person.01250435545.82 schema:affiliation grid-institutes:None
    202 schema:familyName Gardin
    203 schema:givenName Isabelle
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250435545.82
    205 rdf:type schema:Person
    206 sg:person.01263111341.75 schema:affiliation grid-institutes:None
    207 schema:familyName Faraggi
    208 schema:givenName Marc
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263111341.75
    210 rdf:type schema:Person
    211 sg:person.0627637664.57 schema:affiliation grid-institutes:None
    212 schema:familyName Bok
    213 schema:givenName Bernard
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627637664.57
    215 rdf:type schema:Person
    216 sg:pub.10.1007/bf00182350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029909059
    217 https://doi.org/10.1007/bf00182350
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/bf00838938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718164
    220 https://doi.org/10.1007/bf00838938
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/bf01210552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024348589
    223 https://doi.org/10.1007/bf01210552
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/bf01249619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022018052
    226 https://doi.org/10.1007/bf01249619
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/bf02272153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037899394
    229 https://doi.org/10.1007/bf02272153
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/bf02426701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001848051
    232 https://doi.org/10.1007/bf02426701
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/bf02516105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034881679
    235 https://doi.org/10.1007/bf02516105
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s002590050218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016157503
    238 https://doi.org/10.1007/s002590050218
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s002590050318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017955111
    241 https://doi.org/10.1007/s002590050318
    242 rdf:type schema:CreativeWork
    243 grid-institutes:None schema:alternateName Laboratoire de Chimie et de Biophysique des Traceurs, Université X. Bichat, F-75018 Paris, France, FR
    244 schema:name Laboratoire de Chimie et de Biophysique des Traceurs, Université X. Bichat, F-75018 Paris, France, FR
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...