Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson’s disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

Paul D. Acton, P. David Mozley, Hank F. Kung

ABSTRACT

Positron emission tomography (PET) and single-photon emission tomography (SPET) imaging of the dopaminergic system is a powerful tool for distinguishing groups of patients with neurodegenerative disorders, such as Parkinson's disease (PD). However, the differential diagnosis of individual subjects presenting early in the progress of the disease is much more difficult, particularly using region-of-interest analysis where small localized differences between subjects are diluted. In this paper we present a novel pixel-based technique using logistic discriminant analysis to distinguish between a group of PD patients and age-matched healthy controls. Simulated images of an anthropomorphic head phantom were used to test the sensitivity of the technique to striatal lesions of known size. The methodology was applied to real clinical SPET images of binding of technetium-99m labelled TRODAT-1 to dopamine transporters in PD patients (n=42) and age-matched controls (n=23). The discriminant model was trained on a subset (n=17) of patients for whom the diagnosis was unequivocal. Logistic discriminant parametric maps were obtained for all subjects, showing the probability distribution of pixels classified as being consistent with PD. The probability maps were corrected for correlated multiple comparisons assuming an isotropic Gaussian point spread function. Simulated lesion sizes measured by logistic discriminant parametric mapping (LDPM) gave strong correlations with the known data (r(2)=0. 985, P<0.001). LDPM correctly classified all PD patients (sensitivity 100%) and only misclassified one control (specificity 95%). All patients who had equivocal clinical symptoms associated with early onset PD (n=4) were correctly assigned to the patient group. Statistical parametric mapping (SPM) had a sensitivity of only 24% on the same patient group. LDPM is a powerful pixel-based tool for the differential diagnosis of patients with PD and healthy controls. The diagnosis of disease even before clinical symptoms become apparent may be possible, and ultimately this technique could be most useful in differentiating between several neurodegenerative disorders, incorporating images of multiple neuroreceptor systems. More... »

PAGES

1413-1423

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002590050473

DOI

http://dx.doi.org/10.1007/s002590050473

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040306372

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10552082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carrier Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Discriminant Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dopamine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dopamine Plasma Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Glycoproteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Tissue Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organotechnetium Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parkinson Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tropanes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, 3700 Market Street, Room 305, Philadelphia, PA 19104, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acton", 
        "givenName": "Paul D.", 
        "id": "sg:person.01032052701.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032052701.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, 3700 Market Street, Room 305, Philadelphia, PA 19104, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mozley", 
        "givenName": "P. David", 
        "id": "sg:person.0601735146.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, 3700 Market Street, Room 305, Philadelphia, PA 19104, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kung", 
        "givenName": "Hank F.", 
        "id": "sg:person.0615735606.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/archneur.1994.00540150027011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000791166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.59.6.597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002542965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/120.12.2187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004650266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012161340-2/50018-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008194136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000007896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011203472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.870130212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014406379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.870130212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014406379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00881814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015615607", 
          "https://doi.org/10.1007/bf00881814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016297293", 
          "https://doi.org/10.1007/s002590050167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.52.suppl.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017716357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410380407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022216822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.57.6.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024065067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01254479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026914665", 
          "https://doi.org/10.1007/bf01254479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01254479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026914665", 
          "https://doi.org/10.1007/bf01254479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.57.3.278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027555348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.1990.00530120034007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028164106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800025970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028586331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030137198", 
          "https://doi.org/10.1007/s002590050374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198804073181402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031182950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.57.9.1047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031279576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03164771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031922706", 
          "https://doi.org/10.1007/bf03164771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03164771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031922706", 
          "https://doi.org/10.1007/bf03164771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.62.2.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034125453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036095970", 
          "https://doi.org/10.1007/s002590050191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.460010306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037237655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.870130311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037756220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6641-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039545169", 
          "https://doi.org/10.1007/978-3-7091-6641-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.460020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041201593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.460020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041201593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410280412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041319167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0404.1996.tb00015.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042952121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/syn.890210202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043474197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004150050168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046389648", 
          "https://doi.org/10.1007/s004150050168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047388481", 
          "https://doi.org/10.1007/s002590050420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/syn.890090107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049173379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-510x(92)90007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050837322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-510x(92)90007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050837322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6842-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051671417", 
          "https://doi.org/10.1007/978-3-7091-6842-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1991.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051811404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1991.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051811404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6842-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051850066", 
          "https://doi.org/10.1007/978-3-7091-6842-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2396(199806)29:2<128::aid-syn4>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051947419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1192/bjp.173.2.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064173536"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "Positron emission tomography (PET) and single-photon emission tomography (SPET) imaging of the dopaminergic system is a powerful tool for distinguishing groups of patients with neurodegenerative disorders, such as Parkinson's disease (PD). However, the differential diagnosis of individual subjects presenting early in the progress of the disease is much more difficult, particularly using region-of-interest analysis where small localized differences between subjects are diluted. In this paper we present a novel pixel-based technique using logistic discriminant analysis to distinguish between a group of PD patients and age-matched healthy controls. Simulated images of an anthropomorphic head phantom were used to test the sensitivity of the technique to striatal lesions of known size. The methodology was applied to real clinical SPET images of binding of technetium-99m labelled TRODAT-1 to dopamine transporters in PD patients (n=42) and age-matched controls (n=23). The discriminant model was trained on a subset (n=17) of patients for whom the diagnosis was unequivocal. Logistic discriminant parametric maps were obtained for all subjects, showing the probability distribution of pixels classified as being consistent with PD. The probability maps were corrected for correlated multiple comparisons assuming an isotropic Gaussian point spread function. Simulated lesion sizes measured by logistic discriminant parametric mapping (LDPM) gave strong correlations with the known data (r(2)=0. 985, P<0.001). LDPM correctly classified all PD patients (sensitivity 100%) and only misclassified one control (specificity 95%). All patients who had equivocal clinical symptoms associated with early onset PD (n=4) were correctly assigned to the patient group. Statistical parametric mapping (SPM) had a sensitivity of only 24% on the same patient group. LDPM is a powerful pixel-based tool for the differential diagnosis of patients with PD and healthy controls. The diagnosis of disease even before clinical symptoms become apparent may be possible, and ultimately this technique could be most useful in differentiating between several neurodegenerative disorders, incorporating images of multiple neuroreceptor systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002590050473", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson\u2019s disease", 
    "pagination": "1413-1423", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c00071b5c9cd9362f60d50e9318bc660659201fd6880b4ac80f4043354d211f5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10552082"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7606882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002590050473"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040306372"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002590050473", 
      "https://app.dimensions.ai/details/publication/pub.1040306372"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002590050473"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050473'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050473'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050473'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050473'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      88 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002590050473 schema:about N04173aacef7c45e4a70b942cbfbce114
2 N11c33bc9df254ffbad4399f8c51d6565
3 N1398cfa66be44f2a949752d6535b7c7b
4 N1ce502cf60834ee1a26d1f21b580f4a3
5 N2e83028cb0a249eab439c4e0033f5cac
6 N3fa308eeb6e94867b319f3873277656e
7 N4b2bfd9435f54a4194988265ee87473e
8 N5abb454d7cc348d69cc2e3af933329c1
9 N5b69cd0d437d4bceb67135cbab3478ca
10 N6df5c3cde424462283f7bdf3275cb81c
11 N94c0eaef66dc44e08073d020fbebcd44
12 N950b20d876b04d5dbda16d2453d1af37
13 N9b03e390cd0645498122188b36c20ace
14 Nb01993233b594dfea58198b181e8b807
15 Nb12f06e2d62c4555b9b6bd3f65a0cf72
16 Nb2c2a782565b49dd80a28171b1349525
17 Nb580aa64494f4c889ba1d2336880ed33
18 Nb6cd89b7f7ff46208951ac47df96363e
19 Nb962790b9d214ad696512fc610d3bd8f
20 Nd5ec0f409f62471bab274d860529305b
21 Ne3387cdc950941e4bf582db869fa0d87
22 Ne488e3c3d56b4c9fbd414bbaec4d418e
23 anzsrc-for:11
24 anzsrc-for:1109
25 schema:author Nb01ed29468a9426aa00b3d613b8c024b
26 schema:citation sg:pub.10.1007/978-3-7091-6641-3_9
27 sg:pub.10.1007/978-3-7091-6842-4_2
28 sg:pub.10.1007/978-3-7091-6842-4_4
29 sg:pub.10.1007/bf00881814
30 sg:pub.10.1007/bf01254479
31 sg:pub.10.1007/bf03164771
32 sg:pub.10.1007/s002590050167
33 sg:pub.10.1007/s002590050191
34 sg:pub.10.1007/s002590050374
35 sg:pub.10.1007/s002590050420
36 sg:pub.10.1007/s004150050168
37 https://doi.org/10.1001/archneur.1990.00530120034007
38 https://doi.org/10.1001/archneur.1994.00540150027011
39 https://doi.org/10.1002/(sici)1098-2396(199806)29:2<128::aid-syn4>3.0.co;2-9
40 https://doi.org/10.1002/ana.410280412
41 https://doi.org/10.1002/ana.410380407
42 https://doi.org/10.1002/hbm.460010306
43 https://doi.org/10.1002/hbm.460020402
44 https://doi.org/10.1002/mds.870130212
45 https://doi.org/10.1002/mds.870130311
46 https://doi.org/10.1002/syn.890090107
47 https://doi.org/10.1002/syn.890210202
48 https://doi.org/10.1016/0022-510x(92)90007-8
49 https://doi.org/10.1016/b978-012161340-2/50018-4
50 https://doi.org/10.1017/s0001867800025970
51 https://doi.org/10.1038/jcbfm.1991.122
52 https://doi.org/10.1056/nejm198804073181402
53 https://doi.org/10.1093/brain/120.12.2187
54 https://doi.org/10.1111/j.1600-0404.1996.tb00015.x
55 https://doi.org/10.1136/jnnp.52.suppl.78
56 https://doi.org/10.1136/jnnp.57.3.278
57 https://doi.org/10.1136/jnnp.57.6.672
58 https://doi.org/10.1136/jnnp.57.9.1047
59 https://doi.org/10.1136/jnnp.59.6.597
60 https://doi.org/10.1136/jnnp.62.2.133
61 https://doi.org/10.1159/000007896
62 https://doi.org/10.1192/bjp.173.2.116
63 schema:datePublished 1999-10
64 schema:datePublishedReg 1999-10-01
65 schema:description Positron emission tomography (PET) and single-photon emission tomography (SPET) imaging of the dopaminergic system is a powerful tool for distinguishing groups of patients with neurodegenerative disorders, such as Parkinson's disease (PD). However, the differential diagnosis of individual subjects presenting early in the progress of the disease is much more difficult, particularly using region-of-interest analysis where small localized differences between subjects are diluted. In this paper we present a novel pixel-based technique using logistic discriminant analysis to distinguish between a group of PD patients and age-matched healthy controls. Simulated images of an anthropomorphic head phantom were used to test the sensitivity of the technique to striatal lesions of known size. The methodology was applied to real clinical SPET images of binding of technetium-99m labelled TRODAT-1 to dopamine transporters in PD patients (n=42) and age-matched controls (n=23). The discriminant model was trained on a subset (n=17) of patients for whom the diagnosis was unequivocal. Logistic discriminant parametric maps were obtained for all subjects, showing the probability distribution of pixels classified as being consistent with PD. The probability maps were corrected for correlated multiple comparisons assuming an isotropic Gaussian point spread function. Simulated lesion sizes measured by logistic discriminant parametric mapping (LDPM) gave strong correlations with the known data (r(2)=0. 985, P<0.001). LDPM correctly classified all PD patients (sensitivity 100%) and only misclassified one control (specificity 95%). All patients who had equivocal clinical symptoms associated with early onset PD (n=4) were correctly assigned to the patient group. Statistical parametric mapping (SPM) had a sensitivity of only 24% on the same patient group. LDPM is a powerful pixel-based tool for the differential diagnosis of patients with PD and healthy controls. The diagnosis of disease even before clinical symptoms become apparent may be possible, and ultimately this technique could be most useful in differentiating between several neurodegenerative disorders, incorporating images of multiple neuroreceptor systems.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree false
69 schema:isPartOf N4cc0eb3d555646efaa81b8ff9366e023
70 Nc6e580fbf5244cd5a79d117aaf02ccd8
71 sg:journal.1297401
72 schema:name Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson’s disease
73 schema:pagination 1413-1423
74 schema:productId N2b1d6bfa23534fac9537e3bef140b03f
75 N37916e364fbb4becb0051d3793a0e2e5
76 Na17879382cfb4e95bda32d8a47555c80
77 Nb60644a63d7141878a8e26309147cbef
78 Nefb9c15f74824e46ab4f326c745996ff
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040306372
80 https://doi.org/10.1007/s002590050473
81 schema:sdDatePublished 2019-04-10T21:37
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N9837dec1e4ee414e9dd67726e8ddc3f5
84 schema:url http://link.springer.com/10.1007%2Fs002590050473
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N04173aacef7c45e4a70b942cbfbce114 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Female
90 rdf:type schema:DefinedTerm
91 N11c33bc9df254ffbad4399f8c51d6565 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Dopamine Plasma Membrane Transport Proteins
93 rdf:type schema:DefinedTerm
94 N1398cfa66be44f2a949752d6535b7c7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Tropanes
96 rdf:type schema:DefinedTerm
97 N1ce502cf60834ee1a26d1f21b580f4a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Tomography, Emission-Computed, Single-Photon
99 rdf:type schema:DefinedTerm
100 N25cd81cd83cc4569a783bdc91ddafb35 rdf:first sg:person.0615735606.55
101 rdf:rest rdf:nil
102 N2b1d6bfa23534fac9537e3bef140b03f schema:name nlm_unique_id
103 schema:value 7606882
104 rdf:type schema:PropertyValue
105 N2e83028cb0a249eab439c4e0033f5cac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Diagnosis, Differential
107 rdf:type schema:DefinedTerm
108 N37916e364fbb4becb0051d3793a0e2e5 schema:name readcube_id
109 schema:value c00071b5c9cd9362f60d50e9318bc660659201fd6880b4ac80f4043354d211f5
110 rdf:type schema:PropertyValue
111 N3fa308eeb6e94867b319f3873277656e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Nerve Tissue Proteins
113 rdf:type schema:DefinedTerm
114 N4b2bfd9435f54a4194988265ee87473e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Radiopharmaceuticals
116 rdf:type schema:DefinedTerm
117 N4cc0eb3d555646efaa81b8ff9366e023 schema:issueNumber 11
118 rdf:type schema:PublicationIssue
119 N5abb454d7cc348d69cc2e3af933329c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Dopamine
121 rdf:type schema:DefinedTerm
122 N5b69cd0d437d4bceb67135cbab3478ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Humans
124 rdf:type schema:DefinedTerm
125 N6df5c3cde424462283f7bdf3275cb81c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Carrier Proteins
127 rdf:type schema:DefinedTerm
128 N94c0eaef66dc44e08073d020fbebcd44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Sensitivity and Specificity
130 rdf:type schema:DefinedTerm
131 N950b20d876b04d5dbda16d2453d1af37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Aged
133 rdf:type schema:DefinedTerm
134 N9837dec1e4ee414e9dd67726e8ddc3f5 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N9b03e390cd0645498122188b36c20ace schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Computer Simulation
138 rdf:type schema:DefinedTerm
139 Na17879382cfb4e95bda32d8a47555c80 schema:name dimensions_id
140 schema:value pub.1040306372
141 rdf:type schema:PropertyValue
142 Nb01993233b594dfea58198b181e8b807 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Organotechnetium Compounds
144 rdf:type schema:DefinedTerm
145 Nb01ed29468a9426aa00b3d613b8c024b rdf:first sg:person.01032052701.90
146 rdf:rest Nbbfc33371ad04813ab160277c181f0d1
147 Nb12f06e2d62c4555b9b6bd3f65a0cf72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Discriminant Analysis
149 rdf:type schema:DefinedTerm
150 Nb2c2a782565b49dd80a28171b1349525 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Membrane Glycoproteins
152 rdf:type schema:DefinedTerm
153 Nb580aa64494f4c889ba1d2336880ed33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Image Processing, Computer-Assisted
155 rdf:type schema:DefinedTerm
156 Nb60644a63d7141878a8e26309147cbef schema:name pubmed_id
157 schema:value 10552082
158 rdf:type schema:PropertyValue
159 Nb6cd89b7f7ff46208951ac47df96363e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Membrane Transport Proteins
161 rdf:type schema:DefinedTerm
162 Nb962790b9d214ad696512fc610d3bd8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Parkinson Disease
164 rdf:type schema:DefinedTerm
165 Nbbfc33371ad04813ab160277c181f0d1 rdf:first sg:person.0601735146.81
166 rdf:rest N25cd81cd83cc4569a783bdc91ddafb35
167 Nc6e580fbf5244cd5a79d117aaf02ccd8 schema:volumeNumber 26
168 rdf:type schema:PublicationVolume
169 Nd5ec0f409f62471bab274d860529305b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Male
171 rdf:type schema:DefinedTerm
172 Ne3387cdc950941e4bf582db869fa0d87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Brain
174 rdf:type schema:DefinedTerm
175 Ne488e3c3d56b4c9fbd414bbaec4d418e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Phantoms, Imaging
177 rdf:type schema:DefinedTerm
178 Nefb9c15f74824e46ab4f326c745996ff schema:name doi
179 schema:value 10.1007/s002590050473
180 rdf:type schema:PropertyValue
181 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
182 schema:name Medical and Health Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
185 schema:name Neurosciences
186 rdf:type schema:DefinedTerm
187 sg:journal.1297401 schema:issn 1619-7070
188 1619-7089
189 schema:name European Journal of Nuclear Medicine and Molecular Imaging
190 rdf:type schema:Periodical
191 sg:person.01032052701.90 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
192 schema:familyName Acton
193 schema:givenName Paul D.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032052701.90
195 rdf:type schema:Person
196 sg:person.0601735146.81 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
197 schema:familyName Mozley
198 schema:givenName P. David
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81
200 rdf:type schema:Person
201 sg:person.0615735606.55 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
202 schema:familyName Kung
203 schema:givenName Hank F.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55
205 rdf:type schema:Person
206 sg:pub.10.1007/978-3-7091-6641-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039545169
207 https://doi.org/10.1007/978-3-7091-6641-3_9
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/978-3-7091-6842-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051671417
210 https://doi.org/10.1007/978-3-7091-6842-4_2
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/978-3-7091-6842-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051850066
213 https://doi.org/10.1007/978-3-7091-6842-4_4
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/bf00881814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015615607
216 https://doi.org/10.1007/bf00881814
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/bf01254479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026914665
219 https://doi.org/10.1007/bf01254479
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/bf03164771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031922706
222 https://doi.org/10.1007/bf03164771
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s002590050167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016297293
225 https://doi.org/10.1007/s002590050167
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s002590050191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036095970
228 https://doi.org/10.1007/s002590050191
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s002590050374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030137198
231 https://doi.org/10.1007/s002590050374
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s002590050420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047388481
234 https://doi.org/10.1007/s002590050420
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s004150050168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046389648
237 https://doi.org/10.1007/s004150050168
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1001/archneur.1990.00530120034007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028164106
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1001/archneur.1994.00540150027011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000791166
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1002/(sici)1098-2396(199806)29:2<128::aid-syn4>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051947419
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1002/ana.410280412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041319167
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1002/ana.410380407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022216822
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1002/hbm.460010306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037237655
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1002/hbm.460020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041201593
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1002/mds.870130212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014406379
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1002/mds.870130311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037756220
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1002/syn.890090107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049173379
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1002/syn.890210202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043474197
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/0022-510x(92)90007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050837322
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/b978-012161340-2/50018-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008194136
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1017/s0001867800025970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028586331
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1038/jcbfm.1991.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811404
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1056/nejm198804073181402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031182950
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/brain/120.12.2187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004650266
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1111/j.1600-0404.1996.tb00015.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042952121
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1136/jnnp.52.suppl.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017716357
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1136/jnnp.57.3.278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027555348
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1136/jnnp.57.6.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024065067
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1136/jnnp.57.9.1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031279576
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1136/jnnp.59.6.597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002542965
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1136/jnnp.62.2.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034125453
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1159/000007896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011203472
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1192/bjp.173.2.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064173536
290 rdf:type schema:CreativeWork
291 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
292 schema:name Department of Radiology, University of Pennsylvania, 3700 Market Street, Room 305, Philadelphia, PA 19104, USA, US
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...