Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Paul D. Acton, Steven A. Kushner, Mei-Ping Kung, P. David Mozley, Karl Plössl, Hank F. Kung

ABSTRACT

Accurate quantification of neuroreceptors requires full kinetic modeling of the dynamic single-photon emission tomography (SPET) or positron emission tomography (PET) images, with highly invasive arterial blood sampling. This study investigated the application of a reference region kinetic model to the dynamics of [99mTc]TRODAT-1 in nonhuman primates, obviating the need for blood sampling. A series of dynamic SPET scans were performed on two baboons following the injection of approximately 700 MBq of [99mTc]TRODAT-1. Rapid arterial blood samples were taken automatically during scanning. Reconstructed SPET images were coregistered with magnetic resonance imaging (MRI) scans of the baboons, and regions of interest (ROIs) placed on the striatum, cerebellum and cerebral hemispheres. The ROI data were combined with metabolite-corrected blood data, and fitted to a three-compartment kinetic model using nonlinear least squares techniques. The same data were also used in a simplified reference region model, in which the input function was derived from the nondisplaceable tissue compartment. In addition, semiquantitative blinded analysis was performed by three raters to determine the point of transient equilibrium in the specific binding curves. All methods generated values for the ratio of the kinetic rate constants k3/k4, which gives an estimate of the binding potential, BP. These were compared with the full kinetic model. The mean values of k3/k4 for the three different analysis techniques for each baboon were: 1.17 +/- 0.21 and 1.12 +/- 0.13 (full kinetic model), 0.93 +/- 0.13 and 0.90 +/- 0.07 (reference region model), and 0.97 +/- 0.18 and 0.92 +/- 0.08 (equilibrium method). The reference region method gave significantly lower results than the full kinetic model (P = 0.01), but it also produced a much smaller spread and better quality fits to the kinetic data. The reference region model results for k3/k4 correlated very strongly with the full kinetic analysis (r2 = 0.992, P < 0.001), and with the equilibrium model (r2 = 0.88, P = 0.002). The subjectivity inherent in the equilibrium method produces inferior results compared with both kinetic analyses. It is suggested that the self-consistency of the reference region model, which requires no arterial blood sampling, provides a more precise and reliable estimate of the binding of [99mTc]TRODAT-1 to dopamine transporters than full kinetic modeling. The reference region method is also better suited to a routine clinical environment, and would be able to distinguish smaller differences in dopaminergic function between patient groups. More... »

PAGES

518-526

References to SciGraph publications

  • 1997-06. Dementia with Lewy bodies: a study of post-synaptic dopaminergic receptors with iodine-123 iodobenzamide single-photon mission tomography in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1996-11. Imaging of dopamine transporters in humans with technetium-99m TRODAT 1 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1996-01. Comparison of Methods for Analysis of Clinical [11C]Raclopride Studies in JOURNAL OF CEREBRAL BLOOD FLOW & METABOLISM
  • 1997-11. Registration of dynamic dopamine D2 receptor images using principal component analysis in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1997-04. Relationship between clinical features of Parkinson's disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1998-09. Differential distribution of striatal [123I]β-CIT in Parkinson’s disease and progressive supranuclear palsy, evaluated with single-photon emission tomography in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1997-03. Brain perfusion scintigraphy with99mTc-HMPAO or99mTc-ECD and123I-β-CIT single-photon emission tomography in dementia of the Alzheimer-type and diffuse Lewy body disease in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1997-02. Multivariate cluster analysis of dynamic iodine-123 iodobenzamide SPET dopamine D2 receptor images in schizophrenia in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002590050420

    DOI

    http://dx.doi.org/10.1007/s002590050420

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047388481

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10382097


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carrier Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dopamine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dopamine Plasma Membrane Transport Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Glycoproteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Transport Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Tissue Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organotechnetium Compounds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Papio", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed, Single-Photon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tropanes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Acton", 
            "givenName": "Paul D.", 
            "id": "sg:person.01032052701.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032052701.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kushner", 
            "givenName": "Steven A.", 
            "id": "sg:person.01210712353.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210712353.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kung", 
            "givenName": "Mei-Ping", 
            "id": "sg:person.01145435671.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145435671.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mozley", 
            "givenName": "P. David", 
            "id": "sg:person.0601735146.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pl\u00f6ssl", 
            "givenName": "Karl", 
            "id": "sg:person.0764777622.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764777622.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kung", 
            "givenName": "Hank F.", 
            "id": "sg:person.0615735606.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1006/nimg.1996.0066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002690366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02439541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005817138", 
              "https://doi.org/10.1007/bf02439541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02439541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005817138", 
              "https://doi.org/10.1007/bf02439541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-012389760-2/50061-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010913770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00841397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013522474", 
              "https://doi.org/10.1007/bf00841397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01728771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014119476", 
              "https://doi.org/10.1007/bf01728771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01728771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014119476", 
              "https://doi.org/10.1007/bf01728771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00881814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015615607", 
              "https://doi.org/10.1007/bf00881814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002590050167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016297293", 
              "https://doi.org/10.1007/s002590050167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/syn.890120106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016365525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004728-199007000-00011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018471449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004728-199007000-00011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018471449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/nimg.1997.0303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021838870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ana.410150302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021962229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ana.410380407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022216822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/clc.4960100417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026570084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01254479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026914665", 
              "https://doi.org/10.1007/bf01254479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01254479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026914665", 
              "https://doi.org/10.1007/bf01254479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002590050295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027203683", 
              "https://doi.org/10.1007/s002590050295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.1989.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035762647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.1989.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035762647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.597321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045167187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-012389760-2/50033-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046303464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-012389760-2/50032-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050127738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/00004647-199601000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730737", 
              "https://doi.org/10.1097/00004647-199601000-00005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-199601000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-199601000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/41/12/014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059022937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2867601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062567825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/wnl.42.3.556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064370625"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-04", 
        "datePublishedReg": "1999-04-01", 
        "description": "Accurate quantification of neuroreceptors requires full kinetic modeling of the dynamic single-photon emission tomography (SPET) or positron emission tomography (PET) images, with highly invasive arterial blood sampling. This study investigated the application of a reference region kinetic model to the dynamics of [99mTc]TRODAT-1 in nonhuman primates, obviating the need for blood sampling. A series of dynamic SPET scans were performed on two baboons following the injection of approximately 700 MBq of [99mTc]TRODAT-1. Rapid arterial blood samples were taken automatically during scanning. Reconstructed SPET images were coregistered with magnetic resonance imaging (MRI) scans of the baboons, and regions of interest (ROIs) placed on the striatum, cerebellum and cerebral hemispheres. The ROI data were combined with metabolite-corrected blood data, and fitted to a three-compartment kinetic model using nonlinear least squares techniques. The same data were also used in a simplified reference region model, in which the input function was derived from the nondisplaceable tissue compartment. In addition, semiquantitative blinded analysis was performed by three raters to determine the point of transient equilibrium in the specific binding curves. All methods generated values for the ratio of the kinetic rate constants k3/k4, which gives an estimate of the binding potential, BP. These were compared with the full kinetic model. The mean values of k3/k4 for the three different analysis techniques for each baboon were: 1.17 +/- 0.21 and 1.12 +/- 0.13 (full kinetic model), 0.93 +/- 0.13 and 0.90 +/- 0.07 (reference region model), and 0.97 +/- 0.18 and 0.92 +/- 0.08 (equilibrium method). The reference region method gave significantly lower results than the full kinetic model (P = 0.01), but it also produced a much smaller spread and better quality fits to the kinetic data. The reference region model results for k3/k4 correlated very strongly with the full kinetic analysis (r2 = 0.992, P < 0.001), and with the equilibrium model (r2 = 0.88, P = 0.002). The subjectivity inherent in the equilibrium method produces inferior results compared with both kinetic analyses. It is suggested that the self-consistency of the reference region model, which requires no arterial blood sampling, provides a more precise and reliable estimate of the binding of [99mTc]TRODAT-1 to dopamine transporters than full kinetic modeling. The reference region method is also better suited to a routine clinical environment, and would be able to distinguish smaller differences in dopaminergic function between patient groups.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002590050420", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2683844", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2554807", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2556252", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission tomography", 
        "pagination": "518-526", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e1be59874b0b29720d0440b1742639429818b8a08ff76c7355bdfae255c22646"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10382097"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7606882"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002590050420"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047388481"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002590050420", 
          "https://app.dimensions.ai/details/publication/pub.1047388481"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000515.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs002590050420"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      67 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002590050420 schema:about N04864d77ebd8472e8b25a5a9a14a0d47
    2 N6b1efc893a924172bd9da5a46d30bc82
    3 N6f12a79075f14a7588201b73f9d9c8d6
    4 N8035c591311f4680b127ce8a57cc122d
    5 N833de4281ab0426b885c5ed99a718dd2
    6 N8de5db31c7464fbdb4bbdbf4bf5cc97c
    7 N9daf846992064bbabe3161bfe0da4cbb
    8 Na3eb7c0e826f42838e31b61c47ca9273
    9 Nb3ad1e467d6642f986caa98830e8cad1
    10 Nb7eca1bfcc364bb2a2e0785c14302af9
    11 Ndb031b71be1f43b08114b90cc0381cdc
    12 Nea858aa4523747acb641ccac2e7c04ab
    13 Nf818dd6d300c4e66bceeba5053a42fca
    14 Nff7ec402bfff419ba4cab4b8cf0b81a4
    15 anzsrc-for:11
    16 anzsrc-for:1103
    17 schema:author Nce4117426fe34c8f9ac97c1f054a0f0e
    18 schema:citation sg:pub.10.1007/bf00841397
    19 sg:pub.10.1007/bf00881814
    20 sg:pub.10.1007/bf01254479
    21 sg:pub.10.1007/bf01728771
    22 sg:pub.10.1007/bf02439541
    23 sg:pub.10.1007/s002590050167
    24 sg:pub.10.1007/s002590050295
    25 sg:pub.10.1097/00004647-199601000-00005
    26 https://doi.org/10.1002/ana.410150302
    27 https://doi.org/10.1002/ana.410380407
    28 https://doi.org/10.1002/clc.4960100417
    29 https://doi.org/10.1002/syn.890120106
    30 https://doi.org/10.1006/nimg.1996.0066
    31 https://doi.org/10.1006/nimg.1997.0303
    32 https://doi.org/10.1016/b978-012389760-2/50032-3
    33 https://doi.org/10.1016/b978-012389760-2/50033-5
    34 https://doi.org/10.1016/b978-012389760-2/50061-x
    35 https://doi.org/10.1038/jcbfm.1989.98
    36 https://doi.org/10.1088/0031-9155/41/12/014
    37 https://doi.org/10.1097/00004647-199601000-00005
    38 https://doi.org/10.1097/00004728-199007000-00011
    39 https://doi.org/10.1118/1.597321
    40 https://doi.org/10.1126/science.2867601
    41 https://doi.org/10.1212/wnl.42.3.556
    42 schema:datePublished 1999-04
    43 schema:datePublishedReg 1999-04-01
    44 schema:description Accurate quantification of neuroreceptors requires full kinetic modeling of the dynamic single-photon emission tomography (SPET) or positron emission tomography (PET) images, with highly invasive arterial blood sampling. This study investigated the application of a reference region kinetic model to the dynamics of [99mTc]TRODAT-1 in nonhuman primates, obviating the need for blood sampling. A series of dynamic SPET scans were performed on two baboons following the injection of approximately 700 MBq of [99mTc]TRODAT-1. Rapid arterial blood samples were taken automatically during scanning. Reconstructed SPET images were coregistered with magnetic resonance imaging (MRI) scans of the baboons, and regions of interest (ROIs) placed on the striatum, cerebellum and cerebral hemispheres. The ROI data were combined with metabolite-corrected blood data, and fitted to a three-compartment kinetic model using nonlinear least squares techniques. The same data were also used in a simplified reference region model, in which the input function was derived from the nondisplaceable tissue compartment. In addition, semiquantitative blinded analysis was performed by three raters to determine the point of transient equilibrium in the specific binding curves. All methods generated values for the ratio of the kinetic rate constants k3/k4, which gives an estimate of the binding potential, BP. These were compared with the full kinetic model. The mean values of k3/k4 for the three different analysis techniques for each baboon were: 1.17 +/- 0.21 and 1.12 +/- 0.13 (full kinetic model), 0.93 +/- 0.13 and 0.90 +/- 0.07 (reference region model), and 0.97 +/- 0.18 and 0.92 +/- 0.08 (equilibrium method). The reference region method gave significantly lower results than the full kinetic model (P = 0.01), but it also produced a much smaller spread and better quality fits to the kinetic data. The reference region model results for k3/k4 correlated very strongly with the full kinetic analysis (r2 = 0.992, P < 0.001), and with the equilibrium model (r2 = 0.88, P = 0.002). The subjectivity inherent in the equilibrium method produces inferior results compared with both kinetic analyses. It is suggested that the self-consistency of the reference region model, which requires no arterial blood sampling, provides a more precise and reliable estimate of the binding of [99mTc]TRODAT-1 to dopamine transporters than full kinetic modeling. The reference region method is also better suited to a routine clinical environment, and would be able to distinguish smaller differences in dopaminergic function between patient groups.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N6674b02b777c4e5a84e2e57b14c936cb
    49 N74c17c6d4ce2445b978db8a93f3f239d
    50 sg:journal.1297401
    51 schema:name Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission tomography
    52 schema:pagination 518-526
    53 schema:productId N4bf9074c868649a9a6ba3b629ce1983e
    54 N7c1818265e7b468fb8a7e6a356368ae5
    55 Nb724034dc62243c792bd76d516fcaba0
    56 Nb815b5f5def6437495bfd01088965ac1
    57 Nda9b67bd5e7d4c51ba60e8a4675bdb72
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047388481
    59 https://doi.org/10.1007/s002590050420
    60 schema:sdDatePublished 2019-04-11T01:08
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Nae3f8912296f4d55a018bb9d2f91a681
    63 schema:url http://link.springer.com/10.1007%2Fs002590050420
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N04864d77ebd8472e8b25a5a9a14a0d47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Radiopharmaceuticals
    69 rdf:type schema:DefinedTerm
    70 N0beeaeff1fe44e52bb9026655cf032ef rdf:first sg:person.0764777622.24
    71 rdf:rest N7d327d45926d4123a2d79e0ca305a264
    72 N31ec4e569f0144028ddb2c22e6d647bb rdf:first sg:person.0601735146.81
    73 rdf:rest N0beeaeff1fe44e52bb9026655cf032ef
    74 N3504be733be94b82b252cc2950d08901 rdf:first sg:person.01145435671.41
    75 rdf:rest N31ec4e569f0144028ddb2c22e6d647bb
    76 N4bf9074c868649a9a6ba3b629ce1983e schema:name pubmed_id
    77 schema:value 10382097
    78 rdf:type schema:PropertyValue
    79 N6674b02b777c4e5a84e2e57b14c936cb schema:volumeNumber 26
    80 rdf:type schema:PublicationVolume
    81 N6b1efc893a924172bd9da5a46d30bc82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Carrier Proteins
    83 rdf:type schema:DefinedTerm
    84 N6f12a79075f14a7588201b73f9d9c8d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Female
    86 rdf:type schema:DefinedTerm
    87 N74c17c6d4ce2445b978db8a93f3f239d schema:issueNumber 5
    88 rdf:type schema:PublicationIssue
    89 N7c1818265e7b468fb8a7e6a356368ae5 schema:name readcube_id
    90 schema:value e1be59874b0b29720d0440b1742639429818b8a08ff76c7355bdfae255c22646
    91 rdf:type schema:PropertyValue
    92 N7d327d45926d4123a2d79e0ca305a264 rdf:first sg:person.0615735606.55
    93 rdf:rest rdf:nil
    94 N8035c591311f4680b127ce8a57cc122d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Dopamine
    96 rdf:type schema:DefinedTerm
    97 N833de4281ab0426b885c5ed99a718dd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Animals
    99 rdf:type schema:DefinedTerm
    100 N8de5db31c7464fbdb4bbdbf4bf5cc97c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Papio
    102 rdf:type schema:DefinedTerm
    103 N9daf846992064bbabe3161bfe0da4cbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Tropanes
    105 rdf:type schema:DefinedTerm
    106 Na3eb7c0e826f42838e31b61c47ca9273 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Tomography, Emission-Computed, Single-Photon
    108 rdf:type schema:DefinedTerm
    109 Nabcc804a7ac047ac89fe978b28a07dd5 rdf:first sg:person.01210712353.12
    110 rdf:rest N3504be733be94b82b252cc2950d08901
    111 Nae3f8912296f4d55a018bb9d2f91a681 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 Nb3ad1e467d6642f986caa98830e8cad1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Dopamine Plasma Membrane Transport Proteins
    115 rdf:type schema:DefinedTerm
    116 Nb724034dc62243c792bd76d516fcaba0 schema:name dimensions_id
    117 schema:value pub.1047388481
    118 rdf:type schema:PropertyValue
    119 Nb7eca1bfcc364bb2a2e0785c14302af9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Organotechnetium Compounds
    121 rdf:type schema:DefinedTerm
    122 Nb815b5f5def6437495bfd01088965ac1 schema:name doi
    123 schema:value 10.1007/s002590050420
    124 rdf:type schema:PropertyValue
    125 Nce4117426fe34c8f9ac97c1f054a0f0e rdf:first sg:person.01032052701.90
    126 rdf:rest Nabcc804a7ac047ac89fe978b28a07dd5
    127 Nda9b67bd5e7d4c51ba60e8a4675bdb72 schema:name nlm_unique_id
    128 schema:value 7606882
    129 rdf:type schema:PropertyValue
    130 Ndb031b71be1f43b08114b90cc0381cdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Nerve Tissue Proteins
    132 rdf:type schema:DefinedTerm
    133 Nea858aa4523747acb641ccac2e7c04ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Membrane Glycoproteins
    135 rdf:type schema:DefinedTerm
    136 Nf818dd6d300c4e66bceeba5053a42fca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Membrane Transport Proteins
    138 rdf:type schema:DefinedTerm
    139 Nff7ec402bfff419ba4cab4b8cf0b81a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Brain
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Medical and Health Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Clinical Sciences
    147 rdf:type schema:DefinedTerm
    148 sg:grant.2554807 http://pending.schema.org/fundedItem sg:pub.10.1007/s002590050420
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.2556252 http://pending.schema.org/fundedItem sg:pub.10.1007/s002590050420
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.2683844 http://pending.schema.org/fundedItem sg:pub.10.1007/s002590050420
    153 rdf:type schema:MonetaryGrant
    154 sg:journal.1297401 schema:issn 1619-7070
    155 1619-7089
    156 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    157 rdf:type schema:Periodical
    158 sg:person.01032052701.90 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    159 schema:familyName Acton
    160 schema:givenName Paul D.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032052701.90
    162 rdf:type schema:Person
    163 sg:person.01145435671.41 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    164 schema:familyName Kung
    165 schema:givenName Mei-Ping
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145435671.41
    167 rdf:type schema:Person
    168 sg:person.01210712353.12 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    169 schema:familyName Kushner
    170 schema:givenName Steven A.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210712353.12
    172 rdf:type schema:Person
    173 sg:person.0601735146.81 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    174 schema:familyName Mozley
    175 schema:givenName P. David
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81
    177 rdf:type schema:Person
    178 sg:person.0615735606.55 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    179 schema:familyName Kung
    180 schema:givenName Hank F.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55
    182 rdf:type schema:Person
    183 sg:person.0764777622.24 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    184 schema:familyName Plössl
    185 schema:givenName Karl
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764777622.24
    187 rdf:type schema:Person
    188 sg:pub.10.1007/bf00841397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013522474
    189 https://doi.org/10.1007/bf00841397
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf00881814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015615607
    192 https://doi.org/10.1007/bf00881814
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/bf01254479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026914665
    195 https://doi.org/10.1007/bf01254479
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/bf01728771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014119476
    198 https://doi.org/10.1007/bf01728771
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/bf02439541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817138
    201 https://doi.org/10.1007/bf02439541
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s002590050167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016297293
    204 https://doi.org/10.1007/s002590050167
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s002590050295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027203683
    207 https://doi.org/10.1007/s002590050295
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1097/00004647-199601000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730737
    210 https://doi.org/10.1097/00004647-199601000-00005
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1002/ana.410150302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021962229
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1002/ana.410380407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022216822
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1002/clc.4960100417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026570084
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1002/syn.890120106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016365525
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1006/nimg.1996.0066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002690366
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1006/nimg.1997.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021838870
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/b978-012389760-2/50032-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050127738
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/b978-012389760-2/50033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303464
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/b978-012389760-2/50061-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010913770
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1038/jcbfm.1989.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035762647
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1088/0031-9155/41/12/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022937
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1097/00004647-199601000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730737
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1097/00004728-199007000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018471449
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1118/1.597321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045167187
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1126/science.2867601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567825
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1212/wnl.42.3.556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064370625
    243 rdf:type schema:CreativeWork
    244 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    245 schema:name Department of Radiology, University of Pennsylvania, Philadelphia, USA, US
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...