Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Paul D. Acton, Steven A. Kushner, Mei-Ping Kung, P. David Mozley, Karl Plössl, Hank F. Kung

ABSTRACT

Accurate quantification of neuroreceptors requires full kinetic modeling of the dynamic single-photon emission tomography (SPET) or positron emission tomography (PET) images, with highly invasive arterial blood sampling. This study investigated the application of a reference region kinetic model to the dynamics of [99mTc]TRODAT-1 in nonhuman primates, obviating the need for blood sampling. A series of dynamic SPET scans were performed on two baboons following the injection of approximately 700 MBq of [99mTc]TRODAT-1. Rapid arterial blood samples were taken automatically during scanning. Reconstructed SPET images were coregistered with magnetic resonance imaging (MRI) scans of the baboons, and regions of interest (ROIs) placed on the striatum, cerebellum and cerebral hemispheres. The ROI data were combined with metabolite-corrected blood data, and fitted to a three-compartment kinetic model using nonlinear least squares techniques. The same data were also used in a simplified reference region model, in which the input function was derived from the nondisplaceable tissue compartment. In addition, semiquantitative blinded analysis was performed by three raters to determine the point of transient equilibrium in the specific binding curves. All methods generated values for the ratio of the kinetic rate constants k3/k4, which gives an estimate of the binding potential, BP. These were compared with the full kinetic model. The mean values of k3/k4 for the three different analysis techniques for each baboon were: 1.17 +/- 0.21 and 1.12 +/- 0.13 (full kinetic model), 0.93 +/- 0.13 and 0.90 +/- 0.07 (reference region model), and 0.97 +/- 0.18 and 0.92 +/- 0.08 (equilibrium method). The reference region method gave significantly lower results than the full kinetic model (P = 0.01), but it also produced a much smaller spread and better quality fits to the kinetic data. The reference region model results for k3/k4 correlated very strongly with the full kinetic analysis (r2 = 0.992, P < 0.001), and with the equilibrium model (r2 = 0.88, P = 0.002). The subjectivity inherent in the equilibrium method produces inferior results compared with both kinetic analyses. It is suggested that the self-consistency of the reference region model, which requires no arterial blood sampling, provides a more precise and reliable estimate of the binding of [99mTc]TRODAT-1 to dopamine transporters than full kinetic modeling. The reference region method is also better suited to a routine clinical environment, and would be able to distinguish smaller differences in dopaminergic function between patient groups. More... »

PAGES

518-526

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002590050420

DOI

http://dx.doi.org/10.1007/s002590050420

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047388481

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10382097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carrier Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dopamine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dopamine Plasma Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Glycoproteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Tissue Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organotechnetium Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Papio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tropanes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acton", 
        "givenName": "Paul D.", 
        "id": "sg:person.01032052701.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032052701.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kushner", 
        "givenName": "Steven A.", 
        "id": "sg:person.01210712353.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210712353.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kung", 
        "givenName": "Mei-Ping", 
        "id": "sg:person.01145435671.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145435671.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mozley", 
        "givenName": "P. David", 
        "id": "sg:person.0601735146.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pl\u00f6ssl", 
        "givenName": "Karl", 
        "id": "sg:person.0764777622.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764777622.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Radiology, University of Pennsylvania, Philadelphia, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kung", 
        "givenName": "Hank F.", 
        "id": "sg:person.0615735606.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/nimg.1996.0066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002690366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02439541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005817138", 
          "https://doi.org/10.1007/bf02439541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02439541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005817138", 
          "https://doi.org/10.1007/bf02439541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012389760-2/50061-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010913770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00841397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013522474", 
          "https://doi.org/10.1007/bf00841397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01728771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014119476", 
          "https://doi.org/10.1007/bf01728771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01728771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014119476", 
          "https://doi.org/10.1007/bf01728771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00881814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015615607", 
          "https://doi.org/10.1007/bf00881814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016297293", 
          "https://doi.org/10.1007/s002590050167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/syn.890120106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016365525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1997.0303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021838870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410150302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021962229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410380407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022216822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/clc.4960100417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026570084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01254479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026914665", 
          "https://doi.org/10.1007/bf01254479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01254479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026914665", 
          "https://doi.org/10.1007/bf01254479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027203683", 
          "https://doi.org/10.1007/s002590050295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1989.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035762647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1989.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035762647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045167187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012389760-2/50033-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046303464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012389760-2/50032-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050127738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/00004647-199601000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730737", 
          "https://doi.org/10.1097/00004647-199601000-00005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-199601000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-199601000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/41/12/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059022937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2867601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.42.3.556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064370625"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "Accurate quantification of neuroreceptors requires full kinetic modeling of the dynamic single-photon emission tomography (SPET) or positron emission tomography (PET) images, with highly invasive arterial blood sampling. This study investigated the application of a reference region kinetic model to the dynamics of [99mTc]TRODAT-1 in nonhuman primates, obviating the need for blood sampling. A series of dynamic SPET scans were performed on two baboons following the injection of approximately 700 MBq of [99mTc]TRODAT-1. Rapid arterial blood samples were taken automatically during scanning. Reconstructed SPET images were coregistered with magnetic resonance imaging (MRI) scans of the baboons, and regions of interest (ROIs) placed on the striatum, cerebellum and cerebral hemispheres. The ROI data were combined with metabolite-corrected blood data, and fitted to a three-compartment kinetic model using nonlinear least squares techniques. The same data were also used in a simplified reference region model, in which the input function was derived from the nondisplaceable tissue compartment. In addition, semiquantitative blinded analysis was performed by three raters to determine the point of transient equilibrium in the specific binding curves. All methods generated values for the ratio of the kinetic rate constants k3/k4, which gives an estimate of the binding potential, BP. These were compared with the full kinetic model. The mean values of k3/k4 for the three different analysis techniques for each baboon were: 1.17 +/- 0.21 and 1.12 +/- 0.13 (full kinetic model), 0.93 +/- 0.13 and 0.90 +/- 0.07 (reference region model), and 0.97 +/- 0.18 and 0.92 +/- 0.08 (equilibrium method). The reference region method gave significantly lower results than the full kinetic model (P = 0.01), but it also produced a much smaller spread and better quality fits to the kinetic data. The reference region model results for k3/k4 correlated very strongly with the full kinetic analysis (r2 = 0.992, P < 0.001), and with the equilibrium model (r2 = 0.88, P = 0.002). The subjectivity inherent in the equilibrium method produces inferior results compared with both kinetic analyses. It is suggested that the self-consistency of the reference region model, which requires no arterial blood sampling, provides a more precise and reliable estimate of the binding of [99mTc]TRODAT-1 to dopamine transporters than full kinetic modeling. The reference region method is also better suited to a routine clinical environment, and would be able to distinguish smaller differences in dopaminergic function between patient groups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002590050420", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2683844", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2554807", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2556252", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission tomography", 
    "pagination": "518-526", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1be59874b0b29720d0440b1742639429818b8a08ff76c7355bdfae255c22646"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10382097"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7606882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002590050420"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047388481"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002590050420", 
      "https://app.dimensions.ai/details/publication/pub.1047388481"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002590050420"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050420'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      67 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002590050420 schema:about N044f3a6283ae456a82ac77d2008d0725
2 N164e994cf4c841db9af1ada153db5752
3 N17c2dce2577b423388eea0c4942613b1
4 N1c9a49e57cac4cc7ae50cc0e6bd8b4aa
5 N45e83ddd045b4a048929f32731728faa
6 N597c2225be67474fa07b6f5411b68efd
7 N6de829f538054efd8411e94618301023
8 N786b42d51ba14c26a7b68dc6e5324532
9 N7f0c608d6870446eb639cf1fa881c4a1
10 Na3478226807342ebb7571d66316dfb5e
11 Nadf803aa543b42f9afba86eec51f9820
12 Nb2f45411f73c43ffb616b38b1ec02f43
13 Ne1bf555428b54374a27ba741a21e4681
14 Nececd70e9a4144c6a7a112bdd5250eb7
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N7a036c6e507f4b49aa7a6e8248493c7d
18 schema:citation sg:pub.10.1007/bf00841397
19 sg:pub.10.1007/bf00881814
20 sg:pub.10.1007/bf01254479
21 sg:pub.10.1007/bf01728771
22 sg:pub.10.1007/bf02439541
23 sg:pub.10.1007/s002590050167
24 sg:pub.10.1007/s002590050295
25 sg:pub.10.1097/00004647-199601000-00005
26 https://doi.org/10.1002/ana.410150302
27 https://doi.org/10.1002/ana.410380407
28 https://doi.org/10.1002/clc.4960100417
29 https://doi.org/10.1002/syn.890120106
30 https://doi.org/10.1006/nimg.1996.0066
31 https://doi.org/10.1006/nimg.1997.0303
32 https://doi.org/10.1016/b978-012389760-2/50032-3
33 https://doi.org/10.1016/b978-012389760-2/50033-5
34 https://doi.org/10.1016/b978-012389760-2/50061-x
35 https://doi.org/10.1038/jcbfm.1989.98
36 https://doi.org/10.1088/0031-9155/41/12/014
37 https://doi.org/10.1097/00004647-199601000-00005
38 https://doi.org/10.1097/00004728-199007000-00011
39 https://doi.org/10.1118/1.597321
40 https://doi.org/10.1126/science.2867601
41 https://doi.org/10.1212/wnl.42.3.556
42 schema:datePublished 1999-04
43 schema:datePublishedReg 1999-04-01
44 schema:description Accurate quantification of neuroreceptors requires full kinetic modeling of the dynamic single-photon emission tomography (SPET) or positron emission tomography (PET) images, with highly invasive arterial blood sampling. This study investigated the application of a reference region kinetic model to the dynamics of [99mTc]TRODAT-1 in nonhuman primates, obviating the need for blood sampling. A series of dynamic SPET scans were performed on two baboons following the injection of approximately 700 MBq of [99mTc]TRODAT-1. Rapid arterial blood samples were taken automatically during scanning. Reconstructed SPET images were coregistered with magnetic resonance imaging (MRI) scans of the baboons, and regions of interest (ROIs) placed on the striatum, cerebellum and cerebral hemispheres. The ROI data were combined with metabolite-corrected blood data, and fitted to a three-compartment kinetic model using nonlinear least squares techniques. The same data were also used in a simplified reference region model, in which the input function was derived from the nondisplaceable tissue compartment. In addition, semiquantitative blinded analysis was performed by three raters to determine the point of transient equilibrium in the specific binding curves. All methods generated values for the ratio of the kinetic rate constants k3/k4, which gives an estimate of the binding potential, BP. These were compared with the full kinetic model. The mean values of k3/k4 for the three different analysis techniques for each baboon were: 1.17 +/- 0.21 and 1.12 +/- 0.13 (full kinetic model), 0.93 +/- 0.13 and 0.90 +/- 0.07 (reference region model), and 0.97 +/- 0.18 and 0.92 +/- 0.08 (equilibrium method). The reference region method gave significantly lower results than the full kinetic model (P = 0.01), but it also produced a much smaller spread and better quality fits to the kinetic data. The reference region model results for k3/k4 correlated very strongly with the full kinetic analysis (r2 = 0.992, P < 0.001), and with the equilibrium model (r2 = 0.88, P = 0.002). The subjectivity inherent in the equilibrium method produces inferior results compared with both kinetic analyses. It is suggested that the self-consistency of the reference region model, which requires no arterial blood sampling, provides a more precise and reliable estimate of the binding of [99mTc]TRODAT-1 to dopamine transporters than full kinetic modeling. The reference region method is also better suited to a routine clinical environment, and would be able to distinguish smaller differences in dopaminergic function between patient groups.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N7cd33d06bce1489db06f1d9ce22057d1
49 N7e7a725d79c446a09d99b50b2b2a6ca1
50 sg:journal.1297401
51 schema:name Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission tomography
52 schema:pagination 518-526
53 schema:productId N074f7ed250ed4507b823dcad7f47182f
54 N10622318be0f46c18ef8a96dbbc474a3
55 N606aab32406d419aadede5b98ffa39ee
56 Nd62aaf4590ae421c8a8dba2d204a0c4c
57 Neb657ecdfbd34c1dbed26f10446274eb
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047388481
59 https://doi.org/10.1007/s002590050420
60 schema:sdDatePublished 2019-04-11T01:08
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N9cacafc6bbc7475596422b15a558013e
63 schema:url http://link.springer.com/10.1007%2Fs002590050420
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N044f3a6283ae456a82ac77d2008d0725 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Tropanes
69 rdf:type schema:DefinedTerm
70 N074f7ed250ed4507b823dcad7f47182f schema:name nlm_unique_id
71 schema:value 7606882
72 rdf:type schema:PropertyValue
73 N0c142a84c6174c77b8b7c5c60275f1c3 rdf:first sg:person.0615735606.55
74 rdf:rest rdf:nil
75 N10622318be0f46c18ef8a96dbbc474a3 schema:name doi
76 schema:value 10.1007/s002590050420
77 rdf:type schema:PropertyValue
78 N164e994cf4c841db9af1ada153db5752 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Brain
80 rdf:type schema:DefinedTerm
81 N17c2dce2577b423388eea0c4942613b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Dopamine
83 rdf:type schema:DefinedTerm
84 N1c9a49e57cac4cc7ae50cc0e6bd8b4aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Tomography, Emission-Computed, Single-Photon
86 rdf:type schema:DefinedTerm
87 N45e83ddd045b4a048929f32731728faa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Radiopharmaceuticals
89 rdf:type schema:DefinedTerm
90 N49063013badb439a80db9b8774ab79ee rdf:first sg:person.01145435671.41
91 rdf:rest Ndcf77bc1a562446faa5d89e2ed10498a
92 N597c2225be67474fa07b6f5411b68efd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Nerve Tissue Proteins
94 rdf:type schema:DefinedTerm
95 N606aab32406d419aadede5b98ffa39ee schema:name pubmed_id
96 schema:value 10382097
97 rdf:type schema:PropertyValue
98 N6de829f538054efd8411e94618301023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Membrane Glycoproteins
100 rdf:type schema:DefinedTerm
101 N786b42d51ba14c26a7b68dc6e5324532 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Membrane Transport Proteins
103 rdf:type schema:DefinedTerm
104 N7a036c6e507f4b49aa7a6e8248493c7d rdf:first sg:person.01032052701.90
105 rdf:rest N83d39dcf063e458ab3f1392925252262
106 N7cd33d06bce1489db06f1d9ce22057d1 schema:issueNumber 5
107 rdf:type schema:PublicationIssue
108 N7e7a725d79c446a09d99b50b2b2a6ca1 schema:volumeNumber 26
109 rdf:type schema:PublicationVolume
110 N7f0c608d6870446eb639cf1fa881c4a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Papio
112 rdf:type schema:DefinedTerm
113 N83d39dcf063e458ab3f1392925252262 rdf:first sg:person.01210712353.12
114 rdf:rest N49063013badb439a80db9b8774ab79ee
115 N9328ef12325843bab9f1eaab4c7b0265 rdf:first sg:person.0764777622.24
116 rdf:rest N0c142a84c6174c77b8b7c5c60275f1c3
117 N9cacafc6bbc7475596422b15a558013e schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Na3478226807342ebb7571d66316dfb5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Organotechnetium Compounds
121 rdf:type schema:DefinedTerm
122 Nadf803aa543b42f9afba86eec51f9820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Animals
124 rdf:type schema:DefinedTerm
125 Nb2f45411f73c43ffb616b38b1ec02f43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Female
127 rdf:type schema:DefinedTerm
128 Nd62aaf4590ae421c8a8dba2d204a0c4c schema:name readcube_id
129 schema:value e1be59874b0b29720d0440b1742639429818b8a08ff76c7355bdfae255c22646
130 rdf:type schema:PropertyValue
131 Ndcf77bc1a562446faa5d89e2ed10498a rdf:first sg:person.0601735146.81
132 rdf:rest N9328ef12325843bab9f1eaab4c7b0265
133 Ne1bf555428b54374a27ba741a21e4681 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Dopamine Plasma Membrane Transport Proteins
135 rdf:type schema:DefinedTerm
136 Neb657ecdfbd34c1dbed26f10446274eb schema:name dimensions_id
137 schema:value pub.1047388481
138 rdf:type schema:PropertyValue
139 Nececd70e9a4144c6a7a112bdd5250eb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Carrier Proteins
141 rdf:type schema:DefinedTerm
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
146 schema:name Clinical Sciences
147 rdf:type schema:DefinedTerm
148 sg:grant.2554807 http://pending.schema.org/fundedItem sg:pub.10.1007/s002590050420
149 rdf:type schema:MonetaryGrant
150 sg:grant.2556252 http://pending.schema.org/fundedItem sg:pub.10.1007/s002590050420
151 rdf:type schema:MonetaryGrant
152 sg:grant.2683844 http://pending.schema.org/fundedItem sg:pub.10.1007/s002590050420
153 rdf:type schema:MonetaryGrant
154 sg:journal.1297401 schema:issn 1619-7070
155 1619-7089
156 schema:name European Journal of Nuclear Medicine and Molecular Imaging
157 rdf:type schema:Periodical
158 sg:person.01032052701.90 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
159 schema:familyName Acton
160 schema:givenName Paul D.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032052701.90
162 rdf:type schema:Person
163 sg:person.01145435671.41 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
164 schema:familyName Kung
165 schema:givenName Mei-Ping
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145435671.41
167 rdf:type schema:Person
168 sg:person.01210712353.12 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
169 schema:familyName Kushner
170 schema:givenName Steven A.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210712353.12
172 rdf:type schema:Person
173 sg:person.0601735146.81 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
174 schema:familyName Mozley
175 schema:givenName P. David
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601735146.81
177 rdf:type schema:Person
178 sg:person.0615735606.55 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
179 schema:familyName Kung
180 schema:givenName Hank F.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615735606.55
182 rdf:type schema:Person
183 sg:person.0764777622.24 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
184 schema:familyName Plössl
185 schema:givenName Karl
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764777622.24
187 rdf:type schema:Person
188 sg:pub.10.1007/bf00841397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013522474
189 https://doi.org/10.1007/bf00841397
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf00881814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015615607
192 https://doi.org/10.1007/bf00881814
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/bf01254479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026914665
195 https://doi.org/10.1007/bf01254479
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/bf01728771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014119476
198 https://doi.org/10.1007/bf01728771
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/bf02439541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817138
201 https://doi.org/10.1007/bf02439541
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s002590050167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016297293
204 https://doi.org/10.1007/s002590050167
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s002590050295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027203683
207 https://doi.org/10.1007/s002590050295
208 rdf:type schema:CreativeWork
209 sg:pub.10.1097/00004647-199601000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730737
210 https://doi.org/10.1097/00004647-199601000-00005
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/ana.410150302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021962229
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/ana.410380407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022216822
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/clc.4960100417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026570084
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/syn.890120106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016365525
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1006/nimg.1996.0066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002690366
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1006/nimg.1997.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021838870
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/b978-012389760-2/50032-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050127738
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/b978-012389760-2/50033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303464
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/b978-012389760-2/50061-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010913770
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1038/jcbfm.1989.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035762647
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1088/0031-9155/41/12/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022937
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1097/00004647-199601000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730737
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/00004728-199007000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018471449
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1118/1.597321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045167187
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1126/science.2867601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567825
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1212/wnl.42.3.556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064370625
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
245 schema:name Department of Radiology, University of Pennsylvania, Philadelphia, USA, US
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...