An automatic classification technique for attenuation correction in positron emission tomography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

V. Bettinardi, E. Pagani, M. C. Gilardi, C. Landoni, C. Riddell, G. Rizzo, I. Castiglioni, D. Belluzzo, G. Lucignani, S. Schubert, F. Fazio

ABSTRACT

In this paper a clustering technique is proposed for attenuation correction (AC) in positron emission tomography (PET). The method is unsupervised and adaptive with respect to counting statistics in the transmission (TR) images. The technique allows the classification of pre- or post-injection TR images into main tissue components in terms of attenuation coefficients. The classified TR images are then forward projected to generate new TR sinograms to be used for AC in the reconstruction of the corresponding emission (EM) data. The technique has been tested on phantoms and clinical data of brain, heart and whole-body PET studies. The method allows: (a) reduction of noise propagation from TR into EM images, (b) reduction of TR scanning to a few minutes (3 min) with maintenance of the quantitative accuracy (within 6%) of longer acquisition scans (15-20 min), (c) reduction of the radiation dose to the patient, (d) performance of quantitative whole-body studies. More... »

PAGES

447-458

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002590050410

DOI

http://dx.doi.org/10.1007/s002590050410

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014377698

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10382087


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bettinardi", 
        "givenName": "V.", 
        "id": "sg:person.0621001075.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621001075.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pagani", 
        "givenName": "E.", 
        "id": "sg:person.0703022472.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703022472.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilardi", 
        "givenName": "M. C.", 
        "id": "sg:person.01262435052.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262435052.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landoni", 
        "givenName": "C.", 
        "id": "sg:person.01113730175.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113730175.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riddell", 
        "givenName": "C.", 
        "id": "sg:person.011317661234.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317661234.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "G.", 
        "id": "sg:person.01217512610.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217512610.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castiglioni", 
        "givenName": "I.", 
        "id": "sg:person.01242550273.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242550273.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belluzzo", 
        "givenName": "D.", 
        "id": "sg:person.01247726072.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726072.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lucignani", 
        "givenName": "G.", 
        "id": "sg:person.01143406471.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143406471.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "GE Medical System, Milwaukee,Wisconson, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schubert", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fazio", 
        "givenName": "F.", 
        "id": "sg:person.01234705530.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234705530.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00631764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035654586", 
          "https://doi.org/10.1007/bf00631764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00631764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035654586", 
          "https://doi.org/10.1007/bf00631764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00631764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035654586", 
          "https://doi.org/10.1007/bf00631764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197903060-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197903060-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/40/5/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059022816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.12825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061128228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.12827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061128230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.159771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061128391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.485973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061130350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.485974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061130351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.489432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061130496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.554827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061130852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.310694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.232257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.1987.4337350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061730972"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "In this paper a clustering technique is proposed for attenuation correction (AC) in positron emission tomography (PET). The method is unsupervised and adaptive with respect to counting statistics in the transmission (TR) images. The technique allows the classification of pre- or post-injection TR images into main tissue components in terms of attenuation coefficients. The classified TR images are then forward projected to generate new TR sinograms to be used for AC in the reconstruction of the corresponding emission (EM) data. The technique has been tested on phantoms and clinical data of brain, heart and whole-body PET studies. The method allows: (a) reduction of noise propagation from TR into EM images, (b) reduction of TR scanning to a few minutes (3 min) with maintenance of the quantitative accuracy (within 6%) of longer acquisition scans (15-20 min), (c) reduction of the radiation dose to the patient, (d) performance of quantitative whole-body studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002590050410", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "An automatic classification technique for attenuation correction in positron emission tomography", 
    "pagination": "447-458", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "447e84b433151a623880a610d8fc4dff81fc4a02483dfb6bccad57b6502566a7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10382087"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7606882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002590050410"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014377698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002590050410", 
      "https://app.dimensions.ai/details/publication/pub.1014377698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002590050410"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050410'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050410'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050410'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050410'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      48 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002590050410 schema:about N2a1e8e4e876b495ab09cee687e887069
2 N375841886f7a46178ae77871e7a4a835
3 N4cae3ad0a8c44e2f9bd9df7de1bb5c20
4 N76c9be3083c14e94a869b1485141620c
5 N812f61f307b044cfafc02ed2c4fe1cee
6 Nf8891d25c21941499a56a22e4b635a66
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author N2e1d7a6b20e14c25845691dbeeec6683
10 schema:citation sg:pub.10.1007/bf00631764
11 https://doi.org/10.1088/0031-9155/40/5/014
12 https://doi.org/10.1097/00004728-197903060-00018
13 https://doi.org/10.1109/23.12825
14 https://doi.org/10.1109/23.12827
15 https://doi.org/10.1109/23.159771
16 https://doi.org/10.1109/23.485973
17 https://doi.org/10.1109/23.485974
18 https://doi.org/10.1109/23.489432
19 https://doi.org/10.1109/23.554827
20 https://doi.org/10.1109/34.310694
21 https://doi.org/10.1109/42.232257
22 https://doi.org/10.1109/tns.1987.4337350
23 schema:datePublished 1999-04
24 schema:datePublishedReg 1999-04-01
25 schema:description In this paper a clustering technique is proposed for attenuation correction (AC) in positron emission tomography (PET). The method is unsupervised and adaptive with respect to counting statistics in the transmission (TR) images. The technique allows the classification of pre- or post-injection TR images into main tissue components in terms of attenuation coefficients. The classified TR images are then forward projected to generate new TR sinograms to be used for AC in the reconstruction of the corresponding emission (EM) data. The technique has been tested on phantoms and clinical data of brain, heart and whole-body PET studies. The method allows: (a) reduction of noise propagation from TR into EM images, (b) reduction of TR scanning to a few minutes (3 min) with maintenance of the quantitative accuracy (within 6%) of longer acquisition scans (15-20 min), (c) reduction of the radiation dose to the patient, (d) performance of quantitative whole-body studies.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N401bdb07b70b498189c78a19c9b8e8d4
30 N6ec30972ce914a25a2b46f89b15af887
31 sg:journal.1297401
32 schema:name An automatic classification technique for attenuation correction in positron emission tomography
33 schema:pagination 447-458
34 schema:productId N13241afbc02a42218a8db3e359dd9f72
35 N4639f5050a4c49818aa865337c8e0b2c
36 N696c3832878f40aaabb048f2ab8d63e8
37 N6a80b9cfc429447a8b88cd6e4ec3138e
38 Nd8b5f3f6b3ee4fce9ca48b7e17842797
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377698
40 https://doi.org/10.1007/s002590050410
41 schema:sdDatePublished 2019-04-10T14:09
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N76f8da7770cb4e14bab729c2bd4e256a
44 schema:url http://link.springer.com/10.1007%2Fs002590050410
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0ca5feb363b54671a9f2b39a261b09d9 schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
49 rdf:type schema:Organization
50 N0e7f98eebfca4912b6843bb9cf112317 schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
51 rdf:type schema:Organization
52 N13241afbc02a42218a8db3e359dd9f72 schema:name readcube_id
53 schema:value 447e84b433151a623880a610d8fc4dff81fc4a02483dfb6bccad57b6502566a7
54 rdf:type schema:PropertyValue
55 N1bc6655db41e46498780a12ae80ba1a3 rdf:first Nb3f719979edd4427b1bf6bf6cc173d4d
56 rdf:rest N75063ee9a300420ba0fdd2ffcae9d2bc
57 N2a1e8e4e876b495ab09cee687e887069 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Heart
59 rdf:type schema:DefinedTerm
60 N2e1d7a6b20e14c25845691dbeeec6683 rdf:first sg:person.0621001075.97
61 rdf:rest N7138f6a2eba84bae8520078e48086f9a
62 N375841886f7a46178ae77871e7a4a835 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Tomography, Emission-Computed
64 rdf:type schema:DefinedTerm
65 N381db16bff7f40c0bb426253a11cc079 schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
66 rdf:type schema:Organization
67 N401bdb07b70b498189c78a19c9b8e8d4 schema:issueNumber 5
68 rdf:type schema:PublicationIssue
69 N4639f5050a4c49818aa865337c8e0b2c schema:name nlm_unique_id
70 schema:value 7606882
71 rdf:type schema:PropertyValue
72 N4a05ad1f401b4378992677930ef4cfe1 schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
73 rdf:type schema:Organization
74 N4cae3ad0a8c44e2f9bd9df7de1bb5c20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Brain
76 rdf:type schema:DefinedTerm
77 N5d7c221eba7545f89f414d3c68967ab1 rdf:first sg:person.011317661234.59
78 rdf:rest Nd9f7a9d54a08437b8a714ceb126bb36b
79 N5f8e6cb8bada463c858727631c57d1d8 schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
80 rdf:type schema:Organization
81 N696c3832878f40aaabb048f2ab8d63e8 schema:name pubmed_id
82 schema:value 10382087
83 rdf:type schema:PropertyValue
84 N6a80b9cfc429447a8b88cd6e4ec3138e schema:name dimensions_id
85 schema:value pub.1014377698
86 rdf:type schema:PropertyValue
87 N6ba3915494af4c799cdebb377c031f35 rdf:first sg:person.01143406471.17
88 rdf:rest N1bc6655db41e46498780a12ae80ba1a3
89 N6ec30972ce914a25a2b46f89b15af887 schema:volumeNumber 26
90 rdf:type schema:PublicationVolume
91 N7138f6a2eba84bae8520078e48086f9a rdf:first sg:person.0703022472.64
92 rdf:rest Nc1020b38d422416caba8a9792dc26526
93 N75063ee9a300420ba0fdd2ffcae9d2bc rdf:first sg:person.01234705530.09
94 rdf:rest rdf:nil
95 N76c9be3083c14e94a869b1485141620c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Phantoms, Imaging
97 rdf:type schema:DefinedTerm
98 N76f8da7770cb4e14bab729c2bd4e256a schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N812f61f307b044cfafc02ed2c4fe1cee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Humans
102 rdf:type schema:DefinedTerm
103 N8227183529c44e8e80b69f87d2c7e21a schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
104 rdf:type schema:Organization
105 N938c12c460f44e52b89e3c763188febc rdf:first sg:person.01242550273.19
106 rdf:rest N9b79a73d49bc429b9505a34272d6e8eb
107 N93c59a4abb7248c5beb8462ba991eeca schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
108 rdf:type schema:Organization
109 N9b79a73d49bc429b9505a34272d6e8eb rdf:first sg:person.01247726072.20
110 rdf:rest N6ba3915494af4c799cdebb377c031f35
111 Na3bc10725be34a7b8ca4eb703524240a schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
112 rdf:type schema:Organization
113 Nad3f1a0dfd8b4cc8b1f15a1e482f214f schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
114 rdf:type schema:Organization
115 Nb249510e77474ce0aa9a04b757bfae0c rdf:first sg:person.01113730175.99
116 rdf:rest N5d7c221eba7545f89f414d3c68967ab1
117 Nb3f719979edd4427b1bf6bf6cc173d4d schema:affiliation Nf3e6d2c106df4d70850c250d1a0931d2
118 schema:familyName Schubert
119 schema:givenName S.
120 rdf:type schema:Person
121 Nc1020b38d422416caba8a9792dc26526 rdf:first sg:person.01262435052.90
122 rdf:rest Nb249510e77474ce0aa9a04b757bfae0c
123 Nd8b5f3f6b3ee4fce9ca48b7e17842797 schema:name doi
124 schema:value 10.1007/s002590050410
125 rdf:type schema:PropertyValue
126 Nd9f7a9d54a08437b8a714ceb126bb36b rdf:first sg:person.01217512610.33
127 rdf:rest N938c12c460f44e52b89e3c763188febc
128 Nf3e6d2c106df4d70850c250d1a0931d2 schema:name GE Medical System, Milwaukee,Wisconson, USA, US
129 rdf:type schema:Organization
130 Nf40a89a8ae1144c39bff01d50b06e4c0 schema:name INB-CNR, Scientific Institute H San Raffaele, University of Milan, Italy, IT
131 rdf:type schema:Organization
132 Nf8891d25c21941499a56a22e4b635a66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Image Processing, Computer-Assisted
134 rdf:type schema:DefinedTerm
135 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
136 schema:name Information and Computing Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
139 schema:name Artificial Intelligence and Image Processing
140 rdf:type schema:DefinedTerm
141 sg:journal.1297401 schema:issn 1619-7070
142 1619-7089
143 schema:name European Journal of Nuclear Medicine and Molecular Imaging
144 rdf:type schema:Periodical
145 sg:person.01113730175.99 schema:affiliation N93c59a4abb7248c5beb8462ba991eeca
146 schema:familyName Landoni
147 schema:givenName C.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113730175.99
149 rdf:type schema:Person
150 sg:person.011317661234.59 schema:affiliation N0e7f98eebfca4912b6843bb9cf112317
151 schema:familyName Riddell
152 schema:givenName C.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317661234.59
154 rdf:type schema:Person
155 sg:person.01143406471.17 schema:affiliation N8227183529c44e8e80b69f87d2c7e21a
156 schema:familyName Lucignani
157 schema:givenName G.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143406471.17
159 rdf:type schema:Person
160 sg:person.01217512610.33 schema:affiliation N381db16bff7f40c0bb426253a11cc079
161 schema:familyName Rizzo
162 schema:givenName G.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217512610.33
164 rdf:type schema:Person
165 sg:person.01234705530.09 schema:affiliation N4a05ad1f401b4378992677930ef4cfe1
166 schema:familyName Fazio
167 schema:givenName F.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234705530.09
169 rdf:type schema:Person
170 sg:person.01242550273.19 schema:affiliation N0ca5feb363b54671a9f2b39a261b09d9
171 schema:familyName Castiglioni
172 schema:givenName I.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242550273.19
174 rdf:type schema:Person
175 sg:person.01247726072.20 schema:affiliation Nad3f1a0dfd8b4cc8b1f15a1e482f214f
176 schema:familyName Belluzzo
177 schema:givenName D.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726072.20
179 rdf:type schema:Person
180 sg:person.01262435052.90 schema:affiliation Na3bc10725be34a7b8ca4eb703524240a
181 schema:familyName Gilardi
182 schema:givenName M. C.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262435052.90
184 rdf:type schema:Person
185 sg:person.0621001075.97 schema:affiliation N5f8e6cb8bada463c858727631c57d1d8
186 schema:familyName Bettinardi
187 schema:givenName V.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621001075.97
189 rdf:type schema:Person
190 sg:person.0703022472.64 schema:affiliation Nf40a89a8ae1144c39bff01d50b06e4c0
191 schema:familyName Pagani
192 schema:givenName E.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703022472.64
194 rdf:type schema:Person
195 sg:pub.10.1007/bf00631764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035654586
196 https://doi.org/10.1007/bf00631764
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/0031-9155/40/5/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022816
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1097/00004728-197903060-00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090430
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/23.12825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061128228
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/23.12827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061128230
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/23.159771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061128391
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/23.485973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061130350
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/23.485974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061130351
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/23.489432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061130496
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/23.554827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061130852
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/34.310694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156050
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/42.232257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170125
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/tns.1987.4337350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061730972
221 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...