Evaluation of flow characteristics of soft-tissue vascular malformations using technetium-99m labelled red blood cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Yusuke Inoue, Shinichi Wakita, Kohki Yoshikawa, Nobuyuki Kaji, Naoki Yoshioka, Tohru Ohtake, Kuni Ohtomo, Kiyonori Harii

ABSTRACT

The estimation of intralesional haemodynamics is crucial in determining appropriate treatment for soft-tissue vascular malformations. The aim of this study was to develop a method to evaluate the flow characteristics of soft-tissue vascular malformations using technetium-99m labelled red blood cells (99mTc-RBCs). Seventy-nine soft-tissue vascular malformations, including 20 arteriovenous malformations and 59 venous malformations, in 57 patients were examined. Following the intravenous injection of 99mTc-RBCs, dynamic imaging was performed for 30 min with the lesion in the field of view (99mTc-RBC flow study). A time-activity curve was generated for the lesion, and the lesion was categorized as a high-flow or low-flow lesion by visual inspection of the curve. In low-flow lesions, mean vascular transit time (MTT) was calculated by curve fitting based on a two-compartment model. Twenty-nine lesions in 19 patients were examined twice, and reproducibility was assessed. In 23 venous malformations in 16 patients, 99mTc-Sn colloid was percutaneously injected into the intravascular space of the lesion, and dynamic data of 5-min duration were acquired (direct puncture scintigraphy). MTT was estimated from the washout curve and compared with MTT estimated by 99mTc-RBC flow study. 99mTc-RBC flow study classified all 20 arteriovenous malformations as high-flow lesions and all 59 venous malformations as low-flow lesions. In the low-flow lesions, MTT estimated by 99mTc-RBC flow study ranged from 61.2 to 2174.9 s. In the reproducibility study, complete concordance in classification and high correlation in MTT were shown between the first and second examinations. MTT estimated by 99mTc-RBC flow study was significantly correlated with that estimated by direct puncture scintigraphy. In summary, 99mTc-RBC flow study provides a quantitative indicator of intralesional haemodynamics in low-flow lesions in addition to accurate distinction between high-flow and low-flow lesions. The results of this study suggest the feasibility of detailed evaluation of flow characteristics in soft-tissue vascular malformations using 99mTc-RBCs. More... »

PAGES

367-372

References to SciGraph publications

  • 1997-05. Flow characteristics of soft-tissue vascular anomalies evaluated by direct puncture scintigraphy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002590050399

    DOI

    http://dx.doi.org/10.1007/s002590050399

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033981087

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10199942


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Blood Vessels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child, Preschool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Erythrocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Injections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radionuclide Angiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regional Blood Flow", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Technetium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Whole-Body Counting", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, Institute of Medical Science, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Inoue", 
            "givenName": "Yusuke", 
            "id": "sg:person.010476276272.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Plastic Surgery, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wakita", 
            "givenName": "Shinichi", 
            "id": "sg:person.01004574117.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004574117.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, Institute of Medical Science, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshikawa", 
            "givenName": "Kohki", 
            "id": "sg:person.011305211022.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305211022.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Plastic Surgery, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaji", 
            "givenName": "Nobuyuki", 
            "id": "sg:person.01303260717.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303260717.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshioka", 
            "givenName": "Naoki", 
            "id": "sg:person.01036372721.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036372721.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohtake", 
            "givenName": "Tohru", 
            "id": "sg:person.01253520654.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253520654.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohtomo", 
            "givenName": "Kuni", 
            "id": "sg:person.01152022531.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Plastic Surgery, University of Tokyo, Japan, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harii", 
            "givenName": "Kiyonori", 
            "id": "sg:person.01210715322.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210715322.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0025-6196(12)60798-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009744294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003072-199204000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009875439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003072-199204000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009875439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.1983.03330350064032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012289878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0278-2391(95)90706-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018174419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000637-198809000-00008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018975270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000637-198809000-00008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018975270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006534-198203000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022711561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006534-198203000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022711561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-9260(05)80224-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023757902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006534-199306000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029036804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006534-199306000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029036804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01267681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030789436", 
              "https://doi.org/10.1007/bf01267681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01267681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030789436", 
              "https://doi.org/10.1007/bf01267681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000637-198706000-00001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045838293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00000637-198706000-00001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045838293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006534-199289010-00008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051579334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006534-199289010-00008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051579334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/02844319409022012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051705368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3468(83)80043-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052930790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003072-199612000-00008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060151413"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-04", 
        "datePublishedReg": "1999-04-01", 
        "description": "The estimation of intralesional haemodynamics is crucial in determining appropriate treatment for soft-tissue vascular malformations. The aim of this study was to develop a method to evaluate the flow characteristics of soft-tissue vascular malformations using technetium-99m labelled red blood cells (99mTc-RBCs). Seventy-nine soft-tissue vascular malformations, including 20 arteriovenous malformations and 59 venous malformations, in 57 patients were examined. Following the intravenous injection of 99mTc-RBCs, dynamic imaging was performed for 30 min with the lesion in the field of view (99mTc-RBC flow study). A time-activity curve was generated for the lesion, and the lesion was categorized as a high-flow or low-flow lesion by visual inspection of the curve. In low-flow lesions, mean vascular transit time (MTT) was calculated by curve fitting based on a two-compartment model. Twenty-nine lesions in 19 patients were examined twice, and reproducibility was assessed. In 23 venous malformations in 16 patients, 99mTc-Sn colloid was percutaneously injected into the intravascular space of the lesion, and dynamic data of 5-min duration were acquired (direct puncture scintigraphy). MTT was estimated from the washout curve and compared with MTT estimated by 99mTc-RBC flow study. 99mTc-RBC flow study classified all 20 arteriovenous malformations as high-flow lesions and all 59 venous malformations as low-flow lesions. In the low-flow lesions, MTT estimated by 99mTc-RBC flow study ranged from 61.2 to 2174.9 s. In the reproducibility study, complete concordance in classification and high correlation in MTT were shown between the first and second examinations. MTT estimated by 99mTc-RBC flow study was significantly correlated with that estimated by direct puncture scintigraphy. In summary, 99mTc-RBC flow study provides a quantitative indicator of intralesional haemodynamics in low-flow lesions in addition to accurate distinction between high-flow and low-flow lesions. The results of this study suggest the feasibility of detailed evaluation of flow characteristics in soft-tissue vascular malformations using 99mTc-RBCs.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002590050399", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Evaluation of flow characteristics of soft-tissue vascular malformations using technetium-99m labelled red blood cells", 
        "pagination": "367-372", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a1e0b700fba9ff5fa19847a6078e0e78d86d83ed1275cfbdf931df6a96fa1a96"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10199942"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7606882"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002590050399"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033981087"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002590050399", 
          "https://app.dimensions.ai/details/publication/pub.1033981087"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs002590050399"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050399'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050399'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050399'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050399'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      21 PREDICATES      61 URIs      39 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002590050399 schema:about N024b1f87d41141fbb017d8d57598d0cf
    2 N0d2ab4635f354520afdbab5dc0337f99
    3 N150059338a2a47058c693445f6a93f95
    4 N325334c63fa448a19c6dcafc42c8c614
    5 N34cb54eb08a845628029fc010803e6f0
    6 N462953a8cf7341a5aa50d82b8e1fd015
    7 N4aa1897c3aa44f4b949f2dd77d02c39a
    8 N5569d159b00f46319032a33153e1f089
    9 N8194770889854558a3692fd9332894a5
    10 N83b3beebe94945b1ad8f2246e17b9c34
    11 N8bfa89f47a094dcf9bbfc22260caf155
    12 N948e1409e90749fb8ca97068d637f63d
    13 N96de33d77d9f4c6eabfb26f13598b185
    14 Na57b09016a6a40ed9c6c9d8b5ea5a1e4
    15 Na8790dc27dd04a22826a162610c7de17
    16 Nd32d7b277e05412ca4d0e118b76f3212
    17 Ne2da4d47e01e4e5289468808cc187eea
    18 Nffe157647b704a26955675a455e67046
    19 anzsrc-for:09
    20 anzsrc-for:0903
    21 schema:author Nb813072f65354a84b4d606c0e3659ac0
    22 schema:citation sg:pub.10.1007/bf01267681
    23 https://doi.org/10.1001/jama.1983.03330350064032
    24 https://doi.org/10.1016/0278-2391(95)90706-8
    25 https://doi.org/10.1016/s0009-9260(05)80224-7
    26 https://doi.org/10.1016/s0022-3468(83)80043-8
    27 https://doi.org/10.1016/s0025-6196(12)60798-8
    28 https://doi.org/10.1097/00000637-198706000-00001
    29 https://doi.org/10.1097/00000637-198809000-00008
    30 https://doi.org/10.1097/00003072-199204000-00005
    31 https://doi.org/10.1097/00003072-199612000-00008
    32 https://doi.org/10.1097/00006534-198203000-00002
    33 https://doi.org/10.1097/00006534-199289010-00008
    34 https://doi.org/10.1097/00006534-199306000-00006
    35 https://doi.org/10.3109/02844319409022012
    36 schema:datePublished 1999-04
    37 schema:datePublishedReg 1999-04-01
    38 schema:description The estimation of intralesional haemodynamics is crucial in determining appropriate treatment for soft-tissue vascular malformations. The aim of this study was to develop a method to evaluate the flow characteristics of soft-tissue vascular malformations using technetium-99m labelled red blood cells (99mTc-RBCs). Seventy-nine soft-tissue vascular malformations, including 20 arteriovenous malformations and 59 venous malformations, in 57 patients were examined. Following the intravenous injection of 99mTc-RBCs, dynamic imaging was performed for 30 min with the lesion in the field of view (99mTc-RBC flow study). A time-activity curve was generated for the lesion, and the lesion was categorized as a high-flow or low-flow lesion by visual inspection of the curve. In low-flow lesions, mean vascular transit time (MTT) was calculated by curve fitting based on a two-compartment model. Twenty-nine lesions in 19 patients were examined twice, and reproducibility was assessed. In 23 venous malformations in 16 patients, 99mTc-Sn colloid was percutaneously injected into the intravascular space of the lesion, and dynamic data of 5-min duration were acquired (direct puncture scintigraphy). MTT was estimated from the washout curve and compared with MTT estimated by 99mTc-RBC flow study. 99mTc-RBC flow study classified all 20 arteriovenous malformations as high-flow lesions and all 59 venous malformations as low-flow lesions. In the low-flow lesions, MTT estimated by 99mTc-RBC flow study ranged from 61.2 to 2174.9 s. In the reproducibility study, complete concordance in classification and high correlation in MTT were shown between the first and second examinations. MTT estimated by 99mTc-RBC flow study was significantly correlated with that estimated by direct puncture scintigraphy. In summary, 99mTc-RBC flow study provides a quantitative indicator of intralesional haemodynamics in low-flow lesions in addition to accurate distinction between high-flow and low-flow lesions. The results of this study suggest the feasibility of detailed evaluation of flow characteristics in soft-tissue vascular malformations using 99mTc-RBCs.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N0c2d76b76cb146cd93bc52a573c620aa
    43 N205d74ba8eda467e993a62a70d5ab181
    44 sg:journal.1297401
    45 schema:name Evaluation of flow characteristics of soft-tissue vascular malformations using technetium-99m labelled red blood cells
    46 schema:pagination 367-372
    47 schema:productId N39a1009c378c417ca75006b8ad0bae49
    48 N4518fa6c7dc642afa4fe59329223876e
    49 N650b47753b7442e8a77e2e4bdb71e65e
    50 N7ea55c1190a043e586538c4c22cd8f5e
    51 Nc2a5d7a60deb436d8f6eb3a7c6a25443
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033981087
    53 https://doi.org/10.1007/s002590050399
    54 schema:sdDatePublished 2019-04-10T15:52
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N4931af56db8a4417bd8f67627dcadc13
    57 schema:url http://link.springer.com/10.1007%2Fs002590050399
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N024b1f87d41141fbb017d8d57598d0cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Aged
    63 rdf:type schema:DefinedTerm
    64 N0c2d76b76cb146cd93bc52a573c620aa schema:issueNumber 4
    65 rdf:type schema:PublicationIssue
    66 N0d2ab4635f354520afdbab5dc0337f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Reproducibility of Results
    68 rdf:type schema:DefinedTerm
    69 N150059338a2a47058c693445f6a93f95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Male
    71 rdf:type schema:DefinedTerm
    72 N205d74ba8eda467e993a62a70d5ab181 schema:volumeNumber 26
    73 rdf:type schema:PublicationVolume
    74 N325334c63fa448a19c6dcafc42c8c614 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Regional Blood Flow
    76 rdf:type schema:DefinedTerm
    77 N34cb54eb08a845628029fc010803e6f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Algorithms
    79 rdf:type schema:DefinedTerm
    80 N39a1009c378c417ca75006b8ad0bae49 schema:name pubmed_id
    81 schema:value 10199942
    82 rdf:type schema:PropertyValue
    83 N3dff5696f86248a287eafeeebe68fa0f rdf:first sg:person.01152022531.08
    84 rdf:rest N9ed7beb7bfb54bd4a31c01d57ffab932
    85 N4518fa6c7dc642afa4fe59329223876e schema:name dimensions_id
    86 schema:value pub.1033981087
    87 rdf:type schema:PropertyValue
    88 N462953a8cf7341a5aa50d82b8e1fd015 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Radionuclide Angiography
    90 rdf:type schema:DefinedTerm
    91 N4931af56db8a4417bd8f67627dcadc13 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N4aa1897c3aa44f4b949f2dd77d02c39a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Middle Aged
    95 rdf:type schema:DefinedTerm
    96 N5569d159b00f46319032a33153e1f089 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Blood Vessels
    98 rdf:type schema:DefinedTerm
    99 N650b47753b7442e8a77e2e4bdb71e65e schema:name nlm_unique_id
    100 schema:value 7606882
    101 rdf:type schema:PropertyValue
    102 N7ea55c1190a043e586538c4c22cd8f5e schema:name readcube_id
    103 schema:value a1e0b700fba9ff5fa19847a6078e0e78d86d83ed1275cfbdf931df6a96fa1a96
    104 rdf:type schema:PropertyValue
    105 N8194770889854558a3692fd9332894a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Injections
    107 rdf:type schema:DefinedTerm
    108 N8392ec3616424da1b8f3e8e49cde4b87 rdf:first sg:person.01303260717.25
    109 rdf:rest Nd1112d10578c4be8b7dbf6e27977d8ac
    110 N83b3beebe94945b1ad8f2246e17b9c34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Child, Preschool
    112 rdf:type schema:DefinedTerm
    113 N8bfa89f47a094dcf9bbfc22260caf155 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Erythrocytes
    115 rdf:type schema:DefinedTerm
    116 N948e1409e90749fb8ca97068d637f63d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Adolescent
    118 rdf:type schema:DefinedTerm
    119 N96de33d77d9f4c6eabfb26f13598b185 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Female
    121 rdf:type schema:DefinedTerm
    122 N9ed7beb7bfb54bd4a31c01d57ffab932 rdf:first sg:person.01210715322.48
    123 rdf:rest rdf:nil
    124 Na57b09016a6a40ed9c6c9d8b5ea5a1e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Technetium
    126 rdf:type schema:DefinedTerm
    127 Na8790dc27dd04a22826a162610c7de17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Humans
    129 rdf:type schema:DefinedTerm
    130 Nb813072f65354a84b4d606c0e3659ac0 rdf:first sg:person.010476276272.43
    131 rdf:rest Nef561101f2a647c19db425ac1a6fa0af
    132 Nc2a5d7a60deb436d8f6eb3a7c6a25443 schema:name doi
    133 schema:value 10.1007/s002590050399
    134 rdf:type schema:PropertyValue
    135 Nd1112d10578c4be8b7dbf6e27977d8ac rdf:first sg:person.01036372721.29
    136 rdf:rest Nec18aeb6b78d4cf0ab9d8570741d5212
    137 Nd32d7b277e05412ca4d0e118b76f3212 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Adult
    139 rdf:type schema:DefinedTerm
    140 Ne2da4d47e01e4e5289468808cc187eea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Child
    142 rdf:type schema:DefinedTerm
    143 Ne7fbae50df6c4d0bb4dcf492062ca794 rdf:first sg:person.011305211022.80
    144 rdf:rest N8392ec3616424da1b8f3e8e49cde4b87
    145 Nec18aeb6b78d4cf0ab9d8570741d5212 rdf:first sg:person.01253520654.94
    146 rdf:rest N3dff5696f86248a287eafeeebe68fa0f
    147 Nef561101f2a647c19db425ac1a6fa0af rdf:first sg:person.01004574117.14
    148 rdf:rest Ne7fbae50df6c4d0bb4dcf492062ca794
    149 Nffe157647b704a26955675a455e67046 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Whole-Body Counting
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Engineering
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biomedical Engineering
    157 rdf:type schema:DefinedTerm
    158 sg:journal.1297401 schema:issn 1619-7070
    159 1619-7089
    160 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    161 rdf:type schema:Periodical
    162 sg:person.01004574117.14 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    163 schema:familyName Wakita
    164 schema:givenName Shinichi
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004574117.14
    166 rdf:type schema:Person
    167 sg:person.01036372721.29 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    168 schema:familyName Yoshioka
    169 schema:givenName Naoki
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036372721.29
    171 rdf:type schema:Person
    172 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    173 schema:familyName Inoue
    174 schema:givenName Yusuke
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
    176 rdf:type schema:Person
    177 sg:person.011305211022.80 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    178 schema:familyName Yoshikawa
    179 schema:givenName Kohki
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305211022.80
    181 rdf:type schema:Person
    182 sg:person.01152022531.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    183 schema:familyName Ohtomo
    184 schema:givenName Kuni
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08
    186 rdf:type schema:Person
    187 sg:person.01210715322.48 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    188 schema:familyName Harii
    189 schema:givenName Kiyonori
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210715322.48
    191 rdf:type schema:Person
    192 sg:person.01253520654.94 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    193 schema:familyName Ohtake
    194 schema:givenName Tohru
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253520654.94
    196 rdf:type schema:Person
    197 sg:person.01303260717.25 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    198 schema:familyName Kaji
    199 schema:givenName Nobuyuki
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303260717.25
    201 rdf:type schema:Person
    202 sg:pub.10.1007/bf01267681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030789436
    203 https://doi.org/10.1007/bf01267681
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1001/jama.1983.03330350064032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012289878
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/0278-2391(95)90706-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018174419
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/s0009-9260(05)80224-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023757902
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/s0022-3468(83)80043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052930790
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/s0025-6196(12)60798-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009744294
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1097/00000637-198706000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045838293
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1097/00000637-198809000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018975270
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1097/00003072-199204000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009875439
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1097/00003072-199612000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060151413
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1097/00006534-198203000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022711561
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1097/00006534-199289010-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051579334
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1097/00006534-199306000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029036804
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.3109/02844319409022012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051705368
    230 rdf:type schema:CreativeWork
    231 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
    232 schema:name Department of Plastic Surgery, University of Tokyo, Japan, JP
    233 Department of Radiology, Institute of Medical Science, University of Tokyo, Japan, JP
    234 Department of Radiology, University of Tokyo, Japan, JP
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...