Endovascular brachytherapy for the prevention of restenosis after angioplasty View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-02

AUTHORS

Jörg Kotzerke, Hartmut Hanke, Martin Höher

ABSTRACT

. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty. More... »

PAGES

223-236

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002590050032

DOI

http://dx.doi.org/10.1007/s002590050032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014292817

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10755730


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angioplasty, Balloon, Coronary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brachytherapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Costs and Cost Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Protection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recurrence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rhenium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stents", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, University of Ulm, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Nuclear Medicine, University of Ulm, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotzerke", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.01041253633.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041253633.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanke", 
        "givenName": "Hartmut", 
        "id": "sg:person.0616355533.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616355533.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6her", 
        "givenName": "Martin", 
        "id": "sg:person.01311406304.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311406304.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03043602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030461057", 
          "https://doi.org/10.1007/bf03043602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007636601", 
          "https://doi.org/10.1007/bf03043606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014269032", 
          "https://doi.org/10.1007/bf03043605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008614418", 
          "https://doi.org/10.1007/bf03043597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031765683", 
          "https://doi.org/10.1007/bf03043598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01102065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007390675", 
          "https://doi.org/10.1007/bf01102065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031805039", 
          "https://doi.org/10.1007/bf03043599"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-02", 
    "datePublishedReg": "2000-02-01", 
    "description": "Abstract. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002590050032", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "balloon catheter", 
      "clinical trials", 
      "endovascular irradiation", 
      "arterial neointimal proliferation", 
      "subsequent oral administration", 
      "early clinical trials", 
      "initial clinical trials", 
      "prevention of restenosis", 
      "reduction of restenosis", 
      "nuclear medicine physicians", 
      "homogeneous dose delivery", 
      "tissue penetration", 
      "neointimal proliferation", 
      "radioactive wires", 
      "oral administration", 
      "same dose", 
      "balloon rupture", 
      "medicine physicians", 
      "local irradiation", 
      "homogeneous dose distribution", 
      "animal studies", 
      "endovascular brachytherapy", 
      "restenosis", 
      "angioplasty", 
      "effective dose", 
      "animal experiments", 
      "radiation exposure", 
      "rate irradiation", 
      "vessel layer", 
      "rhenium-188", 
      "catheter", 
      "dose delivery", 
      "radiation protection", 
      "dose", 
      "trials", 
      "effective inhibition", 
      "radioactivity incorporation", 
      "dosimetric calculations", 
      "low tissue penetration", 
      "dose distribution", 
      "attractive radionuclide", 
      "delivery", 
      "encouraging results", 
      "artery", 
      "therapy", 
      "physicians", 
      "brachytherapy", 
      "accidental incorporation", 
      "administration", 
      "care", 
      "prevention", 
      "mercaptoacetyltriglycine", 
      "balloon", 
      "inhibition", 
      "radiotracer", 
      "proliferation", 
      "irradiation technique", 
      "financial limitations", 
      "exposure", 
      "deep tissue penetration", 
      "rupture", 
      "review", 
      "radioactivity", 
      "protection", 
      "min", 
      "gamma", 
      "irradiation", 
      "possible means", 
      "study", 
      "events", 
      "reduction", 
      "chelation", 
      "penetration", 
      "results", 
      "regard", 
      "use", 
      "radionuclides", 
      "considerable care", 
      "purpose", 
      "incorporation", 
      "relevant radionuclides", 
      "beta source", 
      "feasibility", 
      "limitations", 
      "possibility", 
      "source", 
      "new field", 
      "means", 
      "new approach", 
      "technique", 
      "irradiation source", 
      "approach", 
      "system", 
      "distribution", 
      "achievement", 
      "experiments", 
      "wire", 
      "concept", 
      "field", 
      "seeds", 
      "environment", 
      "layer", 
      "perchlorate", 
      "generator system", 
      "calculations"
    ], 
    "name": "Endovascular brachytherapy for the prevention of restenosis after angioplasty", 
    "pagination": "223-236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014292817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002590050032"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10755730"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002590050032", 
      "https://app.dimensions.ai/details/publication/pub.1014292817"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_339.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002590050032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      151 URIs      136 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002590050032 schema:about N0b508d233dd6402ca1e31217affda9a0
2 N102a107d9f7b41b281b3b4e2ef422598
3 N212df64f1cc24282addab15570064c47
4 N2364aba5d1c849bb9d34849e06e3a492
5 N57f50b0fb788411bb0e5e5130b5629bb
6 N69345ad854c14277857bd5b5f21580f9
7 N81bf9485e9734646bda676b42a25cf32
8 N8650b651ae8d4939b0d875c1a89596dc
9 N8d3e5393eead4ed59e02f61f55fa59f9
10 N94fe30b4af8f47218cc938997c64f72d
11 Naf1c7be0c1fb48f38fb3bbeb6ac92e70
12 Nc7ad76ed7e384b998d949ee6ec98a277
13 Nd3339347cbf64db6a78f6c2c18dd4a58
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author N7713fe94620542cabc94555d78fbde18
17 schema:citation sg:pub.10.1007/bf01102065
18 sg:pub.10.1007/bf03043597
19 sg:pub.10.1007/bf03043598
20 sg:pub.10.1007/bf03043599
21 sg:pub.10.1007/bf03043602
22 sg:pub.10.1007/bf03043605
23 sg:pub.10.1007/bf03043606
24 schema:datePublished 2000-02
25 schema:datePublishedReg 2000-02-01
26 schema:description Abstract. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N08b8a0b9fd1f4ed3860d07fb96d26f47
30 Nfe5462ab94074aeca6673605fff4f06a
31 sg:journal.1297401
32 schema:keywords accidental incorporation
33 achievement
34 administration
35 angioplasty
36 animal experiments
37 animal studies
38 approach
39 arterial neointimal proliferation
40 artery
41 attractive radionuclide
42 balloon
43 balloon catheter
44 balloon rupture
45 beta source
46 brachytherapy
47 calculations
48 care
49 catheter
50 chelation
51 clinical trials
52 concept
53 considerable care
54 deep tissue penetration
55 delivery
56 distribution
57 dose
58 dose delivery
59 dose distribution
60 dosimetric calculations
61 early clinical trials
62 effective dose
63 effective inhibition
64 encouraging results
65 endovascular brachytherapy
66 endovascular irradiation
67 environment
68 events
69 experiments
70 exposure
71 feasibility
72 field
73 financial limitations
74 gamma
75 generator system
76 homogeneous dose delivery
77 homogeneous dose distribution
78 incorporation
79 inhibition
80 initial clinical trials
81 irradiation
82 irradiation source
83 irradiation technique
84 layer
85 limitations
86 local irradiation
87 low tissue penetration
88 means
89 medicine physicians
90 mercaptoacetyltriglycine
91 min
92 neointimal proliferation
93 new approach
94 new field
95 nuclear medicine physicians
96 oral administration
97 penetration
98 perchlorate
99 physicians
100 possibility
101 possible means
102 prevention
103 prevention of restenosis
104 proliferation
105 protection
106 purpose
107 radiation exposure
108 radiation protection
109 radioactive wires
110 radioactivity
111 radioactivity incorporation
112 radionuclides
113 radiotracer
114 rate irradiation
115 reduction
116 reduction of restenosis
117 regard
118 relevant radionuclides
119 restenosis
120 results
121 review
122 rhenium-188
123 rupture
124 same dose
125 seeds
126 source
127 study
128 subsequent oral administration
129 system
130 technique
131 therapy
132 tissue penetration
133 trials
134 use
135 vessel layer
136 wire
137 schema:name Endovascular brachytherapy for the prevention of restenosis after angioplasty
138 schema:pagination 223-236
139 schema:productId N50acb76c48554685bc7d595565e4b46a
140 N80c8cf6d78f54bdbbfade022eb56a672
141 N989bd35b76f84963a502e3e2bc89098e
142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014292817
143 https://doi.org/10.1007/s002590050032
144 schema:sdDatePublished 2022-08-04T16:54
145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
146 schema:sdPublisher N0dde52bef9cc422288a88635bc601641
147 schema:url https://doi.org/10.1007/s002590050032
148 sgo:license sg:explorer/license/
149 sgo:sdDataset articles
150 rdf:type schema:ScholarlyArticle
151 N08b8a0b9fd1f4ed3860d07fb96d26f47 schema:issueNumber 2
152 rdf:type schema:PublicationIssue
153 N0b508d233dd6402ca1e31217affda9a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Stents
155 rdf:type schema:DefinedTerm
156 N0dde52bef9cc422288a88635bc601641 schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 N102a107d9f7b41b281b3b4e2ef422598 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Coronary Disease
160 rdf:type schema:DefinedTerm
161 N212df64f1cc24282addab15570064c47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Recurrence
163 rdf:type schema:DefinedTerm
164 N2364aba5d1c849bb9d34849e06e3a492 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Radioisotopes
166 rdf:type schema:DefinedTerm
167 N32551c969f374a5c84db1a15440654a0 rdf:first sg:person.01311406304.73
168 rdf:rest rdf:nil
169 N50acb76c48554685bc7d595565e4b46a schema:name dimensions_id
170 schema:value pub.1014292817
171 rdf:type schema:PropertyValue
172 N57f50b0fb788411bb0e5e5130b5629bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Humans
174 rdf:type schema:DefinedTerm
175 N69345ad854c14277857bd5b5f21580f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Angioplasty, Balloon, Coronary
177 rdf:type schema:DefinedTerm
178 N7713fe94620542cabc94555d78fbde18 rdf:first sg:person.01041253633.35
179 rdf:rest Nd5b5896ccaa2439e82f8ccb5e834b636
180 N80c8cf6d78f54bdbbfade022eb56a672 schema:name pubmed_id
181 schema:value 10755730
182 rdf:type schema:PropertyValue
183 N81bf9485e9734646bda676b42a25cf32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Radiation Protection
185 rdf:type schema:DefinedTerm
186 N8650b651ae8d4939b0d875c1a89596dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Brachytherapy
188 rdf:type schema:DefinedTerm
189 N8d3e5393eead4ed59e02f61f55fa59f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Radiotherapy Dosage
191 rdf:type schema:DefinedTerm
192 N94fe30b4af8f47218cc938997c64f72d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Animals
194 rdf:type schema:DefinedTerm
195 N989bd35b76f84963a502e3e2bc89098e schema:name doi
196 schema:value 10.1007/s002590050032
197 rdf:type schema:PropertyValue
198 Naf1c7be0c1fb48f38fb3bbeb6ac92e70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Clinical Trials as Topic
200 rdf:type schema:DefinedTerm
201 Nc7ad76ed7e384b998d949ee6ec98a277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Rhenium
203 rdf:type schema:DefinedTerm
204 Nd3339347cbf64db6a78f6c2c18dd4a58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Costs and Cost Analysis
206 rdf:type schema:DefinedTerm
207 Nd5b5896ccaa2439e82f8ccb5e834b636 rdf:first sg:person.0616355533.39
208 rdf:rest N32551c969f374a5c84db1a15440654a0
209 Nfe5462ab94074aeca6673605fff4f06a schema:volumeNumber 27
210 rdf:type schema:PublicationVolume
211 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
212 schema:name Medical and Health Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
215 schema:name Clinical Sciences
216 rdf:type schema:DefinedTerm
217 sg:journal.1297401 schema:issn 1619-7070
218 1619-7089
219 schema:name European Journal of Nuclear Medicine and Molecular Imaging
220 schema:publisher Springer Nature
221 rdf:type schema:Periodical
222 sg:person.01041253633.35 schema:affiliation grid-institutes:grid.6582.9
223 schema:familyName Kotzerke
224 schema:givenName Jörg
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041253633.35
226 rdf:type schema:Person
227 sg:person.01311406304.73 schema:affiliation grid-institutes:grid.6582.9
228 schema:familyName Höher
229 schema:givenName Martin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311406304.73
231 rdf:type schema:Person
232 sg:person.0616355533.39 schema:affiliation grid-institutes:grid.6582.9
233 schema:familyName Hanke
234 schema:givenName Hartmut
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616355533.39
236 rdf:type schema:Person
237 sg:pub.10.1007/bf01102065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007390675
238 https://doi.org/10.1007/bf01102065
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/bf03043597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008614418
241 https://doi.org/10.1007/bf03043597
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/bf03043598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031765683
244 https://doi.org/10.1007/bf03043598
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/bf03043599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031805039
247 https://doi.org/10.1007/bf03043599
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/bf03043602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030461057
250 https://doi.org/10.1007/bf03043602
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/bf03043605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014269032
253 https://doi.org/10.1007/bf03043605
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/bf03043606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007636601
256 https://doi.org/10.1007/bf03043606
257 rdf:type schema:CreativeWork
258 grid-institutes:grid.6582.9 schema:alternateName Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE
259 Department of Nuclear Medicine, University of Ulm, Germany, DE
260 schema:name Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE
261 Department of Nuclear Medicine, University of Ulm, Germany, DE
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...