Ontology type: schema:ScholarlyArticle
2000-02
AUTHORSJörg Kotzerke, Hartmut Hanke, Martin Höher
ABSTRACT. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty. More... »
PAGES223-236
http://scigraph.springernature.com/pub.10.1007/s002590050032
DOIhttp://dx.doi.org/10.1007/s002590050032
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014292817
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/10755730
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Angioplasty, Balloon, Coronary",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brachytherapy",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Clinical Trials as Topic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Coronary Disease",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Costs and Cost Analysis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Radiation Protection",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Radioisotopes",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Radiotherapy Dosage",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Recurrence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Rhenium",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Stents",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Nuclear Medicine, University of Ulm, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.6582.9",
"name": [
"Department of Nuclear Medicine, University of Ulm, Germany, DE"
],
"type": "Organization"
},
"familyName": "Kotzerke",
"givenName": "J\u00f6rg",
"id": "sg:person.01041253633.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041253633.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.6582.9",
"name": [
"Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE"
],
"type": "Organization"
},
"familyName": "Hanke",
"givenName": "Hartmut",
"id": "sg:person.0616355533.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616355533.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.6582.9",
"name": [
"Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE"
],
"type": "Organization"
},
"familyName": "H\u00f6her",
"givenName": "Martin",
"id": "sg:person.01311406304.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311406304.73"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf03043602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030461057",
"https://doi.org/10.1007/bf03043602"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03043606",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007636601",
"https://doi.org/10.1007/bf03043606"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03043605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014269032",
"https://doi.org/10.1007/bf03043605"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03043597",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008614418",
"https://doi.org/10.1007/bf03043597"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03043598",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031765683",
"https://doi.org/10.1007/bf03043598"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01102065",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007390675",
"https://doi.org/10.1007/bf01102065"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03043599",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031805039",
"https://doi.org/10.1007/bf03043599"
],
"type": "CreativeWork"
}
],
"datePublished": "2000-02",
"datePublishedReg": "2000-02-01",
"description": "Abstract. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty.",
"genre": "article",
"id": "sg:pub.10.1007/s002590050032",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297401",
"issn": [
"1619-7070",
"1619-7089"
],
"name": "European Journal of Nuclear Medicine and Molecular Imaging",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "27"
}
],
"keywords": [
"balloon catheter",
"clinical trials",
"endovascular irradiation",
"arterial neointimal proliferation",
"subsequent oral administration",
"early clinical trials",
"initial clinical trials",
"prevention of restenosis",
"reduction of restenosis",
"nuclear medicine physicians",
"homogeneous dose delivery",
"tissue penetration",
"neointimal proliferation",
"radioactive wires",
"oral administration",
"same dose",
"balloon rupture",
"medicine physicians",
"local irradiation",
"homogeneous dose distribution",
"animal studies",
"endovascular brachytherapy",
"restenosis",
"angioplasty",
"effective dose",
"animal experiments",
"radiation exposure",
"rate irradiation",
"vessel layer",
"rhenium-188",
"catheter",
"dose delivery",
"radiation protection",
"dose",
"trials",
"effective inhibition",
"radioactivity incorporation",
"dosimetric calculations",
"low tissue penetration",
"dose distribution",
"attractive radionuclide",
"delivery",
"encouraging results",
"artery",
"therapy",
"physicians",
"brachytherapy",
"accidental incorporation",
"administration",
"care",
"prevention",
"mercaptoacetyltriglycine",
"balloon",
"inhibition",
"radiotracer",
"proliferation",
"irradiation technique",
"financial limitations",
"exposure",
"deep tissue penetration",
"rupture",
"review",
"radioactivity",
"protection",
"min",
"gamma",
"irradiation",
"possible means",
"study",
"events",
"reduction",
"chelation",
"penetration",
"results",
"regard",
"use",
"radionuclides",
"considerable care",
"purpose",
"incorporation",
"relevant radionuclides",
"beta source",
"feasibility",
"limitations",
"possibility",
"source",
"new field",
"means",
"new approach",
"technique",
"irradiation source",
"approach",
"system",
"distribution",
"achievement",
"experiments",
"wire",
"concept",
"field",
"seeds",
"environment",
"layer",
"perchlorate",
"generator system",
"calculations"
],
"name": "Endovascular brachytherapy for the prevention of restenosis after angioplasty",
"pagination": "223-236",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014292817"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002590050032"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"10755730"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002590050032",
"https://app.dimensions.ai/details/publication/pub.1014292817"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_339.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s002590050032"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'
This table displays all metadata directly associated to this object as RDF triples.
262 TRIPLES
21 PREDICATES
151 URIs
136 LITERALS
20 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s002590050032 | schema:about | N0b508d233dd6402ca1e31217affda9a0 |
2 | ″ | ″ | N102a107d9f7b41b281b3b4e2ef422598 |
3 | ″ | ″ | N212df64f1cc24282addab15570064c47 |
4 | ″ | ″ | N2364aba5d1c849bb9d34849e06e3a492 |
5 | ″ | ″ | N57f50b0fb788411bb0e5e5130b5629bb |
6 | ″ | ″ | N69345ad854c14277857bd5b5f21580f9 |
7 | ″ | ″ | N81bf9485e9734646bda676b42a25cf32 |
8 | ″ | ″ | N8650b651ae8d4939b0d875c1a89596dc |
9 | ″ | ″ | N8d3e5393eead4ed59e02f61f55fa59f9 |
10 | ″ | ″ | N94fe30b4af8f47218cc938997c64f72d |
11 | ″ | ″ | Naf1c7be0c1fb48f38fb3bbeb6ac92e70 |
12 | ″ | ″ | Nc7ad76ed7e384b998d949ee6ec98a277 |
13 | ″ | ″ | Nd3339347cbf64db6a78f6c2c18dd4a58 |
14 | ″ | ″ | anzsrc-for:11 |
15 | ″ | ″ | anzsrc-for:1103 |
16 | ″ | schema:author | N7713fe94620542cabc94555d78fbde18 |
17 | ″ | schema:citation | sg:pub.10.1007/bf01102065 |
18 | ″ | ″ | sg:pub.10.1007/bf03043597 |
19 | ″ | ″ | sg:pub.10.1007/bf03043598 |
20 | ″ | ″ | sg:pub.10.1007/bf03043599 |
21 | ″ | ″ | sg:pub.10.1007/bf03043602 |
22 | ″ | ″ | sg:pub.10.1007/bf03043605 |
23 | ″ | ″ | sg:pub.10.1007/bf03043606 |
24 | ″ | schema:datePublished | 2000-02 |
25 | ″ | schema:datePublishedReg | 2000-02-01 |
26 | ″ | schema:description | Abstract. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty. |
27 | ″ | schema:genre | article |
28 | ″ | schema:isAccessibleForFree | false |
29 | ″ | schema:isPartOf | N08b8a0b9fd1f4ed3860d07fb96d26f47 |
30 | ″ | ″ | Nfe5462ab94074aeca6673605fff4f06a |
31 | ″ | ″ | sg:journal.1297401 |
32 | ″ | schema:keywords | accidental incorporation |
33 | ″ | ″ | achievement |
34 | ″ | ″ | administration |
35 | ″ | ″ | angioplasty |
36 | ″ | ″ | animal experiments |
37 | ″ | ″ | animal studies |
38 | ″ | ″ | approach |
39 | ″ | ″ | arterial neointimal proliferation |
40 | ″ | ″ | artery |
41 | ″ | ″ | attractive radionuclide |
42 | ″ | ″ | balloon |
43 | ″ | ″ | balloon catheter |
44 | ″ | ″ | balloon rupture |
45 | ″ | ″ | beta source |
46 | ″ | ″ | brachytherapy |
47 | ″ | ″ | calculations |
48 | ″ | ″ | care |
49 | ″ | ″ | catheter |
50 | ″ | ″ | chelation |
51 | ″ | ″ | clinical trials |
52 | ″ | ″ | concept |
53 | ″ | ″ | considerable care |
54 | ″ | ″ | deep tissue penetration |
55 | ″ | ″ | delivery |
56 | ″ | ″ | distribution |
57 | ″ | ″ | dose |
58 | ″ | ″ | dose delivery |
59 | ″ | ″ | dose distribution |
60 | ″ | ″ | dosimetric calculations |
61 | ″ | ″ | early clinical trials |
62 | ″ | ″ | effective dose |
63 | ″ | ″ | effective inhibition |
64 | ″ | ″ | encouraging results |
65 | ″ | ″ | endovascular brachytherapy |
66 | ″ | ″ | endovascular irradiation |
67 | ″ | ″ | environment |
68 | ″ | ″ | events |
69 | ″ | ″ | experiments |
70 | ″ | ″ | exposure |
71 | ″ | ″ | feasibility |
72 | ″ | ″ | field |
73 | ″ | ″ | financial limitations |
74 | ″ | ″ | gamma |
75 | ″ | ″ | generator system |
76 | ″ | ″ | homogeneous dose delivery |
77 | ″ | ″ | homogeneous dose distribution |
78 | ″ | ″ | incorporation |
79 | ″ | ″ | inhibition |
80 | ″ | ″ | initial clinical trials |
81 | ″ | ″ | irradiation |
82 | ″ | ″ | irradiation source |
83 | ″ | ″ | irradiation technique |
84 | ″ | ″ | layer |
85 | ″ | ″ | limitations |
86 | ″ | ″ | local irradiation |
87 | ″ | ″ | low tissue penetration |
88 | ″ | ″ | means |
89 | ″ | ″ | medicine physicians |
90 | ″ | ″ | mercaptoacetyltriglycine |
91 | ″ | ″ | min |
92 | ″ | ″ | neointimal proliferation |
93 | ″ | ″ | new approach |
94 | ″ | ″ | new field |
95 | ″ | ″ | nuclear medicine physicians |
96 | ″ | ″ | oral administration |
97 | ″ | ″ | penetration |
98 | ″ | ″ | perchlorate |
99 | ″ | ″ | physicians |
100 | ″ | ″ | possibility |
101 | ″ | ″ | possible means |
102 | ″ | ″ | prevention |
103 | ″ | ″ | prevention of restenosis |
104 | ″ | ″ | proliferation |
105 | ″ | ″ | protection |
106 | ″ | ″ | purpose |
107 | ″ | ″ | radiation exposure |
108 | ″ | ″ | radiation protection |
109 | ″ | ″ | radioactive wires |
110 | ″ | ″ | radioactivity |
111 | ″ | ″ | radioactivity incorporation |
112 | ″ | ″ | radionuclides |
113 | ″ | ″ | radiotracer |
114 | ″ | ″ | rate irradiation |
115 | ″ | ″ | reduction |
116 | ″ | ″ | reduction of restenosis |
117 | ″ | ″ | regard |
118 | ″ | ″ | relevant radionuclides |
119 | ″ | ″ | restenosis |
120 | ″ | ″ | results |
121 | ″ | ″ | review |
122 | ″ | ″ | rhenium-188 |
123 | ″ | ″ | rupture |
124 | ″ | ″ | same dose |
125 | ″ | ″ | seeds |
126 | ″ | ″ | source |
127 | ″ | ″ | study |
128 | ″ | ″ | subsequent oral administration |
129 | ″ | ″ | system |
130 | ″ | ″ | technique |
131 | ″ | ″ | therapy |
132 | ″ | ″ | tissue penetration |
133 | ″ | ″ | trials |
134 | ″ | ″ | use |
135 | ″ | ″ | vessel layer |
136 | ″ | ″ | wire |
137 | ″ | schema:name | Endovascular brachytherapy for the prevention of restenosis after angioplasty |
138 | ″ | schema:pagination | 223-236 |
139 | ″ | schema:productId | N50acb76c48554685bc7d595565e4b46a |
140 | ″ | ″ | N80c8cf6d78f54bdbbfade022eb56a672 |
141 | ″ | ″ | N989bd35b76f84963a502e3e2bc89098e |
142 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014292817 |
143 | ″ | ″ | https://doi.org/10.1007/s002590050032 |
144 | ″ | schema:sdDatePublished | 2022-08-04T16:54 |
145 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
146 | ″ | schema:sdPublisher | N0dde52bef9cc422288a88635bc601641 |
147 | ″ | schema:url | https://doi.org/10.1007/s002590050032 |
148 | ″ | sgo:license | sg:explorer/license/ |
149 | ″ | sgo:sdDataset | articles |
150 | ″ | rdf:type | schema:ScholarlyArticle |
151 | N08b8a0b9fd1f4ed3860d07fb96d26f47 | schema:issueNumber | 2 |
152 | ″ | rdf:type | schema:PublicationIssue |
153 | N0b508d233dd6402ca1e31217affda9a0 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
154 | ″ | schema:name | Stents |
155 | ″ | rdf:type | schema:DefinedTerm |
156 | N0dde52bef9cc422288a88635bc601641 | schema:name | Springer Nature - SN SciGraph project |
157 | ″ | rdf:type | schema:Organization |
158 | N102a107d9f7b41b281b3b4e2ef422598 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
159 | ″ | schema:name | Coronary Disease |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | N212df64f1cc24282addab15570064c47 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
162 | ″ | schema:name | Recurrence |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | N2364aba5d1c849bb9d34849e06e3a492 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
165 | ″ | schema:name | Radioisotopes |
166 | ″ | rdf:type | schema:DefinedTerm |
167 | N32551c969f374a5c84db1a15440654a0 | rdf:first | sg:person.01311406304.73 |
168 | ″ | rdf:rest | rdf:nil |
169 | N50acb76c48554685bc7d595565e4b46a | schema:name | dimensions_id |
170 | ″ | schema:value | pub.1014292817 |
171 | ″ | rdf:type | schema:PropertyValue |
172 | N57f50b0fb788411bb0e5e5130b5629bb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
173 | ″ | schema:name | Humans |
174 | ″ | rdf:type | schema:DefinedTerm |
175 | N69345ad854c14277857bd5b5f21580f9 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
176 | ″ | schema:name | Angioplasty, Balloon, Coronary |
177 | ″ | rdf:type | schema:DefinedTerm |
178 | N7713fe94620542cabc94555d78fbde18 | rdf:first | sg:person.01041253633.35 |
179 | ″ | rdf:rest | Nd5b5896ccaa2439e82f8ccb5e834b636 |
180 | N80c8cf6d78f54bdbbfade022eb56a672 | schema:name | pubmed_id |
181 | ″ | schema:value | 10755730 |
182 | ″ | rdf:type | schema:PropertyValue |
183 | N81bf9485e9734646bda676b42a25cf32 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
184 | ″ | schema:name | Radiation Protection |
185 | ″ | rdf:type | schema:DefinedTerm |
186 | N8650b651ae8d4939b0d875c1a89596dc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
187 | ″ | schema:name | Brachytherapy |
188 | ″ | rdf:type | schema:DefinedTerm |
189 | N8d3e5393eead4ed59e02f61f55fa59f9 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
190 | ″ | schema:name | Radiotherapy Dosage |
191 | ″ | rdf:type | schema:DefinedTerm |
192 | N94fe30b4af8f47218cc938997c64f72d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
193 | ″ | schema:name | Animals |
194 | ″ | rdf:type | schema:DefinedTerm |
195 | N989bd35b76f84963a502e3e2bc89098e | schema:name | doi |
196 | ″ | schema:value | 10.1007/s002590050032 |
197 | ″ | rdf:type | schema:PropertyValue |
198 | Naf1c7be0c1fb48f38fb3bbeb6ac92e70 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
199 | ″ | schema:name | Clinical Trials as Topic |
200 | ″ | rdf:type | schema:DefinedTerm |
201 | Nc7ad76ed7e384b998d949ee6ec98a277 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
202 | ″ | schema:name | Rhenium |
203 | ″ | rdf:type | schema:DefinedTerm |
204 | Nd3339347cbf64db6a78f6c2c18dd4a58 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
205 | ″ | schema:name | Costs and Cost Analysis |
206 | ″ | rdf:type | schema:DefinedTerm |
207 | Nd5b5896ccaa2439e82f8ccb5e834b636 | rdf:first | sg:person.0616355533.39 |
208 | ″ | rdf:rest | N32551c969f374a5c84db1a15440654a0 |
209 | Nfe5462ab94074aeca6673605fff4f06a | schema:volumeNumber | 27 |
210 | ″ | rdf:type | schema:PublicationVolume |
211 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
212 | ″ | schema:name | Medical and Health Sciences |
213 | ″ | rdf:type | schema:DefinedTerm |
214 | anzsrc-for:1103 | schema:inDefinedTermSet | anzsrc-for: |
215 | ″ | schema:name | Clinical Sciences |
216 | ″ | rdf:type | schema:DefinedTerm |
217 | sg:journal.1297401 | schema:issn | 1619-7070 |
218 | ″ | ″ | 1619-7089 |
219 | ″ | schema:name | European Journal of Nuclear Medicine and Molecular Imaging |
220 | ″ | schema:publisher | Springer Nature |
221 | ″ | rdf:type | schema:Periodical |
222 | sg:person.01041253633.35 | schema:affiliation | grid-institutes:grid.6582.9 |
223 | ″ | schema:familyName | Kotzerke |
224 | ″ | schema:givenName | Jörg |
225 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041253633.35 |
226 | ″ | rdf:type | schema:Person |
227 | sg:person.01311406304.73 | schema:affiliation | grid-institutes:grid.6582.9 |
228 | ″ | schema:familyName | Höher |
229 | ″ | schema:givenName | Martin |
230 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311406304.73 |
231 | ″ | rdf:type | schema:Person |
232 | sg:person.0616355533.39 | schema:affiliation | grid-institutes:grid.6582.9 |
233 | ″ | schema:familyName | Hanke |
234 | ″ | schema:givenName | Hartmut |
235 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616355533.39 |
236 | ″ | rdf:type | schema:Person |
237 | sg:pub.10.1007/bf01102065 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007390675 |
238 | ″ | ″ | https://doi.org/10.1007/bf01102065 |
239 | ″ | rdf:type | schema:CreativeWork |
240 | sg:pub.10.1007/bf03043597 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008614418 |
241 | ″ | ″ | https://doi.org/10.1007/bf03043597 |
242 | ″ | rdf:type | schema:CreativeWork |
243 | sg:pub.10.1007/bf03043598 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031765683 |
244 | ″ | ″ | https://doi.org/10.1007/bf03043598 |
245 | ″ | rdf:type | schema:CreativeWork |
246 | sg:pub.10.1007/bf03043599 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031805039 |
247 | ″ | ″ | https://doi.org/10.1007/bf03043599 |
248 | ″ | rdf:type | schema:CreativeWork |
249 | sg:pub.10.1007/bf03043602 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030461057 |
250 | ″ | ″ | https://doi.org/10.1007/bf03043602 |
251 | ″ | rdf:type | schema:CreativeWork |
252 | sg:pub.10.1007/bf03043605 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014269032 |
253 | ″ | ″ | https://doi.org/10.1007/bf03043605 |
254 | ″ | rdf:type | schema:CreativeWork |
255 | sg:pub.10.1007/bf03043606 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007636601 |
256 | ″ | ″ | https://doi.org/10.1007/bf03043606 |
257 | ″ | rdf:type | schema:CreativeWork |
258 | grid-institutes:grid.6582.9 | schema:alternateName | Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE |
259 | ″ | ″ | Department of Nuclear Medicine, University of Ulm, Germany, DE |
260 | ″ | schema:name | Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE |
261 | ″ | ″ | Department of Nuclear Medicine, University of Ulm, Germany, DE |
262 | ″ | rdf:type | schema:Organization |