Endovascular brachytherapy for the prevention of restenosis after angioplasty View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-02

AUTHORS

Jörg Kotzerke, Hartmut Hanke, Martin Höher

ABSTRACT

. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty. More... »

PAGES

223-236

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002590050032

DOI

http://dx.doi.org/10.1007/s002590050032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014292817

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10755730


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angioplasty, Balloon, Coronary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brachytherapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Costs and Cost Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Protection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recurrence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rhenium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stents", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, University of Ulm, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Nuclear Medicine, University of Ulm, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotzerke", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.01041253633.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041253633.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanke", 
        "givenName": "Hartmut", 
        "id": "sg:person.0616355533.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616355533.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6her", 
        "givenName": "Martin", 
        "id": "sg:person.01311406304.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311406304.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03043602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030461057", 
          "https://doi.org/10.1007/bf03043602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007636601", 
          "https://doi.org/10.1007/bf03043606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014269032", 
          "https://doi.org/10.1007/bf03043605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008614418", 
          "https://doi.org/10.1007/bf03043597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031765683", 
          "https://doi.org/10.1007/bf03043598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01102065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007390675", 
          "https://doi.org/10.1007/bf01102065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03043599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031805039", 
          "https://doi.org/10.1007/bf03043599"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-02", 
    "datePublishedReg": "2000-02-01", 
    "description": "Abstract. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002590050032", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "balloon catheter", 
      "clinical trials", 
      "endovascular irradiation", 
      "arterial neointimal proliferation", 
      "subsequent oral administration", 
      "early clinical trials", 
      "initial clinical trials", 
      "prevention of restenosis", 
      "reduction of restenosis", 
      "nuclear medicine physicians", 
      "homogeneous dose delivery", 
      "tissue penetration", 
      "neointimal proliferation", 
      "radioactive wires", 
      "oral administration", 
      "same dose", 
      "balloon rupture", 
      "medicine physicians", 
      "local irradiation", 
      "homogeneous dose distribution", 
      "animal studies", 
      "endovascular brachytherapy", 
      "restenosis", 
      "angioplasty", 
      "effective dose", 
      "animal experiments", 
      "radiation exposure", 
      "rate irradiation", 
      "vessel layer", 
      "rhenium-188", 
      "catheter", 
      "dose delivery", 
      "radiation protection", 
      "dose", 
      "trials", 
      "effective inhibition", 
      "radioactivity incorporation", 
      "dosimetric calculations", 
      "low tissue penetration", 
      "dose distribution", 
      "attractive radionuclide", 
      "delivery", 
      "encouraging results", 
      "artery", 
      "therapy", 
      "physicians", 
      "brachytherapy", 
      "accidental incorporation", 
      "administration", 
      "care", 
      "prevention", 
      "mercaptoacetyltriglycine", 
      "balloon", 
      "inhibition", 
      "radiotracer", 
      "proliferation", 
      "irradiation technique", 
      "financial limitations", 
      "exposure", 
      "deep tissue penetration", 
      "rupture", 
      "review", 
      "radioactivity", 
      "protection", 
      "min", 
      "gamma", 
      "irradiation", 
      "possible means", 
      "study", 
      "events", 
      "reduction", 
      "chelation", 
      "penetration", 
      "results", 
      "regard", 
      "use", 
      "radionuclides", 
      "considerable care", 
      "purpose", 
      "incorporation", 
      "relevant radionuclides", 
      "beta source", 
      "feasibility", 
      "limitations", 
      "possibility", 
      "source", 
      "new field", 
      "means", 
      "new approach", 
      "technique", 
      "irradiation source", 
      "approach", 
      "system", 
      "distribution", 
      "achievement", 
      "experiments", 
      "wire", 
      "concept", 
      "field", 
      "seeds", 
      "environment", 
      "layer", 
      "perchlorate", 
      "generator system", 
      "calculations"
    ], 
    "name": "Endovascular brachytherapy for the prevention of restenosis after angioplasty", 
    "pagination": "223-236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014292817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002590050032"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10755730"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002590050032", 
      "https://app.dimensions.ai/details/publication/pub.1014292817"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_339.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002590050032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590050032'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      151 URIs      136 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002590050032 schema:about N204d3e102152475680d6f336d93fa619
2 N22d3e159d0f14e4f9a5b5325e57a93aa
3 N2947fb87384e4b75bbf0a9ede92eaa3f
4 N3a3a96eb8434462091dd1b088ee6b668
5 N40a36338481a40d686fa23aaf20a239f
6 N4a40d0db31384f69818f6dc390c63e16
7 N7615c90057774a0bb62e3da9efa68ea3
8 Nab68e8f987e645bab026cc5f646c08d2
9 Nb131006899b343e7a02f93fb9f6d5113
10 Ncb05bd085d404f91b991ad4fb58cd5ed
11 Ncefce9c92aff4023b95a779d66309936
12 Ned586685695b4424b7af03071a860788
13 Nf788631725eb4222bd9f40d95886ade0
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author N09c1f4db9fdf446482bdf8ef87ce11bb
17 schema:citation sg:pub.10.1007/bf01102065
18 sg:pub.10.1007/bf03043597
19 sg:pub.10.1007/bf03043598
20 sg:pub.10.1007/bf03043599
21 sg:pub.10.1007/bf03043602
22 sg:pub.10.1007/bf03043605
23 sg:pub.10.1007/bf03043606
24 schema:datePublished 2000-02
25 schema:datePublishedReg 2000-02-01
26 schema:description Abstract. Restenosis is an unsolved clinical and financial limitation of angioplasty. Local irradiation is a new approach for the reduction of restenosis. Several animal studies have demonstrated the effective inhibition of arterial neointimal proliferation by percutaneous or endovascular irradiation. High-dose-rate irradiation from gamma and beta sources can be applied from radioactive wires or seeds and from liquid beta-emitter-filled balloon catheters. Dosimetric calculations have been performed for all relevant radionuclides. An effective dose can be applied within 10 min to the treated arteries. Beta-emitters are characterized by a low tissue penetration, which simplifies radiation protection but complicates the achievement of a homogeneous dose distribution without centring of the irradiation source. Gamma-emitters are characterized by deep tissue penetration and delivery of almost the same dose to all vessel layers; however, considerable care with regard to radiation protection of the environment is required if gamma-emitters are used. The liquid-filled balloon ensures a homogeneous dose delivery due to the self-centring irradiation source but entails the possibility of radioactivity incorporation in the event of balloon rupture. The most attractive radionuclide for this purpose is rhenium-188, which is available from the 188W/188Re generator system. Radiation exposure after accidental incorporation can be limited by chelation with mercaptoacetyltriglycine or by subsequent oral administration of perchlorate. Initial clinical trials have demonstrated the feasibility of the various irradiation techniques and yielded encouraging results. The use of unsealed radioactivity in a balloon catheter involves the nuclear medicine physician in this new field of therapy. This review discusses the concepts, the radiotracers and the results of animal experiments and early clinical trials in the field of endovascular irradiation employed as a possible means to prevent restenosis after angioplasty.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N8518bfbd3012479d9575c5856074b3b6
30 Nca3702ad70194403b7f16f4fe2f9a743
31 sg:journal.1297401
32 schema:keywords accidental incorporation
33 achievement
34 administration
35 angioplasty
36 animal experiments
37 animal studies
38 approach
39 arterial neointimal proliferation
40 artery
41 attractive radionuclide
42 balloon
43 balloon catheter
44 balloon rupture
45 beta source
46 brachytherapy
47 calculations
48 care
49 catheter
50 chelation
51 clinical trials
52 concept
53 considerable care
54 deep tissue penetration
55 delivery
56 distribution
57 dose
58 dose delivery
59 dose distribution
60 dosimetric calculations
61 early clinical trials
62 effective dose
63 effective inhibition
64 encouraging results
65 endovascular brachytherapy
66 endovascular irradiation
67 environment
68 events
69 experiments
70 exposure
71 feasibility
72 field
73 financial limitations
74 gamma
75 generator system
76 homogeneous dose delivery
77 homogeneous dose distribution
78 incorporation
79 inhibition
80 initial clinical trials
81 irradiation
82 irradiation source
83 irradiation technique
84 layer
85 limitations
86 local irradiation
87 low tissue penetration
88 means
89 medicine physicians
90 mercaptoacetyltriglycine
91 min
92 neointimal proliferation
93 new approach
94 new field
95 nuclear medicine physicians
96 oral administration
97 penetration
98 perchlorate
99 physicians
100 possibility
101 possible means
102 prevention
103 prevention of restenosis
104 proliferation
105 protection
106 purpose
107 radiation exposure
108 radiation protection
109 radioactive wires
110 radioactivity
111 radioactivity incorporation
112 radionuclides
113 radiotracer
114 rate irradiation
115 reduction
116 reduction of restenosis
117 regard
118 relevant radionuclides
119 restenosis
120 results
121 review
122 rhenium-188
123 rupture
124 same dose
125 seeds
126 source
127 study
128 subsequent oral administration
129 system
130 technique
131 therapy
132 tissue penetration
133 trials
134 use
135 vessel layer
136 wire
137 schema:name Endovascular brachytherapy for the prevention of restenosis after angioplasty
138 schema:pagination 223-236
139 schema:productId N698693d9e0b84d29ad89936d859aaf2e
140 Nd4b2d69e1070440d97005ac37516d2c0
141 Nd8df7daefeda4dcdb8825a2a227ec15c
142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014292817
143 https://doi.org/10.1007/s002590050032
144 schema:sdDatePublished 2022-08-04T16:54
145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
146 schema:sdPublisher Ne444709c375f4adb82937e5dc1316a90
147 schema:url https://doi.org/10.1007/s002590050032
148 sgo:license sg:explorer/license/
149 sgo:sdDataset articles
150 rdf:type schema:ScholarlyArticle
151 N09c1f4db9fdf446482bdf8ef87ce11bb rdf:first sg:person.01041253633.35
152 rdf:rest N813858541b8a431189a2ca7c5c3c3fe6
153 N204d3e102152475680d6f336d93fa619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Clinical Trials as Topic
155 rdf:type schema:DefinedTerm
156 N22d3e159d0f14e4f9a5b5325e57a93aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Brachytherapy
158 rdf:type schema:DefinedTerm
159 N2947fb87384e4b75bbf0a9ede92eaa3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Rhenium
161 rdf:type schema:DefinedTerm
162 N3a3a96eb8434462091dd1b088ee6b668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Humans
164 rdf:type schema:DefinedTerm
165 N40a36338481a40d686fa23aaf20a239f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Recurrence
167 rdf:type schema:DefinedTerm
168 N4a40d0db31384f69818f6dc390c63e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Animals
170 rdf:type schema:DefinedTerm
171 N698693d9e0b84d29ad89936d859aaf2e schema:name pubmed_id
172 schema:value 10755730
173 rdf:type schema:PropertyValue
174 N7615c90057774a0bb62e3da9efa68ea3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Stents
176 rdf:type schema:DefinedTerm
177 N813858541b8a431189a2ca7c5c3c3fe6 rdf:first sg:person.0616355533.39
178 rdf:rest Nfa7e04c2bcfa4e24a683ce4e2fadd208
179 N8518bfbd3012479d9575c5856074b3b6 schema:volumeNumber 27
180 rdf:type schema:PublicationVolume
181 Nab68e8f987e645bab026cc5f646c08d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Radioisotopes
183 rdf:type schema:DefinedTerm
184 Nb131006899b343e7a02f93fb9f6d5113 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Angioplasty, Balloon, Coronary
186 rdf:type schema:DefinedTerm
187 Nca3702ad70194403b7f16f4fe2f9a743 schema:issueNumber 2
188 rdf:type schema:PublicationIssue
189 Ncb05bd085d404f91b991ad4fb58cd5ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Coronary Disease
191 rdf:type schema:DefinedTerm
192 Ncefce9c92aff4023b95a779d66309936 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Radiotherapy Dosage
194 rdf:type schema:DefinedTerm
195 Nd4b2d69e1070440d97005ac37516d2c0 schema:name dimensions_id
196 schema:value pub.1014292817
197 rdf:type schema:PropertyValue
198 Nd8df7daefeda4dcdb8825a2a227ec15c schema:name doi
199 schema:value 10.1007/s002590050032
200 rdf:type schema:PropertyValue
201 Ne444709c375f4adb82937e5dc1316a90 schema:name Springer Nature - SN SciGraph project
202 rdf:type schema:Organization
203 Ned586685695b4424b7af03071a860788 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Costs and Cost Analysis
205 rdf:type schema:DefinedTerm
206 Nf788631725eb4222bd9f40d95886ade0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Radiation Protection
208 rdf:type schema:DefinedTerm
209 Nfa7e04c2bcfa4e24a683ce4e2fadd208 rdf:first sg:person.01311406304.73
210 rdf:rest rdf:nil
211 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
212 schema:name Medical and Health Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
215 schema:name Clinical Sciences
216 rdf:type schema:DefinedTerm
217 sg:journal.1297401 schema:issn 1619-7070
218 1619-7089
219 schema:name European Journal of Nuclear Medicine and Molecular Imaging
220 schema:publisher Springer Nature
221 rdf:type schema:Periodical
222 sg:person.01041253633.35 schema:affiliation grid-institutes:grid.6582.9
223 schema:familyName Kotzerke
224 schema:givenName Jörg
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041253633.35
226 rdf:type schema:Person
227 sg:person.01311406304.73 schema:affiliation grid-institutes:grid.6582.9
228 schema:familyName Höher
229 schema:givenName Martin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311406304.73
231 rdf:type schema:Person
232 sg:person.0616355533.39 schema:affiliation grid-institutes:grid.6582.9
233 schema:familyName Hanke
234 schema:givenName Hartmut
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616355533.39
236 rdf:type schema:Person
237 sg:pub.10.1007/bf01102065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007390675
238 https://doi.org/10.1007/bf01102065
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/bf03043597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008614418
241 https://doi.org/10.1007/bf03043597
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/bf03043598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031765683
244 https://doi.org/10.1007/bf03043598
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/bf03043599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031805039
247 https://doi.org/10.1007/bf03043599
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/bf03043602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030461057
250 https://doi.org/10.1007/bf03043602
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/bf03043605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014269032
253 https://doi.org/10.1007/bf03043605
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/bf03043606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007636601
256 https://doi.org/10.1007/bf03043606
257 rdf:type schema:CreativeWork
258 grid-institutes:grid.6582.9 schema:alternateName Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE
259 Department of Nuclear Medicine, University of Ulm, Germany, DE
260 schema:name Department of Internal Medicine (Cardiology), University of Ulm, Germany, DE
261 Department of Nuclear Medicine, University of Ulm, Germany, DE
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...