Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

Kari K. Kalliokoski, Tom A. Kuusela, Pirjo Nuutila, Tuula Tolvanen, Vesa Oikonen, Mika Teräs, Timo E.S. Takala, Juhani Knuuti

ABSTRACT

Muscle blood flow has been shown to be heterogeneous at the voxel by voxel level in positron emission tomography (PET) studies using oxygen-15 labelled water. However, the limited spatial resolution of the imaging device does not allow direct measurement of true vascular flow heterogeneity. Fractal dimension (D) obtained by fractal analysis describes the relationship between the relative dispersion and the size of the region studied, and has been used for the assessment of perfusion heterogeneity in microvascular units. This study was undertaken to evaluate fractal characteristics of PET perfusion data and to estimate perfusion heterogeneity in microvascular units. Skeletal muscle blood flow was measured in healthy subjects using [15O]water PET and the fractal characteristics of blood flow in resting and exercising skeletal muscle were analysed. The perfusion heterogeneity in microvascular units was estimated using the measured heterogeneity (relative dispersion, RD = SD/mean) and D values. Heterogeneity due to methodological factors was estimated with phantoms and subtracted from the flow data. The number of aggregated voxels was inversely correlated with RD both in phantoms (Pearson r = -0.96-0.97) and in muscle (Pearson r = -0.94) when both parameters were expressed using a logarithmic scale. Fractal dimension was similar between exercising (1.13) and resting (1.14) muscles and significantly lower than the values in the phantoms with different activity levels (1.27-1.29). Measured flow heterogeneity values were 20% +/- 6% (exercise) and 27% +/- 5% (rest, P < 0.001), whereas estimated flow heterogeneity values in microvascular units (1 mm3) were 35% +/- 14% (exercise) and 49% +/- 14% (rest, P < 0.01). In conclusion, these results show that it is feasible to apply fractal analysis to PET perfusion data. When microvascular flow heterogeneity is estimated using fractals, perfusion appears to be more heterogeneous in microvascular units than when obtained by routine spatial analysis of PET data. Analysis of flow heterogeneity using PET and fractals could provide new insight into physiological conditions and diseases associated with changes in peripheral vascular function. More... »

PAGES

450-456

References to SciGraph publications

  • 1997-03. Bayesian image reconstruction for emission tomography based on median root prior in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002590000458

    DOI

    http://dx.doi.org/10.1007/s002590000458

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036252882

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11357494


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Physiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exercise", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fractals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microcirculation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Anatomic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscle, Skeletal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Perfusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regional Blood Flow", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Turku PET Centre", 
              "id": "https://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, University of Turku, Kiinamyllynkatu 4\u20138, 20520 Turku, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalliokoski", 
            "givenName": "Kari K.", 
            "id": "sg:person.01210110752.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210110752.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turku", 
              "id": "https://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "Department of Applied Physics, University of Turku, Turku, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuusela", 
            "givenName": "Tom A.", 
            "id": "sg:person.01333135126.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333135126.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre", 
              "id": "https://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, University of Turku, Kiinamyllynkatu 4\u20138, 20520 Turku, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nuutila", 
            "givenName": "Pirjo", 
            "id": "sg:person.0763376117.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763376117.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre", 
              "id": "https://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, University of Turku, Kiinamyllynkatu 4\u20138, 20520 Turku, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tolvanen", 
            "givenName": "Tuula", 
            "id": "sg:person.01066765250.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066765250.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre", 
              "id": "https://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, University of Turku, Kiinamyllynkatu 4\u20138, 20520 Turku, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oikonen", 
            "givenName": "Vesa", 
            "id": "sg:person.0633127700.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633127700.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre", 
              "id": "https://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, University of Turku, Kiinamyllynkatu 4\u20138, 20520 Turku, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ter\u00e4s", 
            "givenName": "Mika", 
            "id": "sg:person.01101061462.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Biology of Physical Activity, University of Jyv\u00e4skyl\u00e4, Jyv\u00e4skyl\u00e4, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takala", 
            "givenName": "Timo E.S.", 
            "id": "sg:person.011147373114.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147373114.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre", 
              "id": "https://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, University of Turku, Kiinamyllynkatu 4\u20138, 20520 Turku, Finland, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knuuti", 
            "givenName": "Juhani", 
            "id": "sg:person.01163336756.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163336756.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1161/01.res.60.1.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002410583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1990.tb15103.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003975627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.1998.0892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009789678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.69.6.1079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014387404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01728761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015267012", 
              "https://doi.org/10.1007/bf01728761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01728761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015267012", 
              "https://doi.org/10.1007/bf01728761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1113/jphysiol.1977.sp011975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019286478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-5687(91)90122-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020051956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci118601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026827145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1748-1716.1989.tb08625.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029398849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1113/jphysiol.1985.sp015794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034124142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-5687(93)90048-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040106005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.97.21.2146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040435588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.65.3.578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041345659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.71.5.1200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052477325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/41/10/025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059022899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/23.737670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061131882"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-04", 
        "datePublishedReg": "2001-04-01", 
        "description": "Muscle blood flow has been shown to be heterogeneous at the voxel by voxel level in positron emission tomography (PET) studies using oxygen-15 labelled water. However, the limited spatial resolution of the imaging device does not allow direct measurement of true vascular flow heterogeneity. Fractal dimension (D) obtained by fractal analysis describes the relationship between the relative dispersion and the size of the region studied, and has been used for the assessment of perfusion heterogeneity in microvascular units. This study was undertaken to evaluate fractal characteristics of PET perfusion data and to estimate perfusion heterogeneity in microvascular units. Skeletal muscle blood flow was measured in healthy subjects using [15O]water PET and the fractal characteristics of blood flow in resting and exercising skeletal muscle were analysed. The perfusion heterogeneity in microvascular units was estimated using the measured heterogeneity (relative dispersion, RD = SD/mean) and D values. Heterogeneity due to methodological factors was estimated with phantoms and subtracted from the flow data. The number of aggregated voxels was inversely correlated with RD both in phantoms (Pearson r = -0.96-0.97) and in muscle (Pearson r = -0.94) when both parameters were expressed using a logarithmic scale. Fractal dimension was similar between exercising (1.13) and resting (1.14) muscles and significantly lower than the values in the phantoms with different activity levels (1.27-1.29). Measured flow heterogeneity values were 20% +/- 6% (exercise) and 27% +/- 5% (rest, P < 0.001), whereas estimated flow heterogeneity values in microvascular units (1 mm3) were 35% +/- 14% (exercise) and 49% +/- 14% (rest, P < 0.01). In conclusion, these results show that it is feasible to apply fractal analysis to PET perfusion data. When microvascular flow heterogeneity is estimated using fractals, perfusion appears to be more heterogeneous in microvascular units than when obtained by routine spatial analysis of PET data. Analysis of flow heterogeneity using PET and fractals could provide new insight into physiological conditions and diseases associated with changes in peripheral vascular function.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002590000458", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data", 
        "pagination": "450-456", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "acb166ea244dcd5dfdbbffed1f3fb262712b2eee1af99e5360339a4c323eb227"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11357494"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7606882"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002590000458"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036252882"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002590000458", 
          "https://app.dimensions.ai/details/publication/pub.1036252882"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs002590000458"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590000458'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590000458'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590000458'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590000458'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      58 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002590000458 schema:about N1097002409ad44f39792dd3e77a0df3e
    2 N29d32fff9e084ab2a423fb6910dc521b
    3 N3e055dc748e140d6b61874f5a11f946c
    4 N47848a239a97404e91ee812d6b134d19
    5 N4a0c2adc958e4fb183197d5cd0bfa0f1
    6 N870d5ccf12624c439166a5b97761e706
    7 N8fcfeb42878c4964b8cbd2a079005613
    8 Nb4f275dd5fc44f8faabc9067bfa25dcc
    9 Nbb5fb2d77b844cf3bacc4f7db3292a14
    10 Ne94bf14e650b4746890030764f25a4be
    11 Nef9eef1da1494c7b981863cfe31d42be
    12 Nf11f1716956b49db944f2c317e09e9b1
    13 Nfb9986e70aab4bdea700d79b38016e13
    14 anzsrc-for:11
    15 anzsrc-for:1116
    16 schema:author Na478f62c69f84aa4a9981331555d309f
    17 schema:citation sg:pub.10.1007/bf01728761
    18 https://doi.org/10.1006/jtbi.1998.0892
    19 https://doi.org/10.1016/0034-5687(91)90122-y
    20 https://doi.org/10.1016/0034-5687(93)90048-f
    21 https://doi.org/10.1088/0031-9155/41/10/025
    22 https://doi.org/10.1109/23.737670
    23 https://doi.org/10.1111/j.1748-1716.1989.tb08625.x
    24 https://doi.org/10.1111/j.1749-6632.1990.tb15103.x
    25 https://doi.org/10.1113/jphysiol.1977.sp011975
    26 https://doi.org/10.1113/jphysiol.1985.sp015794
    27 https://doi.org/10.1161/01.cir.69.6.1079
    28 https://doi.org/10.1161/01.cir.97.21.2146
    29 https://doi.org/10.1161/01.res.60.1.1
    30 https://doi.org/10.1161/01.res.65.3.578
    31 https://doi.org/10.1161/01.res.71.5.1200
    32 https://doi.org/10.1172/jci118601
    33 schema:datePublished 2001-04
    34 schema:datePublishedReg 2001-04-01
    35 schema:description Muscle blood flow has been shown to be heterogeneous at the voxel by voxel level in positron emission tomography (PET) studies using oxygen-15 labelled water. However, the limited spatial resolution of the imaging device does not allow direct measurement of true vascular flow heterogeneity. Fractal dimension (D) obtained by fractal analysis describes the relationship between the relative dispersion and the size of the region studied, and has been used for the assessment of perfusion heterogeneity in microvascular units. This study was undertaken to evaluate fractal characteristics of PET perfusion data and to estimate perfusion heterogeneity in microvascular units. Skeletal muscle blood flow was measured in healthy subjects using [15O]water PET and the fractal characteristics of blood flow in resting and exercising skeletal muscle were analysed. The perfusion heterogeneity in microvascular units was estimated using the measured heterogeneity (relative dispersion, RD = SD/mean) and D values. Heterogeneity due to methodological factors was estimated with phantoms and subtracted from the flow data. The number of aggregated voxels was inversely correlated with RD both in phantoms (Pearson r = -0.96-0.97) and in muscle (Pearson r = -0.94) when both parameters were expressed using a logarithmic scale. Fractal dimension was similar between exercising (1.13) and resting (1.14) muscles and significantly lower than the values in the phantoms with different activity levels (1.27-1.29). Measured flow heterogeneity values were 20% +/- 6% (exercise) and 27% +/- 5% (rest, P < 0.001), whereas estimated flow heterogeneity values in microvascular units (1 mm3) were 35% +/- 14% (exercise) and 49% +/- 14% (rest, P < 0.01). In conclusion, these results show that it is feasible to apply fractal analysis to PET perfusion data. When microvascular flow heterogeneity is estimated using fractals, perfusion appears to be more heterogeneous in microvascular units than when obtained by routine spatial analysis of PET data. Analysis of flow heterogeneity using PET and fractals could provide new insight into physiological conditions and diseases associated with changes in peripheral vascular function.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N391aaf14fd3b42c383f54ec75a830fa6
    40 Nb8b6efe803484a02b8588323813ebb2c
    41 sg:journal.1297401
    42 schema:name Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data
    43 schema:pagination 450-456
    44 schema:productId N14d54442b0cf464a8011dabc3cc0013b
    45 N4404f93798414cd3bd58109243d06f49
    46 N63cdaaa0759d4463aa213618e3f0e040
    47 N6bb390f0e77f4ff2ab499fe0d6beaefd
    48 N9d4f2fca8d794dff9af7b9355c5c7c51
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036252882
    50 https://doi.org/10.1007/s002590000458
    51 schema:sdDatePublished 2019-04-10T18:21
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N0c2a43e3b0254c259fe90708460a28d6
    54 schema:url http://link.springer.com/10.1007%2Fs002590000458
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0c2a43e3b0254c259fe90708460a28d6 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N1097002409ad44f39792dd3e77a0df3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Adult
    62 rdf:type schema:DefinedTerm
    63 N14d54442b0cf464a8011dabc3cc0013b schema:name doi
    64 schema:value 10.1007/s002590000458
    65 rdf:type schema:PropertyValue
    66 N29d32fff9e084ab2a423fb6910dc521b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Perfusion
    68 rdf:type schema:DefinedTerm
    69 N38d0d4bf653d47b3901ff747133aa167 rdf:first sg:person.01333135126.51
    70 rdf:rest Nf9623338274c4a45a1e90fec3311724b
    71 N391aaf14fd3b42c383f54ec75a830fa6 schema:volumeNumber 28
    72 rdf:type schema:PublicationVolume
    73 N3e055dc748e140d6b61874f5a11f946c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Microcirculation
    75 rdf:type schema:DefinedTerm
    76 N4404f93798414cd3bd58109243d06f49 schema:name nlm_unique_id
    77 schema:value 7606882
    78 rdf:type schema:PropertyValue
    79 N47848a239a97404e91ee812d6b134d19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Models, Anatomic
    81 rdf:type schema:DefinedTerm
    82 N4a0c2adc958e4fb183197d5cd0bfa0f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Exercise
    84 rdf:type schema:DefinedTerm
    85 N4bc87c200fc84bb68766494f900d7014 rdf:first sg:person.011147373114.57
    86 rdf:rest N952af2af65ed40e2999fbea20fe79c37
    87 N63cdaaa0759d4463aa213618e3f0e040 schema:name readcube_id
    88 schema:value acb166ea244dcd5dfdbbffed1f3fb262712b2eee1af99e5360339a4c323eb227
    89 rdf:type schema:PropertyValue
    90 N6bb390f0e77f4ff2ab499fe0d6beaefd schema:name pubmed_id
    91 schema:value 11357494
    92 rdf:type schema:PropertyValue
    93 N870d5ccf12624c439166a5b97761e706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Algorithms
    95 rdf:type schema:DefinedTerm
    96 N8fcfeb42878c4964b8cbd2a079005613 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Image Processing, Computer-Assisted
    98 rdf:type schema:DefinedTerm
    99 N91909b6881f8436d9e84ac95451ce163 rdf:first sg:person.0633127700.74
    100 rdf:rest N93706c1575654bb2872ca6371d936b7f
    101 N93706c1575654bb2872ca6371d936b7f rdf:first sg:person.01101061462.02
    102 rdf:rest N4bc87c200fc84bb68766494f900d7014
    103 N952af2af65ed40e2999fbea20fe79c37 rdf:first sg:person.01163336756.79
    104 rdf:rest rdf:nil
    105 N9d4f2fca8d794dff9af7b9355c5c7c51 schema:name dimensions_id
    106 schema:value pub.1036252882
    107 rdf:type schema:PropertyValue
    108 Na208a6b6dd8c40f7b8b80bfa1b3bb22e rdf:first sg:person.01066765250.13
    109 rdf:rest N91909b6881f8436d9e84ac95451ce163
    110 Na478f62c69f84aa4a9981331555d309f rdf:first sg:person.01210110752.34
    111 rdf:rest N38d0d4bf653d47b3901ff747133aa167
    112 Nb4f275dd5fc44f8faabc9067bfa25dcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Regional Blood Flow
    114 rdf:type schema:DefinedTerm
    115 Nb8b6efe803484a02b8588323813ebb2c schema:issueNumber 4
    116 rdf:type schema:PublicationIssue
    117 Nbb5fb2d77b844cf3bacc4f7db3292a14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Male
    119 rdf:type schema:DefinedTerm
    120 Ne94bf14e650b4746890030764f25a4be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Tomography, Emission-Computed
    122 rdf:type schema:DefinedTerm
    123 Nef9eef1da1494c7b981863cfe31d42be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Muscle, Skeletal
    125 rdf:type schema:DefinedTerm
    126 Nf11f1716956b49db944f2c317e09e9b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Fractals
    128 rdf:type schema:DefinedTerm
    129 Nf9623338274c4a45a1e90fec3311724b rdf:first sg:person.0763376117.17
    130 rdf:rest Na208a6b6dd8c40f7b8b80bfa1b3bb22e
    131 Nfb9986e70aab4bdea700d79b38016e13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Humans
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Medical and Health Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Medical Physiology
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1297401 schema:issn 1619-7070
    141 1619-7089
    142 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    143 rdf:type schema:Periodical
    144 sg:person.01066765250.13 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
    145 schema:familyName Tolvanen
    146 schema:givenName Tuula
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066765250.13
    148 rdf:type schema:Person
    149 sg:person.01101061462.02 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
    150 schema:familyName Teräs
    151 schema:givenName Mika
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02
    153 rdf:type schema:Person
    154 sg:person.011147373114.57 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    155 schema:familyName Takala
    156 schema:givenName Timo E.S.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147373114.57
    158 rdf:type schema:Person
    159 sg:person.01163336756.79 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
    160 schema:familyName Knuuti
    161 schema:givenName Juhani
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163336756.79
    163 rdf:type schema:Person
    164 sg:person.01210110752.34 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
    165 schema:familyName Kalliokoski
    166 schema:givenName Kari K.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210110752.34
    168 rdf:type schema:Person
    169 sg:person.01333135126.51 schema:affiliation https://www.grid.ac/institutes/grid.1374.1
    170 schema:familyName Kuusela
    171 schema:givenName Tom A.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333135126.51
    173 rdf:type schema:Person
    174 sg:person.0633127700.74 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
    175 schema:familyName Oikonen
    176 schema:givenName Vesa
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633127700.74
    178 rdf:type schema:Person
    179 sg:person.0763376117.17 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
    180 schema:familyName Nuutila
    181 schema:givenName Pirjo
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763376117.17
    183 rdf:type schema:Person
    184 sg:pub.10.1007/bf01728761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015267012
    185 https://doi.org/10.1007/bf01728761
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1006/jtbi.1998.0892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009789678
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/0034-5687(91)90122-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020051956
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/0034-5687(93)90048-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1040106005
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1088/0031-9155/41/10/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022899
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1109/23.737670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061131882
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1111/j.1748-1716.1989.tb08625.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029398849
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1111/j.1749-6632.1990.tb15103.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003975627
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1113/jphysiol.1977.sp011975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019286478
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1113/jphysiol.1985.sp015794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124142
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1161/01.cir.69.6.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014387404
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1161/01.cir.97.21.2146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040435588
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1161/01.res.60.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002410583
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1161/01.res.65.3.578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041345659
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1161/01.res.71.5.1200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052477325
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1172/jci118601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026827145
    216 rdf:type schema:CreativeWork
    217 https://www.grid.ac/institutes/grid.1374.1 schema:alternateName University of Turku
    218 schema:name Department of Applied Physics, University of Turku, Turku, Finland, Finland
    219 rdf:type schema:Organization
    220 https://www.grid.ac/institutes/grid.470895.7 schema:alternateName Turku PET Centre
    221 schema:name Turku PET Centre, University of Turku, Kiinamyllynkatu 4–8, 20520 Turku, Finland, Finland
    222 rdf:type schema:Organization
    223 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
    224 schema:name Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland, Finland
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...