FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-02

AUTHORS

Celso D. Ramos, Yusuf E. Erdi, Mithat Gonen, Elyn Riedel, Henry W. D. Yeung, Homer A. Macapinlac, Roland Chisin, Steven M. Larson

ABSTRACT

Filtered back-projection (FBP) is the most commonly used reconstruction method for PET images, which are usually noisy. The iterative reconstruction segmented attenuation correction (IRSAC) algorithm improves image quality without reducing image resolution. The standardized uptake value (SUV) is the most clinically utilized quantitative parameter of [fluorine-18]fluoro-2-deoxy-D-glucose (FDG) accumulation. The objective of this study was to obtain a table of SUVs for several normal anatomical structures from both routinely used FBP and IRSAC reconstructed images and to compare the data obtained with both methods. Twenty whole-body PET scans performed in consecutive patients with proven or suspected non-small cell lung cancer were retrospectively analyzed. Images were processed using both IRSAC and FBP algorithms. Nonquantitative or gaussian filters were used to smooth the transmission scan when using FBP or IRSAC algorithms, respectively. A phantom study was performed to evaluate the effect of different filters on SUV. Maximum and average SUVs (SUVmax and SUVavg) were calculated in 28 normal anatomical structures and in one pathological site. The phantom study showed that the use of a nonquantitative smoothing filter in the transmission scan results in a less accurate quantification and in a 20% underestimation of the actual measurement. Most anatomical structures were identified in all patients using the IRSAC images. On average, SUVavg and SUVmax measured on IRSAC images using a gaussian filter in the transmission scan were respectively 20% and 8% higher than the SUVs calculated from conventional FBP images. Scatterplots of the data values showed an overall strong relationship between IRSAC and FBP SUVs. Individual scatterplots of each site demonstrated a weaker relationship for lower SUVs and for SUVmax than for higher SUVs and SUVavg. A set of reference values was obtained for SUVmax and SUVavg of normal anatomical structures, calculated with both IRSAC and FBP image reconstruction algorithms. The use of IRSAC and a gaussian filter for the transmission scan seems to give more accurate SUVs than are obtained from conventional FBP images using a nonquantitative filter for the transmission scan. More... »

PAGES

155-164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002590000421

DOI

http://dx.doi.org/10.1007/s002590000421

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025011181

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11303885


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Anatomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramos", 
        "givenName": "Celso D.", 
        "id": "sg:person.0724263161.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724263161.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erdi", 
        "givenName": "Yusuf E.", 
        "id": "sg:person.01320377707.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320377707.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonen", 
        "givenName": "Mithat", 
        "id": "sg:person.0721426211.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721426211.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riedel", 
        "givenName": "Elyn", 
        "id": "sg:person.01344126637.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344126637.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeung", 
        "givenName": "Henry W. D.", 
        "id": "sg:person.01100015635.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100015635.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macapinlac", 
        "givenName": "Homer A.", 
        "id": "sg:person.0677650210.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677650210.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chisin", 
        "givenName": "Roland", 
        "id": "sg:person.0667260344.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667260344.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larson", 
        "givenName": "Steven M.", 
        "id": "sg:person.013306534017.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306534017.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00834527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000297002", 
          "https://doi.org/10.1007/bf00834527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7340-6_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008045792", 
          "https://doi.org/10.1007/978-3-0348-7340-6_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014377698", 
          "https://doi.org/10.1007/s002590050410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00833385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034322511", 
          "https://doi.org/10.1007/bf00833385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00833385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034322511", 
          "https://doi.org/10.1007/bf00833385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199610000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199610000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-2998(96)80006-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046867727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01367602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052369249", 
          "https://doi.org/10.1007/bf01367602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01367602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052369249", 
          "https://doi.org/10.1007/bf01367602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.310694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.1982.4307558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jcem.84.7.5827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064322774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1998.16.3.1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083229160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-02", 
    "datePublishedReg": "2001-02-01", 
    "description": "Filtered back-projection (FBP) is the most commonly used reconstruction method for PET images, which are usually noisy. The iterative reconstruction segmented attenuation correction (IRSAC) algorithm improves image quality without reducing image resolution. The standardized uptake value (SUV) is the most clinically utilized quantitative parameter of [fluorine-18]fluoro-2-deoxy-D-glucose (FDG) accumulation. The objective of this study was to obtain a table of SUVs for several normal anatomical structures from both routinely used FBP and IRSAC reconstructed images and to compare the data obtained with both methods. Twenty whole-body PET scans performed in consecutive patients with proven or suspected non-small cell lung cancer were retrospectively analyzed. Images were processed using both IRSAC and FBP algorithms. Nonquantitative or gaussian filters were used to smooth the transmission scan when using FBP or IRSAC algorithms, respectively. A phantom study was performed to evaluate the effect of different filters on SUV. Maximum and average SUVs (SUVmax and SUVavg) were calculated in 28 normal anatomical structures and in one pathological site. The phantom study showed that the use of a nonquantitative smoothing filter in the transmission scan results in a less accurate quantification and in a 20% underestimation of the actual measurement. Most anatomical structures were identified in all patients using the IRSAC images. On average, SUVavg and SUVmax measured on IRSAC images using a gaussian filter in the transmission scan were respectively 20% and 8% higher than the SUVs calculated from conventional FBP images. Scatterplots of the data values showed an overall strong relationship between IRSAC and FBP SUVs. Individual scatterplots of each site demonstrated a weaker relationship for lower SUVs and for SUVmax than for higher SUVs and SUVavg. A set of reference values was obtained for SUVmax and SUVavg of normal anatomical structures, calculated with both IRSAC and FBP image reconstruction algorithms. The use of IRSAC and a gaussian filter for the transmission scan seems to give more accurate SUVs than are obtained from conventional FBP images using a nonquantitative filter for the transmission scan.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002590000421", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection", 
    "pagination": "155-164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7726fce42ee0cc0e2008ba71dc374a3f511aec3c422bf03a4ec17b8df043b7a4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11303885"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7606882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002590000421"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025011181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002590000421", 
      "https://app.dimensions.ai/details/publication/pub.1025011181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002590000421"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      52 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002590000421 schema:about N154530b4fda3433a8e10c9d2bb999a8d
2 N3538b801bb12419e89ce8dbaf4b7ffd6
3 N530ef57575f749af9d636be45a37c2fc
4 N7bc4bdfe09594fbeb4a82efb7f12fb05
5 N8a7d0947b9df46d38e32390ca4c248f6
6 Nc9b97cd6af9d44b58bf68810ab276100
7 Ncd3e75c2d1c548c9af2f4daaad94160a
8 Nf1821cfcfc2f47f0a9395f56edd38518
9 Nf289551ced5d460a88603e94b9bb0190
10 Nf66ff7e27aa14014a50fac6e0721dad5
11 Nfbb91944c46e438eba7d9ab9706b1d61
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author Ndd6979a7084741b1b5daf2be0a0f6fa6
15 schema:citation sg:pub.10.1007/978-3-0348-7340-6_13
16 sg:pub.10.1007/bf00833385
17 sg:pub.10.1007/bf00834527
18 sg:pub.10.1007/bf01367602
19 sg:pub.10.1007/s002590050410
20 https://doi.org/10.1016/s0001-2998(96)80006-7
21 https://doi.org/10.1097/00004728-199805000-00023
22 https://doi.org/10.1097/00006231-199610000-00011
23 https://doi.org/10.1109/34.310694
24 https://doi.org/10.1109/tmi.1982.4307558
25 https://doi.org/10.1200/jco.1998.16.3.1075
26 https://doi.org/10.1210/jcem.84.7.5827
27 schema:datePublished 2001-02
28 schema:datePublishedReg 2001-02-01
29 schema:description Filtered back-projection (FBP) is the most commonly used reconstruction method for PET images, which are usually noisy. The iterative reconstruction segmented attenuation correction (IRSAC) algorithm improves image quality without reducing image resolution. The standardized uptake value (SUV) is the most clinically utilized quantitative parameter of [fluorine-18]fluoro-2-deoxy-D-glucose (FDG) accumulation. The objective of this study was to obtain a table of SUVs for several normal anatomical structures from both routinely used FBP and IRSAC reconstructed images and to compare the data obtained with both methods. Twenty whole-body PET scans performed in consecutive patients with proven or suspected non-small cell lung cancer were retrospectively analyzed. Images were processed using both IRSAC and FBP algorithms. Nonquantitative or gaussian filters were used to smooth the transmission scan when using FBP or IRSAC algorithms, respectively. A phantom study was performed to evaluate the effect of different filters on SUV. Maximum and average SUVs (SUVmax and SUVavg) were calculated in 28 normal anatomical structures and in one pathological site. The phantom study showed that the use of a nonquantitative smoothing filter in the transmission scan results in a less accurate quantification and in a 20% underestimation of the actual measurement. Most anatomical structures were identified in all patients using the IRSAC images. On average, SUVavg and SUVmax measured on IRSAC images using a gaussian filter in the transmission scan were respectively 20% and 8% higher than the SUVs calculated from conventional FBP images. Scatterplots of the data values showed an overall strong relationship between IRSAC and FBP SUVs. Individual scatterplots of each site demonstrated a weaker relationship for lower SUVs and for SUVmax than for higher SUVs and SUVavg. A set of reference values was obtained for SUVmax and SUVavg of normal anatomical structures, calculated with both IRSAC and FBP image reconstruction algorithms. The use of IRSAC and a gaussian filter for the transmission scan seems to give more accurate SUVs than are obtained from conventional FBP images using a nonquantitative filter for the transmission scan.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N6b64655953604b648a0adcdb50e1ef64
34 Ned7616f202d5410aa18436adb0e2f22d
35 sg:journal.1297401
36 schema:name FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection
37 schema:pagination 155-164
38 schema:productId N1b06ea7df67244c5a0e05f370b51ee66
39 N22aad177e88248e99ffe688f2b56e09d
40 N75fa8d88f0f8492291233d61eb55f22e
41 N9941dfa4a56e4342a9cda30c69fd40f1
42 Nc49b2234de64495fabab670d3eac555f
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025011181
44 https://doi.org/10.1007/s002590000421
45 schema:sdDatePublished 2019-04-11T02:01
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nd6a87603ce324f05ac25a37d8501a32a
48 schema:url http://link.springer.com/10.1007%2Fs002590000421
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N154530b4fda3433a8e10c9d2bb999a8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Humans
54 rdf:type schema:DefinedTerm
55 N1b06ea7df67244c5a0e05f370b51ee66 schema:name nlm_unique_id
56 schema:value 7606882
57 rdf:type schema:PropertyValue
58 N22aad177e88248e99ffe688f2b56e09d schema:name readcube_id
59 schema:value 7726fce42ee0cc0e2008ba71dc374a3f511aec3c422bf03a4ec17b8df043b7a4
60 rdf:type schema:PropertyValue
61 N3538b801bb12419e89ce8dbaf4b7ffd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Male
63 rdf:type schema:DefinedTerm
64 N530ef57575f749af9d636be45a37c2fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Algorithms
66 rdf:type schema:DefinedTerm
67 N5eccf5ea649a4fe389e963af67cfd23a rdf:first sg:person.013306534017.05
68 rdf:rest rdf:nil
69 N6b64655953604b648a0adcdb50e1ef64 schema:volumeNumber 28
70 rdf:type schema:PublicationVolume
71 N75fa8d88f0f8492291233d61eb55f22e schema:name dimensions_id
72 schema:value pub.1025011181
73 rdf:type schema:PropertyValue
74 N7bc4bdfe09594fbeb4a82efb7f12fb05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Models, Anatomic
76 rdf:type schema:DefinedTerm
77 N839b0241c9da4e0da2f6278763b41341 rdf:first sg:person.01344126637.57
78 rdf:rest Nf8419255684b46dc831c2d01696cb0de
79 N86fce5c7613d4735af635b61ae001796 rdf:first sg:person.0677650210.40
80 rdf:rest N9f73be85c864469a9c45873ff0ebe532
81 N8a7d0947b9df46d38e32390ca4c248f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Reference Values
83 rdf:type schema:DefinedTerm
84 N96889813a48c4266bfff417662ab5c50 rdf:first sg:person.0721426211.81
85 rdf:rest N839b0241c9da4e0da2f6278763b41341
86 N9941dfa4a56e4342a9cda30c69fd40f1 schema:name pubmed_id
87 schema:value 11303885
88 rdf:type schema:PropertyValue
89 N9f73be85c864469a9c45873ff0ebe532 rdf:first sg:person.0667260344.12
90 rdf:rest N5eccf5ea649a4fe389e963af67cfd23a
91 Nb2a41abfaed54749bfd6dd2d097cea07 rdf:first sg:person.01320377707.42
92 rdf:rest N96889813a48c4266bfff417662ab5c50
93 Nc49b2234de64495fabab670d3eac555f schema:name doi
94 schema:value 10.1007/s002590000421
95 rdf:type schema:PropertyValue
96 Nc9b97cd6af9d44b58bf68810ab276100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Female
98 rdf:type schema:DefinedTerm
99 Ncd3e75c2d1c548c9af2f4daaad94160a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Tomography, Emission-Computed
101 rdf:type schema:DefinedTerm
102 Nd6a87603ce324f05ac25a37d8501a32a schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Ndd6979a7084741b1b5daf2be0a0f6fa6 rdf:first sg:person.0724263161.64
105 rdf:rest Nb2a41abfaed54749bfd6dd2d097cea07
106 Ned7616f202d5410aa18436adb0e2f22d schema:issueNumber 2
107 rdf:type schema:PublicationIssue
108 Nf1821cfcfc2f47f0a9395f56edd38518 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Radiopharmaceuticals
110 rdf:type schema:DefinedTerm
111 Nf289551ced5d460a88603e94b9bb0190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Aged
113 rdf:type schema:DefinedTerm
114 Nf66ff7e27aa14014a50fac6e0721dad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Fluorodeoxyglucose F18
116 rdf:type schema:DefinedTerm
117 Nf8419255684b46dc831c2d01696cb0de rdf:first sg:person.01100015635.82
118 rdf:rest N86fce5c7613d4735af635b61ae001796
119 Nfbb91944c46e438eba7d9ab9706b1d61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Image Processing, Computer-Assisted
121 rdf:type schema:DefinedTerm
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
126 schema:name Artificial Intelligence and Image Processing
127 rdf:type schema:DefinedTerm
128 sg:journal.1297401 schema:issn 1619-7070
129 1619-7089
130 schema:name European Journal of Nuclear Medicine and Molecular Imaging
131 rdf:type schema:Periodical
132 sg:person.01100015635.82 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
133 schema:familyName Yeung
134 schema:givenName Henry W. D.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100015635.82
136 rdf:type schema:Person
137 sg:person.01320377707.42 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
138 schema:familyName Erdi
139 schema:givenName Yusuf E.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320377707.42
141 rdf:type schema:Person
142 sg:person.013306534017.05 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
143 schema:familyName Larson
144 schema:givenName Steven M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306534017.05
146 rdf:type schema:Person
147 sg:person.01344126637.57 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
148 schema:familyName Riedel
149 schema:givenName Elyn
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344126637.57
151 rdf:type schema:Person
152 sg:person.0667260344.12 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
153 schema:familyName Chisin
154 schema:givenName Roland
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667260344.12
156 rdf:type schema:Person
157 sg:person.0677650210.40 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
158 schema:familyName Macapinlac
159 schema:givenName Homer A.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677650210.40
161 rdf:type schema:Person
162 sg:person.0721426211.81 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
163 schema:familyName Gonen
164 schema:givenName Mithat
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721426211.81
166 rdf:type schema:Person
167 sg:person.0724263161.64 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
168 schema:familyName Ramos
169 schema:givenName Celso D.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724263161.64
171 rdf:type schema:Person
172 sg:pub.10.1007/978-3-0348-7340-6_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008045792
173 https://doi.org/10.1007/978-3-0348-7340-6_13
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf00833385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034322511
176 https://doi.org/10.1007/bf00833385
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00834527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000297002
179 https://doi.org/10.1007/bf00834527
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf01367602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052369249
182 https://doi.org/10.1007/bf01367602
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s002590050410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377698
185 https://doi.org/10.1007/s002590050410
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0001-2998(96)80006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046867727
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/00004728-199805000-00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060189434
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/00006231-199610000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046580010
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/34.310694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156050
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tmi.1982.4307558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694014
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1200/jco.1998.16.3.1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083229160
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1210/jcem.84.7.5827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064322774
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.51462.34 schema:alternateName Memorial Sloan Kettering Cancer Center
202 schema:name Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA
203 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA
204 Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...