FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-02

AUTHORS

Celso D. Ramos, Yusuf E. Erdi, Mithat Gonen, Elyn Riedel, Henry W. D. Yeung, Homer A. Macapinlac, Roland Chisin, Steven M. Larson

ABSTRACT

Filtered back-projection (FBP) is the most commonly used reconstruction method for PET images, which are usually noisy. The iterative reconstruction segmented attenuation correction (IRSAC) algorithm improves image quality without reducing image resolution. The standardized uptake value (SUV) is the most clinically utilized quantitative parameter of [fluorine-18]fluoro-2-deoxy-D-glucose (FDG) accumulation. The objective of this study was to obtain a table of SUVs for several normal anatomical structures from both routinely used FBP and IRSAC reconstructed images and to compare the data obtained with both methods. Twenty whole-body PET scans performed in consecutive patients with proven or suspected non-small cell lung cancer were retrospectively analyzed. Images were processed using both IRSAC and FBP algorithms. Nonquantitative or gaussian filters were used to smooth the transmission scan when using FBP or IRSAC algorithms, respectively. A phantom study was performed to evaluate the effect of different filters on SUV. Maximum and average SUVs (SUVmax and SUVavg) were calculated in 28 normal anatomical structures and in one pathological site. The phantom study showed that the use of a nonquantitative smoothing filter in the transmission scan results in a less accurate quantification and in a 20% underestimation of the actual measurement. Most anatomical structures were identified in all patients using the IRSAC images. On average, SUVavg and SUVmax measured on IRSAC images using a gaussian filter in the transmission scan were respectively 20% and 8% higher than the SUVs calculated from conventional FBP images. Scatterplots of the data values showed an overall strong relationship between IRSAC and FBP SUVs. Individual scatterplots of each site demonstrated a weaker relationship for lower SUVs and for SUVmax than for higher SUVs and SUVavg. A set of reference values was obtained for SUVmax and SUVavg of normal anatomical structures, calculated with both IRSAC and FBP image reconstruction algorithms. The use of IRSAC and a gaussian filter for the transmission scan seems to give more accurate SUVs than are obtained from conventional FBP images using a nonquantitative filter for the transmission scan. More... »

PAGES

155-164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002590000421

DOI

http://dx.doi.org/10.1007/s002590000421

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025011181

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11303885


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Anatomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramos", 
        "givenName": "Celso D.", 
        "id": "sg:person.0724263161.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724263161.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erdi", 
        "givenName": "Yusuf E.", 
        "id": "sg:person.01320377707.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320377707.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonen", 
        "givenName": "Mithat", 
        "id": "sg:person.0721426211.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721426211.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riedel", 
        "givenName": "Elyn", 
        "id": "sg:person.01344126637.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344126637.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeung", 
        "givenName": "Henry W. D.", 
        "id": "sg:person.01100015635.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100015635.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macapinlac", 
        "givenName": "Homer A.", 
        "id": "sg:person.0677650210.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677650210.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chisin", 
        "givenName": "Roland", 
        "id": "sg:person.0667260344.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667260344.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larson", 
        "givenName": "Steven M.", 
        "id": "sg:person.013306534017.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306534017.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00834527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000297002", 
          "https://doi.org/10.1007/bf00834527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7340-6_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008045792", 
          "https://doi.org/10.1007/978-3-0348-7340-6_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014377698", 
          "https://doi.org/10.1007/s002590050410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00833385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034322511", 
          "https://doi.org/10.1007/bf00833385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00833385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034322511", 
          "https://doi.org/10.1007/bf00833385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199610000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199610000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-2998(96)80006-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046867727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01367602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052369249", 
          "https://doi.org/10.1007/bf01367602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01367602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052369249", 
          "https://doi.org/10.1007/bf01367602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.310694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.1982.4307558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jcem.84.7.5827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064322774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1998.16.3.1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083229160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-02", 
    "datePublishedReg": "2001-02-01", 
    "description": "Filtered back-projection (FBP) is the most commonly used reconstruction method for PET images, which are usually noisy. The iterative reconstruction segmented attenuation correction (IRSAC) algorithm improves image quality without reducing image resolution. The standardized uptake value (SUV) is the most clinically utilized quantitative parameter of [fluorine-18]fluoro-2-deoxy-D-glucose (FDG) accumulation. The objective of this study was to obtain a table of SUVs for several normal anatomical structures from both routinely used FBP and IRSAC reconstructed images and to compare the data obtained with both methods. Twenty whole-body PET scans performed in consecutive patients with proven or suspected non-small cell lung cancer were retrospectively analyzed. Images were processed using both IRSAC and FBP algorithms. Nonquantitative or gaussian filters were used to smooth the transmission scan when using FBP or IRSAC algorithms, respectively. A phantom study was performed to evaluate the effect of different filters on SUV. Maximum and average SUVs (SUVmax and SUVavg) were calculated in 28 normal anatomical structures and in one pathological site. The phantom study showed that the use of a nonquantitative smoothing filter in the transmission scan results in a less accurate quantification and in a 20% underestimation of the actual measurement. Most anatomical structures were identified in all patients using the IRSAC images. On average, SUVavg and SUVmax measured on IRSAC images using a gaussian filter in the transmission scan were respectively 20% and 8% higher than the SUVs calculated from conventional FBP images. Scatterplots of the data values showed an overall strong relationship between IRSAC and FBP SUVs. Individual scatterplots of each site demonstrated a weaker relationship for lower SUVs and for SUVmax than for higher SUVs and SUVavg. A set of reference values was obtained for SUVmax and SUVavg of normal anatomical structures, calculated with both IRSAC and FBP image reconstruction algorithms. The use of IRSAC and a gaussian filter for the transmission scan seems to give more accurate SUVs than are obtained from conventional FBP images using a nonquantitative filter for the transmission scan.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002590000421", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection", 
    "pagination": "155-164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7726fce42ee0cc0e2008ba71dc374a3f511aec3c422bf03a4ec17b8df043b7a4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11303885"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7606882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002590000421"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025011181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002590000421", 
      "https://app.dimensions.ai/details/publication/pub.1025011181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002590000421"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002590000421'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      52 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002590000421 schema:about N03f27efd041f4463859ecb023e6b0e1a
2 N132fa69e966a456e90c25bc19a9943c4
3 N1e0f37d57977488281bb4fda6a274ddd
4 N1fc5bffb1f6d496e8ae6ccd64797771d
5 N3a25669279cc491daa29c8c6f2c97252
6 Naaa30eafab1e48a7bbe65a665d9396a2
7 Nadb39d40666f49a090910c5666bc1722
8 Nc8e453783f9849729a1f22bbda154409
9 Nc94237dbec244de2812201e09a4179bb
10 Nd13cb76c078549dab482a0f060b46b4f
11 Nef932fd8dd7e429e91620a21a7298651
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N52407b3c4e4c4368935adb0da8725ecc
15 schema:citation sg:pub.10.1007/978-3-0348-7340-6_13
16 sg:pub.10.1007/bf00833385
17 sg:pub.10.1007/bf00834527
18 sg:pub.10.1007/bf01367602
19 sg:pub.10.1007/s002590050410
20 https://doi.org/10.1016/s0001-2998(96)80006-7
21 https://doi.org/10.1097/00004728-199805000-00023
22 https://doi.org/10.1097/00006231-199610000-00011
23 https://doi.org/10.1109/34.310694
24 https://doi.org/10.1109/tmi.1982.4307558
25 https://doi.org/10.1200/jco.1998.16.3.1075
26 https://doi.org/10.1210/jcem.84.7.5827
27 schema:datePublished 2001-02
28 schema:datePublishedReg 2001-02-01
29 schema:description Filtered back-projection (FBP) is the most commonly used reconstruction method for PET images, which are usually noisy. The iterative reconstruction segmented attenuation correction (IRSAC) algorithm improves image quality without reducing image resolution. The standardized uptake value (SUV) is the most clinically utilized quantitative parameter of [fluorine-18]fluoro-2-deoxy-D-glucose (FDG) accumulation. The objective of this study was to obtain a table of SUVs for several normal anatomical structures from both routinely used FBP and IRSAC reconstructed images and to compare the data obtained with both methods. Twenty whole-body PET scans performed in consecutive patients with proven or suspected non-small cell lung cancer were retrospectively analyzed. Images were processed using both IRSAC and FBP algorithms. Nonquantitative or gaussian filters were used to smooth the transmission scan when using FBP or IRSAC algorithms, respectively. A phantom study was performed to evaluate the effect of different filters on SUV. Maximum and average SUVs (SUVmax and SUVavg) were calculated in 28 normal anatomical structures and in one pathological site. The phantom study showed that the use of a nonquantitative smoothing filter in the transmission scan results in a less accurate quantification and in a 20% underestimation of the actual measurement. Most anatomical structures were identified in all patients using the IRSAC images. On average, SUVavg and SUVmax measured on IRSAC images using a gaussian filter in the transmission scan were respectively 20% and 8% higher than the SUVs calculated from conventional FBP images. Scatterplots of the data values showed an overall strong relationship between IRSAC and FBP SUVs. Individual scatterplots of each site demonstrated a weaker relationship for lower SUVs and for SUVmax than for higher SUVs and SUVavg. A set of reference values was obtained for SUVmax and SUVavg of normal anatomical structures, calculated with both IRSAC and FBP image reconstruction algorithms. The use of IRSAC and a gaussian filter for the transmission scan seems to give more accurate SUVs than are obtained from conventional FBP images using a nonquantitative filter for the transmission scan.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf Ncdc97f6e616c40be8e2e6a931927480d
34 Ne157b7f6517f436ea7035cab51e29e82
35 sg:journal.1297401
36 schema:name FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection
37 schema:pagination 155-164
38 schema:productId N00c3e41db8b54c6dbb7ae81e349ad13d
39 N8f6a9f17a74d49a1a1ce9db7ffb18880
40 Ndb37b674f0d54a55bab807149179a1de
41 Ndc2c91912cfb4609988beaf086ed0cdf
42 Nee6746fd846b4be5a880462fd78b8f46
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025011181
44 https://doi.org/10.1007/s002590000421
45 schema:sdDatePublished 2019-04-11T02:01
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N636e8730fcdb47368f1d63ab70ac0175
48 schema:url http://link.springer.com/10.1007%2Fs002590000421
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N00c3e41db8b54c6dbb7ae81e349ad13d schema:name doi
53 schema:value 10.1007/s002590000421
54 rdf:type schema:PropertyValue
55 N03f27efd041f4463859ecb023e6b0e1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Models, Anatomic
57 rdf:type schema:DefinedTerm
58 N088f1d4e768c4ee0a362a33e8d6d5dd0 rdf:first sg:person.0677650210.40
59 rdf:rest Na4e95ed6513744b78d345ff31e25723c
60 N132fa69e966a456e90c25bc19a9943c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Radiopharmaceuticals
62 rdf:type schema:DefinedTerm
63 N1e0f37d57977488281bb4fda6a274ddd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Algorithms
65 rdf:type schema:DefinedTerm
66 N1e1cb3b2ec52432aa6aa96203843ab29 rdf:first sg:person.01320377707.42
67 rdf:rest Nad31326d584f4c15a30a5da39ba00271
68 N1fc5bffb1f6d496e8ae6ccd64797771d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Image Processing, Computer-Assisted
70 rdf:type schema:DefinedTerm
71 N3a25669279cc491daa29c8c6f2c97252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Tomography, Emission-Computed
73 rdf:type schema:DefinedTerm
74 N4258d19c0e1b4c8a840643c33c2b6795 rdf:first sg:person.013306534017.05
75 rdf:rest rdf:nil
76 N52407b3c4e4c4368935adb0da8725ecc rdf:first sg:person.0724263161.64
77 rdf:rest N1e1cb3b2ec52432aa6aa96203843ab29
78 N636e8730fcdb47368f1d63ab70ac0175 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N8f6a9f17a74d49a1a1ce9db7ffb18880 schema:name pubmed_id
81 schema:value 11303885
82 rdf:type schema:PropertyValue
83 N969edc4f010041169919fa9ee984fbdb rdf:first sg:person.01100015635.82
84 rdf:rest N088f1d4e768c4ee0a362a33e8d6d5dd0
85 Na4e95ed6513744b78d345ff31e25723c rdf:first sg:person.0667260344.12
86 rdf:rest N4258d19c0e1b4c8a840643c33c2b6795
87 Naaa30eafab1e48a7bbe65a665d9396a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Reference Values
89 rdf:type schema:DefinedTerm
90 Nad31326d584f4c15a30a5da39ba00271 rdf:first sg:person.0721426211.81
91 rdf:rest Nb804e20b47f442e0a85368b03770c697
92 Nadb39d40666f49a090910c5666bc1722 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Male
94 rdf:type schema:DefinedTerm
95 Nb804e20b47f442e0a85368b03770c697 rdf:first sg:person.01344126637.57
96 rdf:rest N969edc4f010041169919fa9ee984fbdb
97 Nc8e453783f9849729a1f22bbda154409 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Female
99 rdf:type schema:DefinedTerm
100 Nc94237dbec244de2812201e09a4179bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Humans
102 rdf:type schema:DefinedTerm
103 Ncdc97f6e616c40be8e2e6a931927480d schema:volumeNumber 28
104 rdf:type schema:PublicationVolume
105 Nd13cb76c078549dab482a0f060b46b4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Aged
107 rdf:type schema:DefinedTerm
108 Ndb37b674f0d54a55bab807149179a1de schema:name nlm_unique_id
109 schema:value 7606882
110 rdf:type schema:PropertyValue
111 Ndc2c91912cfb4609988beaf086ed0cdf schema:name readcube_id
112 schema:value 7726fce42ee0cc0e2008ba71dc374a3f511aec3c422bf03a4ec17b8df043b7a4
113 rdf:type schema:PropertyValue
114 Ne157b7f6517f436ea7035cab51e29e82 schema:issueNumber 2
115 rdf:type schema:PublicationIssue
116 Nee6746fd846b4be5a880462fd78b8f46 schema:name dimensions_id
117 schema:value pub.1025011181
118 rdf:type schema:PropertyValue
119 Nef932fd8dd7e429e91620a21a7298651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Fluorodeoxyglucose F18
121 rdf:type schema:DefinedTerm
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
126 schema:name Artificial Intelligence and Image Processing
127 rdf:type schema:DefinedTerm
128 sg:journal.1297401 schema:issn 1619-7070
129 1619-7089
130 schema:name European Journal of Nuclear Medicine and Molecular Imaging
131 rdf:type schema:Periodical
132 sg:person.01100015635.82 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
133 schema:familyName Yeung
134 schema:givenName Henry W. D.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100015635.82
136 rdf:type schema:Person
137 sg:person.01320377707.42 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
138 schema:familyName Erdi
139 schema:givenName Yusuf E.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320377707.42
141 rdf:type schema:Person
142 sg:person.013306534017.05 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
143 schema:familyName Larson
144 schema:givenName Steven M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306534017.05
146 rdf:type schema:Person
147 sg:person.01344126637.57 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
148 schema:familyName Riedel
149 schema:givenName Elyn
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344126637.57
151 rdf:type schema:Person
152 sg:person.0667260344.12 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
153 schema:familyName Chisin
154 schema:givenName Roland
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667260344.12
156 rdf:type schema:Person
157 sg:person.0677650210.40 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
158 schema:familyName Macapinlac
159 schema:givenName Homer A.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677650210.40
161 rdf:type schema:Person
162 sg:person.0721426211.81 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
163 schema:familyName Gonen
164 schema:givenName Mithat
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721426211.81
166 rdf:type schema:Person
167 sg:person.0724263161.64 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
168 schema:familyName Ramos
169 schema:givenName Celso D.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724263161.64
171 rdf:type schema:Person
172 sg:pub.10.1007/978-3-0348-7340-6_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008045792
173 https://doi.org/10.1007/978-3-0348-7340-6_13
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf00833385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034322511
176 https://doi.org/10.1007/bf00833385
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00834527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000297002
179 https://doi.org/10.1007/bf00834527
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf01367602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052369249
182 https://doi.org/10.1007/bf01367602
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s002590050410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377698
185 https://doi.org/10.1007/s002590050410
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0001-2998(96)80006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046867727
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/00004728-199805000-00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060189434
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/00006231-199610000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046580010
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/34.310694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156050
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tmi.1982.4307558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694014
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1200/jco.1998.16.3.1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083229160
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1210/jcem.84.7.5827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064322774
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.51462.34 schema:alternateName Memorial Sloan Kettering Cancer Center
202 schema:name Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA
203 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA, USA
204 Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, USA, USA
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...