[18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-26

AUTHORS

Marta Ferreira, Pierre Lovinfosse, Johanne Hermesse, Marjolein Decuypere, Caroline Rousseau, François Lucia, Ulrike Schick, Caroline Reinhold, Philippe Robin, Mathieu Hatt, Dimitris Visvikis, Claire Bernard, Ralph T. H. Leijenaar, Frédéric Kridelka, Philippe Lambin, Patrick E. Meyer, Roland Hustinx

ABSTRACT

PurposeTo test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC).MethodsOne hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners.ResultsAfter a median follow-up of 23 months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67–0.88), 0.49 (0.25–0.67), 0.42 (0.25–0.60) and 0.63 (0.20–0.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set.Conclusion[18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient’s outcome but remain subject to variability across PET/CT devices. More... »

PAGES

3432-3443

References to SciGraph publications

  • 2018-05-04. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients with Cervical Cancer in VIRCHOWS ARCHIV
  • 2015-08-17. Machine Learning methods for Quantitative Radiomic Biomarkers in SCIENTIFIC REPORTS
  • 2019-05-06. Deep learning-based survival prediction of oral cancer patients in SCIENTIFIC REPORTS
  • 2019-11-06. Lack of evidence and criteria to evaluate artificial intelligence and radiomics tools to be implemented in clinical settings in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2020-06-24. Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies in SCIENTIFIC REPORTS
  • 2014-06-03. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach in NATURE COMMUNICATIONS
  • 2018-10-05. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis in RADIATION ONCOLOGY
  • 2019-06-18. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2017-10-04. Radiomics: the bridge between medical imaging and personalized medicine in NATURE REVIEWS CLINICAL ONCOLOGY
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2019-05-27. Prediction of local relapse and distant metastasis in patients with definitive chemoradiotherapy-treated cervical cancer by deep learning from [18F]-fluorodeoxyglucose positron emission tomography/computed tomography in EUROPEAN RADIOLOGY
  • 2017-12-09. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-08-05. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis in SCIENTIFIC REPORTS
  • 2018-05-23. Correction to: The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients with Cervical Cancer in VIRCHOWS ARCHIV
  • 2018-12-07. External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2017-10-16. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling in SCIENTIFIC REPORTS
  • 2019-02-07. Chemoradiotherapy for locally advanced cervix cancer without aortic lymph node involvement: can we consider metabolic parameters of pretherapeutic FDG-PET/CT for treatment tailoring? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2019-07-04. Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging in SCIENTIFIC REPORTS
  • 2013. Feature Selection Based on Fuzzy Mutual Information in FUZZY LOGIC AND APPLICATIONS
  • 2017-05-31. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies in EUROPEAN RADIOLOGY
  • 2015-01-06. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement in BMC MEDICINE
  • 2017-08-16. 18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer in ANNALS OF NUCLEAR MEDICINE
  • 2018-07-25. FDG PET radiomics: a review of the methodological aspects in CLINICAL AND TRANSLATIONAL IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-021-05303-5

    DOI

    http://dx.doi.org/10.1007/s00259-021-05303-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1136694817

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33772334


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bayes Theorem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease-Free Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Recurrence, Local", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Uterine Cervical Neoplasms", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "GIGA-CRC in vivo Imaging, University of Li\u00e8ge, GIGA, Avenue de l\u2019H\u00f4pital 11, 4000, Liege, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.4861.b", 
              "name": [
                "GIGA-CRC in vivo Imaging, University of Li\u00e8ge, GIGA, Avenue de l\u2019H\u00f4pital 11, 4000, Liege, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ferreira", 
            "givenName": "Marta", 
            "id": "sg:person.014017400423.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017400423.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Nuclear Medicine and Oncological Imaging, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.411374.4", 
              "name": [
                "Division of Nuclear Medicine and Oncological Imaging, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lovinfosse", 
            "givenName": "Pierre", 
            "id": "sg:person.01047474242.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047474242.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiation Oncology, Li\u00e8ge University Hospital, Li\u00e8ge, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.411374.4", 
              "name": [
                "Department of Radiation Oncology, Li\u00e8ge University Hospital, Li\u00e8ge, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hermesse", 
            "givenName": "Johanne", 
            "id": "sg:person.01042314324.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042314324.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Oncological Gynecology, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.411374.4", 
              "name": [
                "Division of Oncological Gynecology, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Decuypere", 
            "givenName": "Marjolein", 
            "id": "sg:person.010021241263.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010021241263.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ICO Ren\u00e9 Gauducheau, F-44800, Saint-Herblain, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Universit\u00e9 de Nantes, CNRS, Inserm, CRCINA, F-44000, Nantes, France", 
                "ICO Ren\u00e9 Gauducheau, F-44800, Saint-Herblain, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rousseau", 
            "givenName": "Caroline", 
            "id": "sg:person.01240530667.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.6289.5", 
              "name": [
                "Radiation Oncology Department, University Hospital, Brest, France", 
                "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lucia", 
            "givenName": "Fran\u00e7ois", 
            "id": "sg:person.07532416715.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532416715.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.6289.5", 
              "name": [
                "Radiation Oncology Department, University Hospital, Brest, France", 
                "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schick", 
            "givenName": "Ulrike", 
            "id": "sg:person.01206441206.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206441206.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, McGill University Health Centre (MUHC), Montreal, Canada", 
              "id": "http://www.grid.ac/institutes/grid.63984.30", 
              "name": [
                "Department of Radiology, McGill University Health Centre (MUHC), Montreal, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reinhold", 
            "givenName": "Caroline", 
            "id": "sg:person.01134767703.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134767703.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine and EA3878, Brest University Hospital, University of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Nuclear Medicine and EA3878, Brest University Hospital, University of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robin", 
            "givenName": "Philippe", 
            "id": "sg:person.01307140060.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.6289.5", 
              "name": [
                "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hatt", 
            "givenName": "Mathieu", 
            "id": "sg:person.01202724075.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202724075.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.6289.5", 
              "name": [
                "LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Visvikis", 
            "givenName": "Dimitris", 
            "id": "sg:person.01255045106.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045106.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Nuclear Medicine and Oncological Imaging, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.411374.4", 
              "name": [
                "Division of Nuclear Medicine and Oncological Imaging, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bernard", 
            "givenName": "Claire", 
            "id": "sg:person.01107133011.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107133011.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The-D Lab, Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.412966.e", 
              "name": [
                "Oncoradiomics SA, Clos Chanmurly 13, 4000, Li\u00e8ge, Belgium", 
                "The-D Lab, Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leijenaar", 
            "givenName": "Ralph T. H.", 
            "id": "sg:person.01054555705.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054555705.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Oncological Gynecology, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.411374.4", 
              "name": [
                "Division of Oncological Gynecology, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kridelka", 
            "givenName": "Fr\u00e9d\u00e9ric", 
            "id": "sg:person.01101734510.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101734510.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.412966.e", 
              "name": [
                "The-D Lab, Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands", 
                "Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lambin", 
            "givenName": "Philippe", 
            "id": "sg:person.0763075314.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763075314.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioinformatics and Systems Biology Lab, University of Li\u00e8ge, Li\u00e8ge, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.4861.b", 
              "name": [
                "Bioinformatics and Systems Biology Lab, University of Li\u00e8ge, Li\u00e8ge, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meyer", 
            "givenName": "Patrick E.", 
            "id": "sg:person.012326011263.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326011263.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GIGA-CRC in vivo Imaging, University of Li\u00e8ge, GIGA, Avenue de l\u2019H\u00f4pital 11, 4000, Liege, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.4861.b", 
              "name": [
                "GIGA-CRC in vivo Imaging, University of Li\u00e8ge, GIGA, Avenue de l\u2019H\u00f4pital 11, 4000, Liege, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hustinx", 
            "givenName": "Roland", 
            "id": "sg:person.01326411430.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326411430.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-019-46030-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117740067", 
              "https://doi.org/10.1038/s41598-019-46030-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009469125", 
              "https://doi.org/10.1038/ncomms5006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038280199", 
              "https://doi.org/10.1038/srep11075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-019-06265-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115907618", 
              "https://doi.org/10.1007/s00330-019-06265-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00428-018-2362-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103793073", 
              "https://doi.org/10.1007/s00428-018-2362-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-66110-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128717081", 
              "https://doi.org/10.1038/s41598-020-66110-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2017.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092061102", 
              "https://doi.org/10.1038/nrclinonc.2017.141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-4231-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110448603", 
              "https://doi.org/10.1007/s00259-018-4231-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-57171-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124096736", 
              "https://doi.org/10.1038/s41598-019-57171-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00428-018-2380-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104141633", 
              "https://doi.org/10.1007/s00428-018-2380-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-014-0241-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023303896", 
              "https://doi.org/10.1186/s12916-014-0241-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13014-018-1140-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107432580", 
              "https://doi.org/10.1186/s13014-018-1140-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3898-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099696659", 
              "https://doi.org/10.1007/s00259-017-3898-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-43372-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113943773", 
              "https://doi.org/10.1038/s41598-019-43372-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-03200-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019531403", 
              "https://doi.org/10.1007/978-3-319-03200-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40336-018-0292-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105830889", 
              "https://doi.org/10.1007/s40336-018-0292-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-13448-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152818", 
              "https://doi.org/10.1038/s41598-017-13448-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-019-04372-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117291124", 
              "https://doi.org/10.1007/s00259-019-04372-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-019-04493-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122362302", 
              "https://doi.org/10.1007/s00259-019-04493-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-017-1199-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091220083", 
              "https://doi.org/10.1007/s12149-017-1199-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep13087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036587522", 
              "https://doi.org/10.1038/srep13087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-4219-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111949171", 
              "https://doi.org/10.1007/s00259-018-4219-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4859-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085731538", 
              "https://doi.org/10.1007/s00330-017-4859-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-03-26", 
        "datePublishedReg": "2021-03-26", 
        "description": "PurposeTo test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC).MethodsOne hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners.ResultsAfter a median follow-up of 23\u00a0months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67\u20130.88), 0.49 (0.25\u20130.67), 0.42 (0.25\u20130.60) and 0.63 (0.20\u20130.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set.Conclusion[18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient\u2019s outcome but remain subject to variability across PET/CT devices.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00259-021-05303-5", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7070033", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "radiomic features", 
          "cervical cancer", 
          "cancer recurrence", 
          "D-glucose PET/CT", 
          "disease-free survival", 
          "advanced cervical cancer", 
          "standard clinical parameters", 
          "proportional hazards model", 
          "PET/CT", 
          "MethodsOne hundred fifty", 
          "PET radiomic features", 
          "clinical features", 
          "clinical parameters", 
          "center study", 
          "hundred fifty", 
          "patient outcomes", 
          "clinical data", 
          "clinical information", 
          "hazards model", 
          "normal liver", 
          "patients", 
          "tumors", 
          "multiple centers", 
          "statistical significance", 
          "PET/CT devices", 
          "PET radiomics", 
          "external validation", 
          "recurrence", 
          "cancer", 
          "effects of combat", 
          "outcomes", 
          "TLR", 
          "CT devices", 
          "PurposeTo", 
          "ResultsAfter", 
          "adaptive Bayesian algorithm", 
          "liver", 
          "LACC", 
          "months", 
          "CT", 
          "survival", 
          "radiomics", 
          "predictive performance", 
          "study", 
          "scanner", 
          "best model", 
          "fifties", 
          "fivefold cross validation", 
          "features", 
          "relevant information", 
          "data", 
          "significance", 
          "center", 
          "combat", 
          "effect", 
          "validation", 
          "recall", 
          "information", 
          "reproducibility", 
          "model", 
          "number", 
          "curves", 
          "cross validation", 
          "variability", 
          "area", 
          "values", 
          "region", 
          "number of features", 
          "method", 
          "test set", 
          "harmonisation", 
          "different feature selection methods", 
          "parameters", 
          "model performance", 
          "terms", 
          "machine learning", 
          "performance", 
          "devices", 
          "learning", 
          "precision", 
          "feature selection method", 
          "Bayesian algorithm", 
          "set", 
          "selection method", 
          "classifier", 
          "algorithm"
        ], 
        "name": "[18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation", 
        "pagination": "3432-3443", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1136694817"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-021-05303-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33772334"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-021-05303-5", 
          "https://app.dimensions.ai/details/publication/pub.1136694817"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_910.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00259-021-05303-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-021-05303-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-021-05303-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-021-05303-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-021-05303-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    425 TRIPLES      21 PREDICATES      145 URIs      114 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-021-05303-5 schema:about N32c4c427b3c64430937e7e45ca05a93c
    2 N4f5e9ebaea0a4510bca447ad254e9295
    3 N560e06b5c2084345a10e23d0cbf034c1
    4 N5818626bcf8646f99f9ce69044d0bedb
    5 N6de9aa3cbe9e41f89ecc3e2fc4b15a39
    6 N7d8b76c5b19a4d9990580c0d1bc04fe1
    7 N822f9a198b6342d2a39b29fa71d115c3
    8 N84bfcf73e7594ba382b42225b1cad967
    9 N8c9c0f08231e4cd28abd9d015b551274
    10 Nb94c0026d2a94b21991efdca52fcce9a
    11 Nb9e9e92dfe614c3d8773c15f63972246
    12 anzsrc-for:11
    13 anzsrc-for:1112
    14 schema:author Ne93c5515cced436f933e5b2a9518a9a2
    15 schema:citation sg:pub.10.1007/978-3-319-03200-9_4
    16 sg:pub.10.1007/s00259-017-3898-7
    17 sg:pub.10.1007/s00259-018-4219-5
    18 sg:pub.10.1007/s00259-018-4231-9
    19 sg:pub.10.1007/s00259-019-04372-x
    20 sg:pub.10.1007/s00259-019-04493-3
    21 sg:pub.10.1007/s00330-017-4859-z
    22 sg:pub.10.1007/s00330-019-06265-x
    23 sg:pub.10.1007/s00428-018-2362-9
    24 sg:pub.10.1007/s00428-018-2380-7
    25 sg:pub.10.1007/s12149-017-1199-7
    26 sg:pub.10.1007/s40336-018-0292-9
    27 sg:pub.10.1038/ncomms5006
    28 sg:pub.10.1038/nrclinonc.2017.141
    29 sg:pub.10.1038/s41598-017-13448-3
    30 sg:pub.10.1038/s41598-019-43372-7
    31 sg:pub.10.1038/s41598-019-46030-0
    32 sg:pub.10.1038/s41598-019-57171-7
    33 sg:pub.10.1038/s41598-020-66110-w
    34 sg:pub.10.1038/srep11075
    35 sg:pub.10.1038/srep13087
    36 sg:pub.10.1186/s12916-014-0241-z
    37 sg:pub.10.1186/s13014-018-1140-9
    38 schema:datePublished 2021-03-26
    39 schema:datePublishedReg 2021-03-26
    40 schema:description PurposeTo test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC).MethodsOne hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners.ResultsAfter a median follow-up of 23 months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67–0.88), 0.49 (0.25–0.67), 0.42 (0.25–0.60) and 0.63 (0.20–0.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set.Conclusion[18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient’s outcome but remain subject to variability across PET/CT devices.
    41 schema:genre article
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N2f2b3b48f1c44b6bba6182a89a7be566
    44 Ndd4dadd881174ca7aec7abc027189d96
    45 sg:journal.1297401
    46 schema:keywords Bayesian algorithm
    47 CT
    48 CT devices
    49 D-glucose PET/CT
    50 LACC
    51 MethodsOne hundred fifty
    52 PET radiomic features
    53 PET radiomics
    54 PET/CT
    55 PET/CT devices
    56 PurposeTo
    57 ResultsAfter
    58 TLR
    59 adaptive Bayesian algorithm
    60 advanced cervical cancer
    61 algorithm
    62 area
    63 best model
    64 cancer
    65 cancer recurrence
    66 center
    67 center study
    68 cervical cancer
    69 classifier
    70 clinical data
    71 clinical features
    72 clinical information
    73 clinical parameters
    74 combat
    75 cross validation
    76 curves
    77 data
    78 devices
    79 different feature selection methods
    80 disease-free survival
    81 effect
    82 effects of combat
    83 external validation
    84 feature selection method
    85 features
    86 fifties
    87 fivefold cross validation
    88 harmonisation
    89 hazards model
    90 hundred fifty
    91 information
    92 learning
    93 liver
    94 machine learning
    95 method
    96 model
    97 model performance
    98 months
    99 multiple centers
    100 normal liver
    101 number
    102 number of features
    103 outcomes
    104 parameters
    105 patient outcomes
    106 patients
    107 performance
    108 precision
    109 predictive performance
    110 proportional hazards model
    111 radiomic features
    112 radiomics
    113 recall
    114 recurrence
    115 region
    116 relevant information
    117 reproducibility
    118 scanner
    119 selection method
    120 set
    121 significance
    122 standard clinical parameters
    123 statistical significance
    124 study
    125 survival
    126 terms
    127 test set
    128 tumors
    129 validation
    130 values
    131 variability
    132 schema:name [18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation
    133 schema:pagination 3432-3443
    134 schema:productId N0095ccef9a23412080253d95f3b31932
    135 N5c84ea7b1c1143b0889e26888f9a2980
    136 N745cc375f7bd433895e24ea97d58701d
    137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136694817
    138 https://doi.org/10.1007/s00259-021-05303-5
    139 schema:sdDatePublished 2022-08-04T17:10
    140 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    141 schema:sdPublisher N5449de9374ed4a5c85eaabcee015df27
    142 schema:url https://doi.org/10.1007/s00259-021-05303-5
    143 sgo:license sg:explorer/license/
    144 sgo:sdDataset articles
    145 rdf:type schema:ScholarlyArticle
    146 N0095ccef9a23412080253d95f3b31932 schema:name pubmed_id
    147 schema:value 33772334
    148 rdf:type schema:PropertyValue
    149 N0bf66d750cd745728983e093caa8078f rdf:first sg:person.01326411430.39
    150 rdf:rest rdf:nil
    151 N2f2b3b48f1c44b6bba6182a89a7be566 schema:volumeNumber 48
    152 rdf:type schema:PublicationVolume
    153 N32c4c427b3c64430937e7e45ca05a93c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Fluorodeoxyglucose F18
    155 rdf:type schema:DefinedTerm
    156 N3aab39160faf4b4d867ef9397bea6a52 rdf:first sg:person.01042314324.67
    157 rdf:rest N5d9966b4e6c84785a058cd659aa6c08e
    158 N3b9ae7f6a15449a1804681ca7580808a rdf:first sg:person.07532416715.90
    159 rdf:rest Ncf68d3560ea045708a2473d593f3a67c
    160 N438f7fa25bed44378503390cb0170b75 rdf:first sg:person.01134767703.78
    161 rdf:rest N9a55115664c94fec82fa9129c001e679
    162 N4f5e9ebaea0a4510bca447ad254e9295 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Retrospective Studies
    164 rdf:type schema:DefinedTerm
    165 N5449de9374ed4a5c85eaabcee015df27 schema:name Springer Nature - SN SciGraph project
    166 rdf:type schema:Organization
    167 N560e06b5c2084345a10e23d0cbf034c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Positron Emission Tomography Computed Tomography
    169 rdf:type schema:DefinedTerm
    170 N561a3412417545fa9754d36b8e0416d9 rdf:first sg:person.01255045106.49
    171 rdf:rest Nea17aaa4cc704def909a7644ab147023
    172 N57d5fc21edb0480cbbdc8964dd864c43 rdf:first sg:person.012326011263.01
    173 rdf:rest N0bf66d750cd745728983e093caa8078f
    174 N5818626bcf8646f99f9ce69044d0bedb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Radiopharmaceuticals
    176 rdf:type schema:DefinedTerm
    177 N5c84ea7b1c1143b0889e26888f9a2980 schema:name doi
    178 schema:value 10.1007/s00259-021-05303-5
    179 rdf:type schema:PropertyValue
    180 N5d9966b4e6c84785a058cd659aa6c08e rdf:first sg:person.010021241263.42
    181 rdf:rest Ne535e019653f4a3dbf93d7c501673c96
    182 N5ef5fe3bf879480eb69240454282f1cb rdf:first sg:person.01054555705.34
    183 rdf:rest Nf472f0df6f6740e18d498e28105fa6de
    184 N6de9aa3cbe9e41f89ecc3e2fc4b15a39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Uterine Cervical Neoplasms
    186 rdf:type schema:DefinedTerm
    187 N745cc375f7bd433895e24ea97d58701d schema:name dimensions_id
    188 schema:value pub.1136694817
    189 rdf:type schema:PropertyValue
    190 N7d8b76c5b19a4d9990580c0d1bc04fe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Reproducibility of Results
    192 rdf:type schema:DefinedTerm
    193 N822f9a198b6342d2a39b29fa71d115c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Bayes Theorem
    195 rdf:type schema:DefinedTerm
    196 N84bfcf73e7594ba382b42225b1cad967 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Female
    198 rdf:type schema:DefinedTerm
    199 N88a266306449411e9da7a3a37ca37858 rdf:first sg:person.0763075314.50
    200 rdf:rest N57d5fc21edb0480cbbdc8964dd864c43
    201 N8c9c0f08231e4cd28abd9d015b551274 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Neoplasm Recurrence, Local
    203 rdf:type schema:DefinedTerm
    204 N9a55115664c94fec82fa9129c001e679 rdf:first sg:person.01307140060.86
    205 rdf:rest Nf48c8aabd77349a89a3472ff75142d5c
    206 Nb94c0026d2a94b21991efdca52fcce9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Disease-Free Survival
    208 rdf:type schema:DefinedTerm
    209 Nb9e9e92dfe614c3d8773c15f63972246 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Humans
    211 rdf:type schema:DefinedTerm
    212 Ncf68d3560ea045708a2473d593f3a67c rdf:first sg:person.01206441206.87
    213 rdf:rest N438f7fa25bed44378503390cb0170b75
    214 Ndd4dadd881174ca7aec7abc027189d96 schema:issueNumber 11
    215 rdf:type schema:PublicationIssue
    216 Ne535e019653f4a3dbf93d7c501673c96 rdf:first sg:person.01240530667.47
    217 rdf:rest N3b9ae7f6a15449a1804681ca7580808a
    218 Ne638320b807b47729bd28d8f416281bd rdf:first sg:person.01047474242.88
    219 rdf:rest N3aab39160faf4b4d867ef9397bea6a52
    220 Ne93c5515cced436f933e5b2a9518a9a2 rdf:first sg:person.014017400423.66
    221 rdf:rest Ne638320b807b47729bd28d8f416281bd
    222 Nea17aaa4cc704def909a7644ab147023 rdf:first sg:person.01107133011.03
    223 rdf:rest N5ef5fe3bf879480eb69240454282f1cb
    224 Nf472f0df6f6740e18d498e28105fa6de rdf:first sg:person.01101734510.44
    225 rdf:rest N88a266306449411e9da7a3a37ca37858
    226 Nf48c8aabd77349a89a3472ff75142d5c rdf:first sg:person.01202724075.78
    227 rdf:rest N561a3412417545fa9754d36b8e0416d9
    228 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    229 schema:name Medical and Health Sciences
    230 rdf:type schema:DefinedTerm
    231 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    232 schema:name Oncology and Carcinogenesis
    233 rdf:type schema:DefinedTerm
    234 sg:grant.7070033 http://pending.schema.org/fundedItem sg:pub.10.1007/s00259-021-05303-5
    235 rdf:type schema:MonetaryGrant
    236 sg:journal.1297401 schema:issn 1619-7070
    237 1619-7089
    238 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    239 schema:publisher Springer Nature
    240 rdf:type schema:Periodical
    241 sg:person.010021241263.42 schema:affiliation grid-institutes:grid.411374.4
    242 schema:familyName Decuypere
    243 schema:givenName Marjolein
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010021241263.42
    245 rdf:type schema:Person
    246 sg:person.01042314324.67 schema:affiliation grid-institutes:grid.411374.4
    247 schema:familyName Hermesse
    248 schema:givenName Johanne
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042314324.67
    250 rdf:type schema:Person
    251 sg:person.01047474242.88 schema:affiliation grid-institutes:grid.411374.4
    252 schema:familyName Lovinfosse
    253 schema:givenName Pierre
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047474242.88
    255 rdf:type schema:Person
    256 sg:person.01054555705.34 schema:affiliation grid-institutes:grid.412966.e
    257 schema:familyName Leijenaar
    258 schema:givenName Ralph T. H.
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054555705.34
    260 rdf:type schema:Person
    261 sg:person.01101734510.44 schema:affiliation grid-institutes:grid.411374.4
    262 schema:familyName Kridelka
    263 schema:givenName Frédéric
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101734510.44
    265 rdf:type schema:Person
    266 sg:person.01107133011.03 schema:affiliation grid-institutes:grid.411374.4
    267 schema:familyName Bernard
    268 schema:givenName Claire
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107133011.03
    270 rdf:type schema:Person
    271 sg:person.01134767703.78 schema:affiliation grid-institutes:grid.63984.30
    272 schema:familyName Reinhold
    273 schema:givenName Caroline
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134767703.78
    275 rdf:type schema:Person
    276 sg:person.01202724075.78 schema:affiliation grid-institutes:grid.6289.5
    277 schema:familyName Hatt
    278 schema:givenName Mathieu
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202724075.78
    280 rdf:type schema:Person
    281 sg:person.01206441206.87 schema:affiliation grid-institutes:grid.6289.5
    282 schema:familyName Schick
    283 schema:givenName Ulrike
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206441206.87
    285 rdf:type schema:Person
    286 sg:person.012326011263.01 schema:affiliation grid-institutes:grid.4861.b
    287 schema:familyName Meyer
    288 schema:givenName Patrick E.
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326011263.01
    290 rdf:type schema:Person
    291 sg:person.01240530667.47 schema:affiliation grid-institutes:None
    292 schema:familyName Rousseau
    293 schema:givenName Caroline
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47
    295 rdf:type schema:Person
    296 sg:person.01255045106.49 schema:affiliation grid-institutes:grid.6289.5
    297 schema:familyName Visvikis
    298 schema:givenName Dimitris
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045106.49
    300 rdf:type schema:Person
    301 sg:person.01307140060.86 schema:affiliation grid-institutes:None
    302 schema:familyName Robin
    303 schema:givenName Philippe
    304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86
    305 rdf:type schema:Person
    306 sg:person.01326411430.39 schema:affiliation grid-institutes:grid.4861.b
    307 schema:familyName Hustinx
    308 schema:givenName Roland
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326411430.39
    310 rdf:type schema:Person
    311 sg:person.014017400423.66 schema:affiliation grid-institutes:grid.4861.b
    312 schema:familyName Ferreira
    313 schema:givenName Marta
    314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017400423.66
    315 rdf:type schema:Person
    316 sg:person.07532416715.90 schema:affiliation grid-institutes:grid.6289.5
    317 schema:familyName Lucia
    318 schema:givenName François
    319 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532416715.90
    320 rdf:type schema:Person
    321 sg:person.0763075314.50 schema:affiliation grid-institutes:grid.412966.e
    322 schema:familyName Lambin
    323 schema:givenName Philippe
    324 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763075314.50
    325 rdf:type schema:Person
    326 sg:pub.10.1007/978-3-319-03200-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019531403
    327 https://doi.org/10.1007/978-3-319-03200-9_4
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1007/s00259-017-3898-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696659
    330 https://doi.org/10.1007/s00259-017-3898-7
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1007/s00259-018-4219-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949171
    333 https://doi.org/10.1007/s00259-018-4219-5
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1007/s00259-018-4231-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448603
    336 https://doi.org/10.1007/s00259-018-4231-9
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1007/s00259-019-04372-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1117291124
    339 https://doi.org/10.1007/s00259-019-04372-x
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1007/s00259-019-04493-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122362302
    342 https://doi.org/10.1007/s00259-019-04493-3
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1007/s00330-017-4859-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085731538
    345 https://doi.org/10.1007/s00330-017-4859-z
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1007/s00330-019-06265-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1115907618
    348 https://doi.org/10.1007/s00330-019-06265-x
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1007/s00428-018-2362-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103793073
    351 https://doi.org/10.1007/s00428-018-2362-9
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1007/s00428-018-2380-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104141633
    354 https://doi.org/10.1007/s00428-018-2380-7
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1007/s12149-017-1199-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091220083
    357 https://doi.org/10.1007/s12149-017-1199-7
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1007/s40336-018-0292-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105830889
    360 https://doi.org/10.1007/s40336-018-0292-9
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
    363 https://doi.org/10.1038/ncomms5006
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/nrclinonc.2017.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092061102
    366 https://doi.org/10.1038/nrclinonc.2017.141
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/s41598-017-13448-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152818
    369 https://doi.org/10.1038/s41598-017-13448-3
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/s41598-019-43372-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113943773
    372 https://doi.org/10.1038/s41598-019-43372-7
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/s41598-019-46030-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117740067
    375 https://doi.org/10.1038/s41598-019-46030-0
    376 rdf:type schema:CreativeWork
    377 sg:pub.10.1038/s41598-019-57171-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124096736
    378 https://doi.org/10.1038/s41598-019-57171-7
    379 rdf:type schema:CreativeWork
    380 sg:pub.10.1038/s41598-020-66110-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1128717081
    381 https://doi.org/10.1038/s41598-020-66110-w
    382 rdf:type schema:CreativeWork
    383 sg:pub.10.1038/srep11075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038280199
    384 https://doi.org/10.1038/srep11075
    385 rdf:type schema:CreativeWork
    386 sg:pub.10.1038/srep13087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036587522
    387 https://doi.org/10.1038/srep13087
    388 rdf:type schema:CreativeWork
    389 sg:pub.10.1186/s12916-014-0241-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023303896
    390 https://doi.org/10.1186/s12916-014-0241-z
    391 rdf:type schema:CreativeWork
    392 sg:pub.10.1186/s13014-018-1140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107432580
    393 https://doi.org/10.1186/s13014-018-1140-9
    394 rdf:type schema:CreativeWork
    395 grid-institutes:None schema:alternateName Department of Nuclear Medicine and EA3878, Brest University Hospital, University of Brest, Brest, France
    396 ICO René Gauducheau, F-44800, Saint-Herblain, France
    397 schema:name Department of Nuclear Medicine and EA3878, Brest University Hospital, University of Brest, Brest, France
    398 ICO René Gauducheau, F-44800, Saint-Herblain, France
    399 Université de Nantes, CNRS, Inserm, CRCINA, F-44000, Nantes, France
    400 rdf:type schema:Organization
    401 grid-institutes:grid.411374.4 schema:alternateName Department of Radiation Oncology, Liège University Hospital, Liège, Belgium
    402 Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
    403 Division of Oncological Gynecology, University Hospital of Liège, Liège, Belgium
    404 schema:name Department of Radiation Oncology, Liège University Hospital, Liège, Belgium
    405 Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
    406 Division of Oncological Gynecology, University Hospital of Liège, Liège, Belgium
    407 rdf:type schema:Organization
    408 grid-institutes:grid.412966.e schema:alternateName Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
    409 The-D Lab, Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
    410 schema:name Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
    411 Oncoradiomics SA, Clos Chanmurly 13, 4000, Liège, Belgium
    412 The-D Lab, Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
    413 rdf:type schema:Organization
    414 grid-institutes:grid.4861.b schema:alternateName Bioinformatics and Systems Biology Lab, University of Liège, Liège, Belgium
    415 GIGA-CRC in vivo Imaging, University of Liège, GIGA, Avenue de l’Hôpital 11, 4000, Liege, Belgium
    416 schema:name Bioinformatics and Systems Biology Lab, University of Liège, Liège, Belgium
    417 GIGA-CRC in vivo Imaging, University of Liège, GIGA, Avenue de l’Hôpital 11, 4000, Liege, Belgium
    418 rdf:type schema:Organization
    419 grid-institutes:grid.6289.5 schema:alternateName LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
    420 schema:name LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
    421 Radiation Oncology Department, University Hospital, Brest, France
    422 rdf:type schema:Organization
    423 grid-institutes:grid.63984.30 schema:alternateName Department of Radiology, McGill University Health Centre (MUHC), Montreal, Canada
    424 schema:name Department of Radiology, McGill University Health Centre (MUHC), Montreal, Canada
    425 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...