Prognostic value of metabolic tumour volume on baseline 18F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Qaid Ahmed Shagera, Gi Jeong Cheon, Youngil Koh, Min Young Yoo, Keon Wook Kang, Dong Soo Lee, E. Edmund Kim, Sung-Soo Yoon, June-Key Chung

ABSTRACT

PurposeThe purpose of this study was to determine the prognostic value of metabolic volumetric parameters as a quantitative index on pre-treatment 18F-FDG PET/CT in addition to the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) in patients with diffuse large B-cell lymphoma (DLBCL).MethodsA total of 103 consecutive patients with DLBCL and baseline FDG PET/CT were retrospectively evaluated. Quantitative metabolic parameters, including total metabolic tumour volume (TMTV) using a standardized uptake value (SUV) of ≥2.5 as the threshold, were estimated. Receiver operating characteristic curve analysis was used to determine the optimal cut-off values for the metabolic parameters. The relationships between study variables and patient survival were tested using Cox regression analysis. Patient survival rates were derived from Kaplan-Meier curves and compared using the log-rank test.ResultsMedian follow-up was 34 months. In patients with a low TMTV (<249 cm3), the 3-year progression free survival (PFS) rate was 83% and the overall survival (OS) rate was 92%, in contrast to 41% and 57%, respectively, in those with a high TMTV (≥249 cm3). In univariate analysis, a high TMTV and NCCN-IPI ≥4 were associated with inferior PFS and OS (P < 0.0001 for all), as was a high total lesion glycolysis (P = 0.004 and P = 0.005, respectively). In multivariate analysis, TMTV and NCCN-IPI were independent predictors of PFS (hazard ratio, HR, 3.11, 95% confidence interval, CI, 1.37–7.07, P = 0.007, and HR 3.42, 95% CI 1.36–8.59, P = 0.009, respectively) and OS (HR 3.41, 95% CI 1.24–9.38, P = 0.017, and HR 5.06, 95% CI 1.46–17.60, P = 0.014, respectively). TMTV was able to separate patients with a high-risk NCCN-IPI of ≥4 (n = 62) into two groups with significantly different outcomes; patients with low TMTV (n = 16) had a 3-year PFS rate of 75% and an OS rate of 88%, while those with a high TMTV had a 3-year PFS rate of 32% and an OS rate of 47% (χ2 = 7.92, P = 0.005, and χ2 = 8.26, P = 0.004, respectively). However, regardless of TMTV, patients with a low-risk NCCN-IPI of <4 (n = 41) had excellent outcomes (3-year PFS and OS rates of 85% and 95%, respectively).ConclusionPretreatment TMTV was an independent predictor of survival in patients with DLBCL. Importantly, TMTV had an additive prognostic value in patients with a high-risk NCCN-IPI. Thus, the combination of baseline TMTV with NCCN-IPI may improve the prognostication and may be helpful guide the decision for intensive therapy and clinical trials, especially in DLBCL patients with a high-risk NCCN-IPI. More... »

PAGES

1417-1427

References to SciGraph publications

  • 2014-02-26. Metabolic tumour volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-02-23. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2017. Basic Science of PET Imaging in NONE
  • 2014-05-29. Prognostic Value of Metabolic Tumor Volume Estimated by 18 F-FDG Positron Emission Tomography/Computed Tomography in Patients with Diffuse Large B-Cell Lymphoma of Stage II or III Disease in NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2003-11-26. FDG-PET/CT in re-staging of patients with lymphoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2018-02-19. Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-06-06. Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-12-16. Predictive value of F-18 FDG PET/CT quantization parameters in diffuse large B cell lymphoma: a meta-analysis with 702 participants in MEDICAL ONCOLOGY
  • 2018-01-17. Combination of baseline FDG PET/CT total metabolic tumour volume and gene expression profile have a robust predictive value in patients with diffuse large B-cell lymphoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-04-06. High maximum standard uptake value (SUVmax) on PET scan is associated with shorter survival in patients with diffuse large B cell lymphoma in INTERNATIONAL JOURNAL OF HEMATOLOGY
  • 2014-12-02. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-11-11. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement in ANNALS OF HEMATOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-019-04309-4

    DOI

    http://dx.doi.org/10.1007/s00259-019-04309-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113179815

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30941463


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Progression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease-Free Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kaplan-Meier Estimate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphoma, Large B-Cell, Diffuse", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Progression-Free Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proportional Hazards Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "ROC Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Severity of Illness Index", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Burden", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Althawrah Modern General Hospital, Sana\u2019a, Yemen", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Althawrah Modern General Hospital, Sana\u2019a, Yemen"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shagera", 
            "givenName": "Qaid Ahmed", 
            "id": "sg:person.012370144025.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370144025.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheon", 
            "givenName": "Gi Jeong", 
            "id": "sg:person.01333472502.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea", 
                "Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koh", 
            "givenName": "Youngil", 
            "id": "sg:person.0606172266.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606172266.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Chungbuk National University Hospital, Cheongju, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.411725.4", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Chungbuk National University Hospital, Cheongju, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoo", 
            "givenName": "Min Young", 
            "id": "sg:person.01313717502.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313717502.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Keon Wook", 
            "id": "sg:person.0761746266.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiological Sciences, University of California, Irvine, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Radiological Sciences, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "E. Edmund", 
            "id": "sg:person.0656745142.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea", 
                "Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoon", 
            "givenName": "Sung-Soo", 
            "id": "sg:person.01340117230.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340117230.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "June-Key", 
            "id": "sg:person.0751347234.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-003-1375-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040833284", 
              "https://doi.org/10.1007/s00259-003-1375-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-3953-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101110889", 
              "https://doi.org/10.1007/s00259-018-3953-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12032-014-0446-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039746014", 
              "https://doi.org/10.1007/s12032-014-0446-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3907-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100460129", 
              "https://doi.org/10.1007/s00259-017-3907-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2822-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003196884", 
              "https://doi.org/10.1007/s00259-014-2822-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-016-3315-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039864863", 
              "https://doi.org/10.1007/s00259-016-3315-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-014-0280-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003241853", 
              "https://doi.org/10.1007/s13139-014-0280-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2705-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049401360", 
              "https://doi.org/10.1007/s00259-014-2705-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12185-011-0822-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004034909", 
              "https://doi.org/10.1007/s12185-011-0822-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-40070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003944750", 
              "https://doi.org/10.1007/978-3-319-40070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00277-011-1357-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044492024", 
              "https://doi.org/10.1007/s00277-011-1357-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-02", 
        "datePublishedReg": "2019-04-02", 
        "description": "PurposeThe purpose of this study was to determine the prognostic value of metabolic volumetric parameters as a quantitative index on pre-treatment 18F-FDG PET/CT in addition to the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) in patients with diffuse large B-cell lymphoma (DLBCL).MethodsA total of 103 consecutive patients with DLBCL and baseline FDG PET/CT were retrospectively evaluated. Quantitative metabolic parameters, including total metabolic tumour volume (TMTV) using a standardized uptake value (SUV) of \u22652.5 as the threshold, were estimated. Receiver operating characteristic curve analysis was used to determine the optimal cut-off values for the metabolic parameters. The relationships between study variables and patient survival were tested using Cox regression analysis. Patient survival rates were derived from Kaplan-Meier curves and compared using the log-rank test.ResultsMedian follow-up was 34\u00a0months. In patients with a low TMTV (<249\u00a0cm3), the 3-year progression free survival (PFS) rate was 83% and the overall survival (OS) rate was 92%, in contrast to 41% and 57%, respectively, in those with a high TMTV (\u2265249\u00a0cm3). In univariate analysis, a high TMTV and NCCN-IPI \u22654 were associated with inferior PFS and OS (P\u2009<\u20090.0001 for all), as was a high total lesion glycolysis (P\u00a0=\u20090.004 and P\u00a0=\u20090.005, respectively). In multivariate analysis, TMTV and NCCN-IPI were independent predictors of PFS (hazard ratio, HR, 3.11, 95% confidence interval, CI, 1.37\u20137.07, P\u00a0=\u20090.007, and HR 3.42, 95% CI 1.36\u20138.59, P\u00a0=\u20090.009, respectively) and OS (HR 3.41, 95% CI 1.24\u20139.38, P\u00a0=\u20090.017, and HR 5.06, 95% CI 1.46\u201317.60, P\u00a0=\u20090.014, respectively). TMTV was able to separate patients with a high-risk NCCN-IPI of \u22654 (n\u00a0=\u200962) into two groups with significantly different outcomes; patients with low TMTV (n\u00a0=\u200916) had a 3-year PFS rate of 75% and an OS rate of 88%, while those with a high TMTV had a 3-year PFS rate of 32% and an OS rate of 47% (\u03c72\u00a0=\u20097.92, P\u00a0=\u20090.005, and \u03c72\u00a0=\u20098.26, P\u00a0=\u20090.004, respectively). However, regardless of TMTV, patients with a low-risk NCCN-IPI of <4 (n\u00a0=\u200941) had excellent outcomes (3-year PFS and OS rates of 85% and 95%, respectively).ConclusionPretreatment TMTV was an independent predictor of survival in patients with DLBCL. Importantly, TMTV had an additive prognostic value in patients with a high-risk NCCN-IPI. Thus, the combination of baseline TMTV with NCCN-IPI may improve the prognostication and may be helpful guide the decision for intensive therapy and clinical trials, especially in DLBCL patients with a high-risk NCCN-IPI.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00259-019-04309-4", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "46"
          }
        ], 
        "keywords": [
          "total metabolic tumor volume", 
          "diffuse large B-cell lymphoma", 
          "High total metabolic tumor volume", 
          "low TMTV", 
          "PET/CT", 
          "large B-cell lymphoma", 
          "NCCN-IPI", 
          "metabolic tumor volume", 
          "standardized uptake value", 
          "B-cell lymphoma", 
          "prognostic value", 
          "survival rate", 
          "PFS rates", 
          "independent predictors", 
          "OS rates", 
          "metabolic parameters", 
          "tumor volume", 
          "baseline total metabolic tumor volume", 
          "National Comprehensive Cancer Network International Prognostic Index", 
          "high total lesion glycolysis", 
          "progression-free survival rates", 
          "baseline FDG PET/CT", 
          "FDG PET/CT", 
          "free survival rate", 
          "overall survival rate", 
          "additive prognostic value", 
          "Cox regression analysis", 
          "International Prognostic Index", 
          "Kaplan-Meier curves", 
          "total lesion glycolysis", 
          "patient survival rates", 
          "log-rank test", 
          "characteristic curve analysis", 
          "metabolic volumetric parameters", 
          "quantitative metabolic parameters", 
          "inferior PFS", 
          "consecutive patients", 
          "lesion glycolysis", 
          "intensive therapy", 
          "prognostic index", 
          "patient survival", 
          "excellent outcomes", 
          "DLBCL patients", 
          "univariate analysis", 
          "clinical trials", 
          "patients", 
          "uptake value", 
          "PurposeThe purpose", 
          "further stratification", 
          "multivariate analysis", 
          "curve analysis", 
          "CT", 
          "lymphoma", 
          "regression analysis", 
          "PFS", 
          "volumetric parameters", 
          "study variables", 
          "survival", 
          "outcomes", 
          "predictors", 
          "different outcomes", 
          "ResultsMedian", 
          "OS", 
          "group", 
          "therapy", 
          "prognostication", 
          "trials", 
          "months", 
          "rate", 
          "index", 
          "total", 
          "quantitative index", 
          "glycolysis", 
          "volume", 
          "stratification", 
          "analysis", 
          "addition", 
          "study", 
          "contrast", 
          "test", 
          "values", 
          "threshold", 
          "combination", 
          "purpose", 
          "variables", 
          "relationship", 
          "receiver", 
          "curves", 
          "parameters", 
          "decisions"
        ], 
        "name": "Prognostic value of metabolic tumour volume on baseline 18F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell lymphoma: further stratification of the group with a high-risk NCCN-IPI", 
        "pagination": "1417-1427", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113179815"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-019-04309-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30941463"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-019-04309-4", 
          "https://app.dimensions.ai/details/publication/pub.1113179815"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_821.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00259-019-04309-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04309-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04309-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04309-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04309-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    364 TRIPLES      21 PREDICATES      149 URIs      129 LITERALS      29 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-019-04309-4 schema:about N02a81988587e4ff792e7475057741c8a
    2 N04cc1587eeec4134858b3663e379d015
    3 N0dbcd90a658b4e618d9811a7a4618f21
    4 N0edcb68d807d4394979a354c3de8aa16
    5 N1f7d445c56e3447ba50e9ec0b7cb236d
    6 N304f8da9a6c74e1891663eb0979f40b2
    7 N3dafd1a3054944a4a7456ce7d036bb73
    8 N6f4b59641f7e423d97698b58a9d46724
    9 N70896c9a7ded4a7c9e2295ba26cc79fb
    10 N8573fed54c8943c387205cbd5d53ea48
    11 N97f94744513845cc95e438213c4fa6c0
    12 Na0b58ab410fb4141b7c78bf19b1f9af7
    13 Na4470082c9224db8b3a33bf67c1ae1e7
    14 Nad47fe21990f4251a1e32fb320b92749
    15 Nade545b81ae34264a550076b1c258692
    16 Nb44e083dae49466f9c9b0931dc197829
    17 Nb77ae4de9ec8430080cf50bc9e77e476
    18 Nc26ed9c7f8264095a8d71db4d78a73de
    19 Ne21cd7d0c2244b5fb9e52c5689aeef5d
    20 Ne522f8df60d8439aa4a3987a373a1615
    21 Nea055f04062e4045919bea06ce0b0109
    22 Nfe753cb2392742a984b60031b91903a3
    23 anzsrc-for:11
    24 anzsrc-for:1103
    25 schema:author N0af8ff9c134d46528be6b5cfce7bb8c8
    26 schema:citation sg:pub.10.1007/978-3-319-40070-9
    27 sg:pub.10.1007/s00259-003-1375-y
    28 sg:pub.10.1007/s00259-014-2705-y
    29 sg:pub.10.1007/s00259-014-2822-7
    30 sg:pub.10.1007/s00259-014-2961-x
    31 sg:pub.10.1007/s00259-016-3315-7
    32 sg:pub.10.1007/s00259-017-3907-x
    33 sg:pub.10.1007/s00259-018-3953-z
    34 sg:pub.10.1007/s00277-011-1357-2
    35 sg:pub.10.1007/s12032-014-0446-1
    36 sg:pub.10.1007/s12185-011-0822-y
    37 sg:pub.10.1007/s13139-014-0280-6
    38 schema:datePublished 2019-04-02
    39 schema:datePublishedReg 2019-04-02
    40 schema:description PurposeThe purpose of this study was to determine the prognostic value of metabolic volumetric parameters as a quantitative index on pre-treatment 18F-FDG PET/CT in addition to the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) in patients with diffuse large B-cell lymphoma (DLBCL).MethodsA total of 103 consecutive patients with DLBCL and baseline FDG PET/CT were retrospectively evaluated. Quantitative metabolic parameters, including total metabolic tumour volume (TMTV) using a standardized uptake value (SUV) of ≥2.5 as the threshold, were estimated. Receiver operating characteristic curve analysis was used to determine the optimal cut-off values for the metabolic parameters. The relationships between study variables and patient survival were tested using Cox regression analysis. Patient survival rates were derived from Kaplan-Meier curves and compared using the log-rank test.ResultsMedian follow-up was 34 months. In patients with a low TMTV (<249 cm3), the 3-year progression free survival (PFS) rate was 83% and the overall survival (OS) rate was 92%, in contrast to 41% and 57%, respectively, in those with a high TMTV (≥249 cm3). In univariate analysis, a high TMTV and NCCN-IPI ≥4 were associated with inferior PFS and OS (P < 0.0001 for all), as was a high total lesion glycolysis (P = 0.004 and P = 0.005, respectively). In multivariate analysis, TMTV and NCCN-IPI were independent predictors of PFS (hazard ratio, HR, 3.11, 95% confidence interval, CI, 1.37–7.07, P = 0.007, and HR 3.42, 95% CI 1.36–8.59, P = 0.009, respectively) and OS (HR 3.41, 95% CI 1.24–9.38, P = 0.017, and HR 5.06, 95% CI 1.46–17.60, P = 0.014, respectively). TMTV was able to separate patients with a high-risk NCCN-IPI of ≥4 (n = 62) into two groups with significantly different outcomes; patients with low TMTV (n = 16) had a 3-year PFS rate of 75% and an OS rate of 88%, while those with a high TMTV had a 3-year PFS rate of 32% and an OS rate of 47% (χ2 = 7.92, P = 0.005, and χ2 = 8.26, P = 0.004, respectively). However, regardless of TMTV, patients with a low-risk NCCN-IPI of <4 (n = 41) had excellent outcomes (3-year PFS and OS rates of 85% and 95%, respectively).ConclusionPretreatment TMTV was an independent predictor of survival in patients with DLBCL. Importantly, TMTV had an additive prognostic value in patients with a high-risk NCCN-IPI. Thus, the combination of baseline TMTV with NCCN-IPI may improve the prognostication and may be helpful guide the decision for intensive therapy and clinical trials, especially in DLBCL patients with a high-risk NCCN-IPI.
    41 schema:genre article
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N2de55a8448f64d44a197d2267bad4aa4
    44 Nf11204e2a5bf4cd7a8a4dfddf95675ea
    45 sg:journal.1297401
    46 schema:keywords B-cell lymphoma
    47 CT
    48 Cox regression analysis
    49 DLBCL patients
    50 FDG PET/CT
    51 High total metabolic tumor volume
    52 International Prognostic Index
    53 Kaplan-Meier curves
    54 NCCN-IPI
    55 National Comprehensive Cancer Network International Prognostic Index
    56 OS
    57 OS rates
    58 PET/CT
    59 PFS
    60 PFS rates
    61 PurposeThe purpose
    62 ResultsMedian
    63 addition
    64 additive prognostic value
    65 analysis
    66 baseline FDG PET/CT
    67 baseline total metabolic tumor volume
    68 characteristic curve analysis
    69 clinical trials
    70 combination
    71 consecutive patients
    72 contrast
    73 curve analysis
    74 curves
    75 decisions
    76 different outcomes
    77 diffuse large B-cell lymphoma
    78 excellent outcomes
    79 free survival rate
    80 further stratification
    81 glycolysis
    82 group
    83 high total lesion glycolysis
    84 independent predictors
    85 index
    86 inferior PFS
    87 intensive therapy
    88 large B-cell lymphoma
    89 lesion glycolysis
    90 log-rank test
    91 low TMTV
    92 lymphoma
    93 metabolic parameters
    94 metabolic tumor volume
    95 metabolic volumetric parameters
    96 months
    97 multivariate analysis
    98 outcomes
    99 overall survival rate
    100 parameters
    101 patient survival
    102 patient survival rates
    103 patients
    104 predictors
    105 prognostic index
    106 prognostic value
    107 prognostication
    108 progression-free survival rates
    109 purpose
    110 quantitative index
    111 quantitative metabolic parameters
    112 rate
    113 receiver
    114 regression analysis
    115 relationship
    116 standardized uptake value
    117 stratification
    118 study
    119 study variables
    120 survival
    121 survival rate
    122 test
    123 therapy
    124 threshold
    125 total
    126 total lesion glycolysis
    127 total metabolic tumor volume
    128 trials
    129 tumor volume
    130 univariate analysis
    131 uptake value
    132 values
    133 variables
    134 volume
    135 volumetric parameters
    136 schema:name Prognostic value of metabolic tumour volume on baseline 18F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell lymphoma: further stratification of the group with a high-risk NCCN-IPI
    137 schema:pagination 1417-1427
    138 schema:productId N0604092e7d0e4ceb8f8f54f4940b0f15
    139 N0e02360ea18d420399750df554c59463
    140 Nf354e741ae6f41b8bbf0650b91cfa4e6
    141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113179815
    142 https://doi.org/10.1007/s00259-019-04309-4
    143 schema:sdDatePublished 2022-12-01T06:39
    144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    145 schema:sdPublisher Nbd5fbbe8622246bb837a633e736ab3ed
    146 schema:url https://doi.org/10.1007/s00259-019-04309-4
    147 sgo:license sg:explorer/license/
    148 sgo:sdDataset articles
    149 rdf:type schema:ScholarlyArticle
    150 N02a81988587e4ff792e7475057741c8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Retrospective Studies
    152 rdf:type schema:DefinedTerm
    153 N04cc1587eeec4134858b3663e379d015 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Kaplan-Meier Estimate
    155 rdf:type schema:DefinedTerm
    156 N0604092e7d0e4ceb8f8f54f4940b0f15 schema:name pubmed_id
    157 schema:value 30941463
    158 rdf:type schema:PropertyValue
    159 N0af8ff9c134d46528be6b5cfce7bb8c8 rdf:first sg:person.012370144025.22
    160 rdf:rest N84d2921a7a3b486886b7989b064042d5
    161 N0dbcd90a658b4e618d9811a7a4618f21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Proportional Hazards Models
    163 rdf:type schema:DefinedTerm
    164 N0e02360ea18d420399750df554c59463 schema:name doi
    165 schema:value 10.1007/s00259-019-04309-4
    166 rdf:type schema:PropertyValue
    167 N0edcb68d807d4394979a354c3de8aa16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Tumor Burden
    169 rdf:type schema:DefinedTerm
    170 N1f7d445c56e3447ba50e9ec0b7cb236d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Disease-Free Survival
    172 rdf:type schema:DefinedTerm
    173 N2de55a8448f64d44a197d2267bad4aa4 schema:issueNumber 7
    174 rdf:type schema:PublicationIssue
    175 N304f8da9a6c74e1891663eb0979f40b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Male
    177 rdf:type schema:DefinedTerm
    178 N3341b427b228460fb4b5ae174318fecf rdf:first sg:person.0761746266.86
    179 rdf:rest Nb36ccfaf4ef64cc0beeeee780ad1ecc8
    180 N3dafd1a3054944a4a7456ce7d036bb73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Young Adult
    182 rdf:type schema:DefinedTerm
    183 N6f4b59641f7e423d97698b58a9d46724 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Disease Progression
    185 rdf:type schema:DefinedTerm
    186 N70896c9a7ded4a7c9e2295ba26cc79fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Adult
    188 rdf:type schema:DefinedTerm
    189 N74b23d576dd7496bba6e83e8b166446e rdf:first sg:person.01340117230.25
    190 rdf:rest N8013e2bc3596406f9223d0e0d46a77ab
    191 N8013e2bc3596406f9223d0e0d46a77ab rdf:first sg:person.0751347234.39
    192 rdf:rest rdf:nil
    193 N84d2921a7a3b486886b7989b064042d5 rdf:first sg:person.01333472502.31
    194 rdf:rest N96567a2ca6584778940ac7a7d6944635
    195 N8573fed54c8943c387205cbd5d53ea48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Fluorodeoxyglucose F18
    197 rdf:type schema:DefinedTerm
    198 N96567a2ca6584778940ac7a7d6944635 rdf:first sg:person.0606172266.96
    199 rdf:rest Nb866ddbbda9a45c8b46fe2842a65c5ae
    200 N97f94744513845cc95e438213c4fa6c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Positron Emission Tomography Computed Tomography
    202 rdf:type schema:DefinedTerm
    203 Na0b58ab410fb4141b7c78bf19b1f9af7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Middle Aged
    205 rdf:type schema:DefinedTerm
    206 Na4470082c9224db8b3a33bf67c1ae1e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name ROC Curve
    208 rdf:type schema:DefinedTerm
    209 Nad47fe21990f4251a1e32fb320b92749 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Female
    211 rdf:type schema:DefinedTerm
    212 Nade545b81ae34264a550076b1c258692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Prognosis
    214 rdf:type schema:DefinedTerm
    215 Nadfe5649d74c44f6b0634a0f6c1410fe rdf:first sg:person.0656745142.66
    216 rdf:rest N74b23d576dd7496bba6e83e8b166446e
    217 Nb36ccfaf4ef64cc0beeeee780ad1ecc8 rdf:first sg:person.015617314175.88
    218 rdf:rest Nadfe5649d74c44f6b0634a0f6c1410fe
    219 Nb44e083dae49466f9c9b0931dc197829 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Severity of Illness Index
    221 rdf:type schema:DefinedTerm
    222 Nb77ae4de9ec8430080cf50bc9e77e476 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Lymphoma, Large B-Cell, Diffuse
    224 rdf:type schema:DefinedTerm
    225 Nb866ddbbda9a45c8b46fe2842a65c5ae rdf:first sg:person.01313717502.49
    226 rdf:rest N3341b427b228460fb4b5ae174318fecf
    227 Nbd5fbbe8622246bb837a633e736ab3ed schema:name Springer Nature - SN SciGraph project
    228 rdf:type schema:Organization
    229 Nc26ed9c7f8264095a8d71db4d78a73de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    230 schema:name Aged
    231 rdf:type schema:DefinedTerm
    232 Ne21cd7d0c2244b5fb9e52c5689aeef5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    233 schema:name Aged, 80 and over
    234 rdf:type schema:DefinedTerm
    235 Ne522f8df60d8439aa4a3987a373a1615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    236 schema:name Adolescent
    237 rdf:type schema:DefinedTerm
    238 Nea055f04062e4045919bea06ce0b0109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    239 schema:name Humans
    240 rdf:type schema:DefinedTerm
    241 Nf11204e2a5bf4cd7a8a4dfddf95675ea schema:volumeNumber 46
    242 rdf:type schema:PublicationVolume
    243 Nf354e741ae6f41b8bbf0650b91cfa4e6 schema:name dimensions_id
    244 schema:value pub.1113179815
    245 rdf:type schema:PropertyValue
    246 Nfe753cb2392742a984b60031b91903a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    247 schema:name Progression-Free Survival
    248 rdf:type schema:DefinedTerm
    249 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    250 schema:name Medical and Health Sciences
    251 rdf:type schema:DefinedTerm
    252 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    253 schema:name Clinical Sciences
    254 rdf:type schema:DefinedTerm
    255 sg:journal.1297401 schema:issn 1619-7070
    256 1619-7089
    257 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    258 schema:publisher Springer Nature
    259 rdf:type schema:Periodical
    260 sg:person.012370144025.22 schema:affiliation grid-institutes:None
    261 schema:familyName Shagera
    262 schema:givenName Qaid Ahmed
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370144025.22
    264 rdf:type schema:Person
    265 sg:person.01313717502.49 schema:affiliation grid-institutes:grid.411725.4
    266 schema:familyName Yoo
    267 schema:givenName Min Young
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313717502.49
    269 rdf:type schema:Person
    270 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
    271 schema:familyName Cheon
    272 schema:givenName Gi Jeong
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
    274 rdf:type schema:Person
    275 sg:person.01340117230.25 schema:affiliation grid-institutes:grid.412484.f
    276 schema:familyName Yoon
    277 schema:givenName Sung-Soo
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340117230.25
    279 rdf:type schema:Person
    280 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
    281 schema:familyName Lee
    282 schema:givenName Dong Soo
    283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    284 rdf:type schema:Person
    285 sg:person.0606172266.96 schema:affiliation grid-institutes:grid.412484.f
    286 schema:familyName Koh
    287 schema:givenName Youngil
    288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606172266.96
    289 rdf:type schema:Person
    290 sg:person.0656745142.66 schema:affiliation grid-institutes:grid.266093.8
    291 schema:familyName Kim
    292 schema:givenName E. Edmund
    293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66
    294 rdf:type schema:Person
    295 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
    296 schema:familyName Chung
    297 schema:givenName June-Key
    298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
    299 rdf:type schema:Person
    300 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
    301 schema:familyName Kang
    302 schema:givenName Keon Wook
    303 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
    304 rdf:type schema:Person
    305 sg:pub.10.1007/978-3-319-40070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003944750
    306 https://doi.org/10.1007/978-3-319-40070-9
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/s00259-003-1375-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040833284
    309 https://doi.org/10.1007/s00259-003-1375-y
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/s00259-014-2705-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049401360
    312 https://doi.org/10.1007/s00259-014-2705-y
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s00259-014-2822-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003196884
    315 https://doi.org/10.1007/s00259-014-2822-7
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1007/s00259-014-2961-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008918527
    318 https://doi.org/10.1007/s00259-014-2961-x
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1007/s00259-016-3315-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039864863
    321 https://doi.org/10.1007/s00259-016-3315-7
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1007/s00259-017-3907-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100460129
    324 https://doi.org/10.1007/s00259-017-3907-x
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1007/s00259-018-3953-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101110889
    327 https://doi.org/10.1007/s00259-018-3953-z
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1007/s00277-011-1357-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044492024
    330 https://doi.org/10.1007/s00277-011-1357-2
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1007/s12032-014-0446-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039746014
    333 https://doi.org/10.1007/s12032-014-0446-1
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1007/s12185-011-0822-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004034909
    336 https://doi.org/10.1007/s12185-011-0822-y
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1007/s13139-014-0280-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003241853
    339 https://doi.org/10.1007/s13139-014-0280-6
    340 rdf:type schema:CreativeWork
    341 grid-institutes:None schema:alternateName Department of Nuclear Medicine, Althawrah Modern General Hospital, Sana’a, Yemen
    342 schema:name Department of Nuclear Medicine, Althawrah Modern General Hospital, Sana’a, Yemen
    343 Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea
    344 rdf:type schema:Organization
    345 grid-institutes:grid.266093.8 schema:alternateName Department of Radiological Sciences, University of California, Irvine, CA, USA
    346 schema:name Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea
    347 Department of Radiological Sciences, University of California, Irvine, CA, USA
    348 rdf:type schema:Organization
    349 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea
    350 schema:name Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea
    351 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
    352 Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea
    353 rdf:type schema:Organization
    354 grid-institutes:grid.411725.4 schema:alternateName Department of Nuclear Medicine, Chungbuk National University Hospital, Cheongju, South Korea
    355 schema:name Department of Nuclear Medicine, Chungbuk National University Hospital, Cheongju, South Korea
    356 Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea
    357 rdf:type schema:Organization
    358 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
    359 Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
    360 schema:name Cancer Research Institute and Radiation Medicine Institute, Seoul National University, Seoul, South Korea
    361 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
    362 Department of Nuclear Medicine, Seoul National University, College of Medicine, Daehangro 101, Jongno-gu, 03080, Seoul, South Korea
    363 Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
    364 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...