Exploratory radiomic features from integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging are associated with contemporaneous metastases in oesophageal/gastroesophageal cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Serena Baiocco, Bert-Ram Sah, Andrew Mallia, Christian Kelly-Morland, Radhouene Neji, J. James Stirling, Sami Jeljeli, Alessandro Bevilacqua, Gary J. R. Cook, Vicky Goh

ABSTRACT

PURPOSE: The purpose of this study was to determine if 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) features are associated with contemporaneous metastases in patients with oesophageal/gastroesophageal cancer. METHODS: Following IRB approval and informed consent, patients underwent a staging PET/MRI following 18F-FDG injection (326 ± 28 MBq) and 156 ± 23 min uptake time. First-order histogram and second-order grey level co-occurrence matrix features were computed for PET standardized uptake value (SUV) and MRI T1-W, T2-W, diffusion weighted (DWI) and apparent diffusion coefficient (ADC) images for the whole tumour volume. K-means clustering assessed the correlation of feature-pairs with metastases. Multivariate analysis of variance (MANOVA) was performed to assess the statistical separability of the groups identified by feature-pairs. Sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) were calculated for these features and compared with SUVmax, ADCmean and maximum diameter alone for predicting contemporaneous metastases. RESULTS: Twenty patients (18 males, 2 female; median 67 years, range 52-86) comprised the final study cohort; ten patients had metastases. Lower second-order SUV entropy combined with higher second-order ADC entropy were the best feature-pair for discriminating metastatic patients, MANOVA p value <0.001 (SN = 80%, SP = 80%, PPV = 80%, NPV = 80%, ACC = 80%). SUVmax (SN = 30%, SP = 80%, PPV = 60%, NPV = 53%, ACC = 55%), ADCmean (SN = 20%, SP = 70%, PPV = 40%, NPV = 47%, ACC = 45%) and tumour maximum diameter (SN = 10%, SP = 90%, PPV = 50%, NPV = 50%, ACC = 50%) had poorer sensitivity and accuracy. CONCLUSION: High ADC entropy combined with low SUV entropy is associated with a higher prevalence of metastases and a promising initial signature for future study. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-019-04306-7

DOI

http://dx.doi.org/10.1007/s00259-019-04306-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113042250

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30919055


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Advanced Research Center for Electronic Systems (ARCES), University of Bologna, Bologna, Italy", 
            "Department of Electrical, Electronic and Information Engineering \u201cGuglielmo Marconi\u201d (DEI), University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baiocco", 
        "givenName": "Serena", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sah", 
        "givenName": "Bert-Ram", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "King\u2019s College London & Guy\u2019s and St Thomas\u2019 PET Centre, St Thomas\u2019 Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mallia", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "King\u2019s College London & Guy\u2019s and St Thomas\u2019 PET Centre, St Thomas\u2019 Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly-Morland", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United Kingdom)", 
          "id": "https://www.grid.ac/institutes/grid.14601.32", 
          "name": [
            "MR Research Collaborations, Siemens Healthcare, Frimley, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neji", 
        "givenName": "Radhouene", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "King\u2019s College London & Guy\u2019s and St Thomas\u2019 PET Centre, St Thomas\u2019 Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stirling", 
        "givenName": "J. James", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "King\u2019s College London & Guy\u2019s and St Thomas\u2019 PET Centre, St Thomas\u2019 Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeljeli", 
        "givenName": "Sami", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Advanced Research Center for Electronic Systems (ARCES), University of Bologna, Bologna, Italy", 
            "Department of Computer Science and Engineering (DISI), University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bevilacqua", 
        "givenName": "Alessandro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "King\u2019s College London & Guy\u2019s and St Thomas\u2019 PET Centre, St Thomas\u2019 Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Gary J. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "King\u2019s College London & Guy\u2019s and St Thomas\u2019 PET Centre, St Thomas\u2019 Hospital, London, UK", 
            "Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, Lambeth Wing, St Thomas Hospital, Westminster Bridge Road, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goh", 
        "givenName": "Vicky", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.semradonc.2010.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002643015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.114.138974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007609014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.054726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013636390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2839-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020970767", 
          "https://doi.org/10.1007/s00259-014-2839-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2839-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020970767", 
          "https://doi.org/10.1007/s00259-014-2839-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021759541", 
          "https://doi.org/10.1007/s00259-016-3506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021759541", 
          "https://doi.org/10.1007/s00259-016-3506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015151169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023809829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1112088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024545289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029887555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.22.2083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030002982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030727652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.11286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030945128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.22833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035350176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/dote.12505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035705551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.110.082404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040174324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.047787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042832438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2450-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049343545", 
          "https://doi.org/10.1007/s00259-013-2450-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049448753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa055531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050751169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052156678", 
          "https://doi.org/10.1038/ng.3659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052964169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejso.2016.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053519265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/29946900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.115.163766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070928326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.116.180299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070928614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mco.2014.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071519032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-017-0282-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085007189", 
          "https://doi.org/10.1186/s13550-017-0282-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-017-0282-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085007189", 
          "https://doi.org/10.1186/s13550-017-0282-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4973-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090955302", 
          "https://doi.org/10.1007/s00330-017-4973-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4973-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090955302", 
          "https://doi.org/10.1007/s00330-017-4973-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092172193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092172193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5439-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103790209", 
          "https://doi.org/10.1007/s00330-018-5439-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0284186x.2018.1473637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104134124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0284186x.2018.1473637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104134124"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "PURPOSE: The purpose of this study was to determine if 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) features are associated with contemporaneous metastases in patients with oesophageal/gastroesophageal cancer.\nMETHODS: Following IRB approval and informed consent, patients underwent a staging PET/MRI following 18F-FDG injection (326\u2009\u00b1\u200928\u00a0MBq) and 156\u2009\u00b1\u200923\u00a0min uptake time. First-order histogram and second-order grey level co-occurrence matrix features were computed for PET standardized uptake value (SUV) and MRI T1-W, T2-W, diffusion weighted (DWI) and apparent diffusion coefficient (ADC) images for the whole tumour volume. K-means clustering assessed the correlation of feature-pairs with metastases. Multivariate analysis of variance (MANOVA) was performed to assess the statistical separability of the groups identified by feature-pairs. Sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) were calculated for these features and compared with SUVmax, ADCmean and maximum diameter alone for predicting contemporaneous metastases.\nRESULTS: Twenty patients (18 males, 2 female; median 67\u00a0years, range 52-86) comprised the final study cohort; ten patients had metastases. Lower second-order SUV entropy combined with higher second-order ADC entropy were the best feature-pair for discriminating metastatic patients, MANOVA p value <0.001 (SN\u2009=\u200980%, SP\u2009=\u200980%, PPV\u2009=\u200980%, NPV\u2009=\u200980%, ACC\u2009=\u200980%). SUVmax (SN\u2009=\u200930%, SP\u2009=\u200980%, PPV\u2009=\u200960%, NPV\u2009=\u200953%, ACC\u2009=\u200955%), ADCmean (SN\u2009=\u200920%, SP\u2009=\u200970%, PPV\u2009=\u200940%, NPV\u2009=\u200947%, ACC\u2009=\u200945%) and tumour maximum diameter (SN\u2009=\u200910%, SP\u2009=\u200990%, PPV\u2009=\u200950%, NPV\u2009=\u200950%, ACC\u2009=\u200950%) had poorer sensitivity and accuracy.\nCONCLUSION: High ADC entropy combined with low SUV entropy is associated with a higher prevalence of metastases and a promising initial signature for future study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-019-04306-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5141830", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }
    ], 
    "name": "Exploratory radiomic features from integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging are associated with contemporaneous metastases in oesophageal/gastroesophageal cancer", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "280c14fdaf4d8840f025132af63e4995fca8069ab64147414272401e4e416b26"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30919055"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-019-04306-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113042250"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-019-04306-7", 
      "https://app.dimensions.ai/details/publication/pub.1113042250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00259-019-04306-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04306-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04306-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04306-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-019-04306-7'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      57 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-019-04306-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nbe6569a0d07f4ce89e8bc1071fcd9eb6
4 schema:citation sg:pub.10.1007/s00259-013-2450-7
5 sg:pub.10.1007/s00259-014-2839-y
6 sg:pub.10.1007/s00259-016-3506-2
7 sg:pub.10.1007/s00330-017-4973-y
8 sg:pub.10.1007/s00330-018-5439-6
9 sg:pub.10.1038/ng.3659
10 sg:pub.10.1038/nmeth.2089
11 sg:pub.10.1186/s13550-017-0282-3
12 https://doi.org/10.1002/cncr.22833
13 https://doi.org/10.1002/jmri.24956
14 https://doi.org/10.1016/j.ejrad.2016.01.002
15 https://doi.org/10.1016/j.ejso.2016.11.002
16 https://doi.org/10.1016/j.radonc.2015.04.027
17 https://doi.org/10.1016/j.semradonc.2010.10.004
18 https://doi.org/10.1056/nejmoa055531
19 https://doi.org/10.1056/nejmoa1112088
20 https://doi.org/10.1080/0284186x.2018.1473637
21 https://doi.org/10.1097/mnm.0000000000000771
22 https://doi.org/10.1111/dote.12505
23 https://doi.org/10.1148/radiol.13130420
24 https://doi.org/10.1148/radiol.2015151169
25 https://doi.org/10.1200/jco.2009.22.2083
26 https://doi.org/10.1259/bjr/29946900
27 https://doi.org/10.18632/oncotarget.11286
28 https://doi.org/10.2967/jnumed.107.047787
29 https://doi.org/10.2967/jnumed.108.054726
30 https://doi.org/10.2967/jnumed.110.082404
31 https://doi.org/10.2967/jnumed.114.138974
32 https://doi.org/10.2967/jnumed.115.163766
33 https://doi.org/10.2967/jnumed.116.180299
34 https://doi.org/10.3892/mco.2014.238
35 schema:datePublished 2019-03-27
36 schema:datePublishedReg 2019-03-27
37 schema:description PURPOSE: The purpose of this study was to determine if 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) features are associated with contemporaneous metastases in patients with oesophageal/gastroesophageal cancer. METHODS: Following IRB approval and informed consent, patients underwent a staging PET/MRI following 18F-FDG injection (326 ± 28 MBq) and 156 ± 23 min uptake time. First-order histogram and second-order grey level co-occurrence matrix features were computed for PET standardized uptake value (SUV) and MRI T1-W, T2-W, diffusion weighted (DWI) and apparent diffusion coefficient (ADC) images for the whole tumour volume. K-means clustering assessed the correlation of feature-pairs with metastases. Multivariate analysis of variance (MANOVA) was performed to assess the statistical separability of the groups identified by feature-pairs. Sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) were calculated for these features and compared with SUVmax, ADCmean and maximum diameter alone for predicting contemporaneous metastases. RESULTS: Twenty patients (18 males, 2 female; median 67 years, range 52-86) comprised the final study cohort; ten patients had metastases. Lower second-order SUV entropy combined with higher second-order ADC entropy were the best feature-pair for discriminating metastatic patients, MANOVA p value <0.001 (SN = 80%, SP = 80%, PPV = 80%, NPV = 80%, ACC = 80%). SUVmax (SN = 30%, SP = 80%, PPV = 60%, NPV = 53%, ACC = 55%), ADCmean (SN = 20%, SP = 70%, PPV = 40%, NPV = 47%, ACC = 45%) and tumour maximum diameter (SN = 10%, SP = 90%, PPV = 50%, NPV = 50%, ACC = 50%) had poorer sensitivity and accuracy. CONCLUSION: High ADC entropy combined with low SUV entropy is associated with a higher prevalence of metastases and a promising initial signature for future study.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf sg:journal.1297401
42 schema:name Exploratory radiomic features from integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging are associated with contemporaneous metastases in oesophageal/gastroesophageal cancer
43 schema:pagination 1-7
44 schema:productId N59ebd59d889d4301bfa1f7c8dadb3e61
45 N6950132ec39b4455b96757d4ee6a847c
46 N6952a8a3163f4131810992fe11965b75
47 N6a22a8cc86234573b4501fbac88c4826
48 N854c216cacf246f5a0efd5bee5fafba4
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113042250
50 https://doi.org/10.1007/s00259-019-04306-7
51 schema:sdDatePublished 2019-04-11T13:17
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N3a94d13462a943c3bfb61338f08bb44f
54 schema:url https://link.springer.com/10.1007%2Fs00259-019-04306-7
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N00ca182b823945379e16d0d51ee24ac5 rdf:first N99070400fefe43858f31524c7f901bc6
59 rdf:rest Nd7c743d9ca17429e981494b78413836e
60 N05e02ef8b1794337bf7dd799e1579067 schema:affiliation https://www.grid.ac/institutes/grid.425213.3
61 schema:familyName Stirling
62 schema:givenName J. James
63 rdf:type schema:Person
64 N07fc2c280cc341aa90c7ce13fd373ef2 rdf:first N75ae9dfd5052494c8d9a9a79497149b8
65 rdf:rest N4e7414830e3a4c5f8f1d7ee3a92d6386
66 N0e19fb74d8404857b8f6ca11bc196a22 schema:affiliation https://www.grid.ac/institutes/grid.425213.3
67 schema:familyName Mallia
68 schema:givenName Andrew
69 rdf:type schema:Person
70 N1917e64f245547aaac4bda6cf9e0472d rdf:first N52c901355bfd478cb8b5b4d191e671bb
71 rdf:rest N2aecd92346d04a5b84ea188c8dbb0591
72 N2aecd92346d04a5b84ea188c8dbb0591 rdf:first N6bcb344c3bcc4279963a089112f8696e
73 rdf:rest N07fc2c280cc341aa90c7ce13fd373ef2
74 N3a94d13462a943c3bfb61338f08bb44f schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N4e7414830e3a4c5f8f1d7ee3a92d6386 rdf:first N608057e12e3c437a97221b2d73ef1831
77 rdf:rest rdf:nil
78 N52c901355bfd478cb8b5b4d191e671bb schema:affiliation https://www.grid.ac/institutes/grid.425213.3
79 schema:familyName Jeljeli
80 schema:givenName Sami
81 rdf:type schema:Person
82 N59ebd59d889d4301bfa1f7c8dadb3e61 schema:name nlm_unique_id
83 schema:value 101140988
84 rdf:type schema:PropertyValue
85 N608057e12e3c437a97221b2d73ef1831 schema:affiliation https://www.grid.ac/institutes/grid.425213.3
86 schema:familyName Goh
87 schema:givenName Vicky
88 rdf:type schema:Person
89 N6950132ec39b4455b96757d4ee6a847c schema:name pubmed_id
90 schema:value 30919055
91 rdf:type schema:PropertyValue
92 N6952a8a3163f4131810992fe11965b75 schema:name dimensions_id
93 schema:value pub.1113042250
94 rdf:type schema:PropertyValue
95 N6a22a8cc86234573b4501fbac88c4826 schema:name doi
96 schema:value 10.1007/s00259-019-04306-7
97 rdf:type schema:PropertyValue
98 N6bcb344c3bcc4279963a089112f8696e schema:affiliation https://www.grid.ac/institutes/grid.6292.f
99 schema:familyName Bevilacqua
100 schema:givenName Alessandro
101 rdf:type schema:Person
102 N75ae9dfd5052494c8d9a9a79497149b8 schema:affiliation https://www.grid.ac/institutes/grid.425213.3
103 schema:familyName Cook
104 schema:givenName Gary J. R.
105 rdf:type schema:Person
106 N7af08b5a6902426e904ba5aff492d3bc rdf:first N05e02ef8b1794337bf7dd799e1579067
107 rdf:rest N1917e64f245547aaac4bda6cf9e0472d
108 N854c216cacf246f5a0efd5bee5fafba4 schema:name readcube_id
109 schema:value 280c14fdaf4d8840f025132af63e4995fca8069ab64147414272401e4e416b26
110 rdf:type schema:PropertyValue
111 N99070400fefe43858f31524c7f901bc6 schema:affiliation https://www.grid.ac/institutes/grid.425213.3
112 schema:familyName Kelly-Morland
113 schema:givenName Christian
114 rdf:type schema:Person
115 N9caece4799ab4eeaa914cb1c7b3e3588 rdf:first Nf82f04c5b0c84b4f83803bcc87fa0dee
116 rdf:rest Nd74e1bd6ce7f4df184558ce981746c0f
117 Na4eb2d4efe874f6882ec597ce0755ca7 schema:affiliation https://www.grid.ac/institutes/grid.14601.32
118 schema:familyName Neji
119 schema:givenName Radhouene
120 rdf:type schema:Person
121 Nbe6569a0d07f4ce89e8bc1071fcd9eb6 rdf:first Nc70bbe520db64e20951529a76b145836
122 rdf:rest N9caece4799ab4eeaa914cb1c7b3e3588
123 Nc70bbe520db64e20951529a76b145836 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
124 schema:familyName Baiocco
125 schema:givenName Serena
126 rdf:type schema:Person
127 Nd74e1bd6ce7f4df184558ce981746c0f rdf:first N0e19fb74d8404857b8f6ca11bc196a22
128 rdf:rest N00ca182b823945379e16d0d51ee24ac5
129 Nd7c743d9ca17429e981494b78413836e rdf:first Na4eb2d4efe874f6882ec597ce0755ca7
130 rdf:rest N7af08b5a6902426e904ba5aff492d3bc
131 Nf82f04c5b0c84b4f83803bcc87fa0dee schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
132 schema:familyName Sah
133 schema:givenName Bert-Ram
134 rdf:type schema:Person
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
139 schema:name Clinical Sciences
140 rdf:type schema:DefinedTerm
141 sg:grant.5141830 http://pending.schema.org/fundedItem sg:pub.10.1007/s00259-019-04306-7
142 rdf:type schema:MonetaryGrant
143 sg:journal.1297401 schema:issn 1619-7070
144 1619-7089
145 schema:name European Journal of Nuclear Medicine and Molecular Imaging
146 rdf:type schema:Periodical
147 sg:pub.10.1007/s00259-013-2450-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049343545
148 https://doi.org/10.1007/s00259-013-2450-7
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00259-014-2839-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020970767
151 https://doi.org/10.1007/s00259-014-2839-y
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00259-016-3506-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021759541
154 https://doi.org/10.1007/s00259-016-3506-2
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00330-017-4973-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090955302
157 https://doi.org/10.1007/s00330-017-4973-y
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00330-018-5439-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103790209
160 https://doi.org/10.1007/s00330-018-5439-6
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ng.3659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052156678
163 https://doi.org/10.1038/ng.3659
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
166 https://doi.org/10.1038/nmeth.2089
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/s13550-017-0282-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085007189
169 https://doi.org/10.1186/s13550-017-0282-3
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/cncr.22833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035350176
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/jmri.24956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049448753
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ejrad.2016.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052964169
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ejso.2016.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053519265
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.radonc.2015.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029887555
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.semradonc.2010.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002643015
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1056/nejmoa055531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050751169
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1056/nejmoa1112088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024545289
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/0284186x.2018.1473637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104134124
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/mnm.0000000000000771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092172193
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/dote.12505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035705551
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1148/radiol.13130420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030727652
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1148/radiol.2015151169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809829
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1200/jco.2009.22.2083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030002982
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1259/bjr/29946900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568911
200 rdf:type schema:CreativeWork
201 https://doi.org/10.18632/oncotarget.11286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030945128
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2967/jnumed.107.047787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042832438
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2967/jnumed.110.082404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040174324
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2967/jnumed.114.138974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007609014
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2967/jnumed.115.163766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928326
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2967/jnumed.116.180299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928614
214 rdf:type schema:CreativeWork
215 https://doi.org/10.3892/mco.2014.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071519032
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
218 schema:name Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.14601.32 schema:alternateName Siemens (United Kingdom)
221 schema:name MR Research Collaborations, Siemens Healthcare, Frimley, UK
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.425213.3 schema:alternateName St Thomas' Hospital
224 schema:name Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, Lambeth Wing, St Thomas Hospital, Westminster Bridge Road, SE1 7EH, London, UK
225 Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
226 King’s College London & Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, UK
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
229 schema:name Advanced Research Center for Electronic Systems (ARCES), University of Bologna, Bologna, Italy
230 Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
231 Department of Computer Science and Engineering (DISI), University of Bologna, Bologna, Italy
232 Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna, Italy
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...