Discovery of pre-therapy 2-deoxy-2-18F-fluoro-D-glucose positron emission tomography-based radiomics classifiers of survival outcome in non-small-cell lung cancer patients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02

AUTHORS

Mubarik A. Arshad, Andrew Thornton, Haonan Lu, Henry Tam, Kathryn Wallitt, Nicola Rodgers, Andrew Scarsbrook, Garry McDermott, Gary J. Cook, David Landau, Sue Chua, Richard O’Connor, Jeanette Dickson, Danielle A. Power, Tara D. Barwick, Andrea Rockall, Eric O. Aboagye

ABSTRACT

PURPOSE: The aim of this multi-center study was to discover and validate radiomics classifiers as image-derived biomarkers for risk stratification of non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS: Pre-therapy PET scans from a total of 358 Stage I-III NSCLC patients scheduled for radiotherapy/chemo-radiotherapy acquired between October 2008 and December 2013 were included in this seven-institution study. A semi-automatic threshold method was used to segment the primary tumors. Radiomics predictive classifiers were derived from a training set of 133 scans using TexLAB v2. Least absolute shrinkage and selection operator (LASSO) regression analysis was used for data dimension reduction and radiomics feature vector (FV) discovery. Multivariable analysis was performed to establish the relationship between FV, stage and overall survival (OS). Performance of the optimal FV was tested in an independent validation set of 204 patients, and a further independent set of 21 (TESTI) patients. RESULTS: Of 358 patients, 249 died within the follow-up period [median 22 (range 0-85) months]. From each primary tumor, 665 three-dimensional radiomics features from each of seven gray levels were extracted. The most predictive feature vector discovered (FVX) was independent of known prognostic factors, such as stage and tumor volume, and of interest to multi-center studies, invariant to the type of PET/CT manufacturer. Using the median cut-off, FVX predicted a 14-month survival difference in the validation cohort (N = 204, p = 0.00465; HR = 1.61, 95% CI 1.16-2.24). In the TESTI cohort, a smaller cohort that presented with unusually poor survival of stage I cancers, FVX correctly indicated a lack of survival difference (N = 21, p = 0.501). In contrast to the radiomics classifier, clinically routine PET variables including SUVmax, SUVmean and SUVpeak lacked any prognostic information. CONCLUSION: PET-based radiomics classifiers derived from routine pre-treatment imaging possess intrinsic prognostic information for risk stratification of NSCLC patients to radiotherapy/chemo-radiotherapy. More... »

PAGES

455-466

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-018-4139-4

DOI

http://dx.doi.org/10.1007/s00259-018-4139-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106466984

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30173391


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Charing Cross Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413820.c", 
          "name": [
            "Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK", 
            "Imperial College Healthcare NHS Trust, Departments of Clinical Oncology, Radiology and Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London, UK", 
            "Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arshad", 
        "givenName": "Mubarik A.", 
        "id": "sg:person.01174752674.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174752674.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hammersmith Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413629.b", 
          "name": [
            "Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thornton", 
        "givenName": "Andrew", 
        "id": "sg:person.012646575564.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012646575564.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hammersmith Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413629.b", 
          "name": [
            "Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Haonan", 
        "id": "sg:person.016401334405.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401334405.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charing Cross Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413820.c", 
          "name": [
            "Imperial College Healthcare NHS Trust, Departments of Clinical Oncology, Radiology and Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London, UK", 
            "Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tam", 
        "givenName": "Henry", 
        "id": "sg:person.015211112657.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015211112657.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charing Cross Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413820.c", 
          "name": [
            "Imperial College Healthcare NHS Trust, Departments of Clinical Oncology, Radiology and Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London, UK", 
            "Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wallitt", 
        "givenName": "Kathryn", 
        "id": "sg:person.016076333407.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076333407.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hammersmith Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413629.b", 
          "name": [
            "Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodgers", 
        "givenName": "Nicola", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leeds", 
          "id": "https://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "Department of Nuclear Medicine, Level 1, Bexley Wing, St James\u2019s University Hospital, Beckett Street, LS9 7TF, Leeds, UK", 
            "Leeds Institute of Cancer and Pathology, School of Medicine, University of Leeds, Leeds, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scarsbrook", 
        "givenName": "Andrew", 
        "id": "sg:person.01050161143.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050161143.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St James's University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.443984.6", 
          "name": [
            "Department of Nuclear Medicine, Level 1, Bexley Wing, St James\u2019s University Hospital, Beckett Street, LS9 7TF, Leeds, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDermott", 
        "givenName": "Garry", 
        "id": "sg:person.0622705435.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622705435.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, St. Thomas\u2019 Hospital, Westminster Bridge Rd, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Gary J.", 
        "id": "sg:person.0742235171.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742235171.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, St. Thomas\u2019 Hospital, Westminster Bridge Rd, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landau", 
        "givenName": "David", 
        "id": "sg:person.0651165174.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651165174.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Marsden Hospital", 
          "id": "https://www.grid.ac/institutes/grid.424926.f", 
          "name": [
            "Department of Nuclear Medicine, The Royal Marsden Hospital, Downs Rd, Sutton, SM2 5PT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chua", 
        "givenName": "Sue", 
        "id": "sg:person.0737666052.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737666052.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.415598.4", 
          "name": [
            "Department of Nuclear Medicine, Queen\u2019s Medical Centre, Nottingham University Hospital, Derby Rd, NG7 2UH, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Connor", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mount Vernon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416188.2", 
          "name": [
            "Department of Clinical Oncology, Mount Vernon Hospital, Rickmansworth Road, HA6 2RN, Northwood, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dickson", 
        "givenName": "Jeanette", 
        "id": "sg:person.01210427054.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210427054.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charing Cross Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413820.c", 
          "name": [
            "Imperial College Healthcare NHS Trust, Departments of Clinical Oncology, Radiology and Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London, UK", 
            "Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Power", 
        "givenName": "Danielle A.", 
        "id": "sg:person.012643163151.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012643163151.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charing Cross Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413820.c", 
          "name": [
            "Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK", 
            "Imperial College Healthcare NHS Trust, Departments of Clinical Oncology, Radiology and Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London, UK", 
            "Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barwick", 
        "givenName": "Tara D.", 
        "id": "sg:person.0650545374.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650545374.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charing Cross Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413820.c", 
          "name": [
            "Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK", 
            "Imperial College Healthcare NHS Trust, Departments of Clinical Oncology, Radiology and Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London, UK", 
            "Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rockall", 
        "givenName": "Andrea", 
        "id": "sg:person.0767534533.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767534533.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hammersmith Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413629.b", 
          "name": [
            "Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aboagye", 
        "givenName": "Eric O.", 
        "id": "sg:person.01000053751.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000053751.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1378/chest.12-2346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001889235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.12-2354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002036419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(83)90032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002976464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e31815e6d6b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004936335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2961-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008918527", 
          "https://doi.org/10.1007/s00259-014-2961-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2961-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008918527", 
          "https://doi.org/10.1007/s00259-014-2961-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.20107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009055747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0102107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009129057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009434179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0124165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010444870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-4937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014805939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0094017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016613484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018285655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018285655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.12.7878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022697035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-8-294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528209", 
          "https://doi.org/10.1186/1748-717x-8-294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028519566", 
          "https://doi.org/10.1038/nrc3775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0000000000000185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033223508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038280199", 
          "https://doi.org/10.1038/srep11075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/0284186x.2010.498437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039241763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fonc.2016.00071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040319901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041261140", 
          "https://doi.org/10.1038/nrc3064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.12-2345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041602040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046584781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047563572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pme.14.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047904208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048850628", 
          "https://doi.org/10.1038/nbt1306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/58/2/187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5152/balkanmedj.2016.140530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072632100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077317490", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2218-6751.2013.03.09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079061437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.17856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085419070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3753-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090385721", 
          "https://doi.org/10.1007/s00259-017-3753-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3753-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090385721", 
          "https://doi.org/10.1007/s00259-017-3753-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3837-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091910879", 
          "https://doi.org/10.1007/s00259-017-3837-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "PURPOSE: The aim of this multi-center study was to discover and validate radiomics classifiers as image-derived biomarkers for risk stratification of non-small-cell lung cancer (NSCLC).\nPATIENTS AND METHODS: Pre-therapy PET scans from a total of 358 Stage I-III NSCLC patients scheduled for radiotherapy/chemo-radiotherapy acquired between October 2008 and December 2013 were included in this seven-institution study. A semi-automatic threshold method was used to segment the primary tumors. Radiomics predictive classifiers were derived from a training set of 133 scans using TexLAB v2. Least absolute shrinkage and selection operator (LASSO) regression analysis was used for data dimension reduction and radiomics feature vector (FV) discovery. Multivariable analysis was performed to establish the relationship between FV, stage and overall survival (OS). Performance of the optimal FV was tested in an independent validation set of 204 patients, and a further independent set of 21 (TESTI) patients.\nRESULTS: Of 358 patients, 249 died within the follow-up period [median 22 (range 0-85) months]. From each primary tumor, 665 three-dimensional radiomics features from each of seven gray levels were extracted. The most predictive feature vector discovered (FVX) was independent of known prognostic factors, such as stage and tumor volume, and of interest to multi-center studies, invariant to the type of PET/CT manufacturer. Using the median cut-off, FVX predicted a 14-month survival difference in the validation cohort (N\u00a0=\u2009204, p\u00a0=\u20090.00465; HR\u2009=\u20091.61, 95% CI 1.16-2.24). In the TESTI cohort, a smaller cohort that presented with unusually poor survival of stage I cancers, FVX correctly indicated a lack of survival difference (N\u00a0=\u200921, p\u00a0=\u20090.501). In contrast to the radiomics classifier, clinically routine PET variables including SUVmax, SUVmean and SUVpeak lacked any prognostic information.\nCONCLUSION: PET-based radiomics classifiers derived from routine pre-treatment imaging possess intrinsic prognostic information for risk stratification of NSCLC patients to radiotherapy/chemo-radiotherapy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-018-4139-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5138313", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5498781", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Discovery of pre-therapy 2-deoxy-2-18F-fluoro-D-glucose positron emission tomography-based radiomics classifiers of survival outcome in non-small-cell lung cancer patients", 
    "pagination": "455-466", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "17b16e7b19863ba18b17aaf91ae3393f5ce0a86c2b6f6109052949cc995ea9e8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30173391"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-018-4139-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106466984"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-018-4139-4", 
      "https://app.dimensions.ai/details/publication/pub.1106466984"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100806_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00259-018-4139-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4139-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4139-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4139-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4139-4'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-018-4139-4 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N3f3f8e9fc02b4f77885e565d6c497f6d
4 schema:citation sg:pub.10.1007/s00259-014-2961-x
5 sg:pub.10.1007/s00259-017-3753-x
6 sg:pub.10.1007/s00259-017-3837-7
7 sg:pub.10.1038/nbt1306
8 sg:pub.10.1038/ncomms5006
9 sg:pub.10.1038/nrc3064
10 sg:pub.10.1038/nrc3775
11 sg:pub.10.1038/srep11075
12 sg:pub.10.1186/1748-717x-8-294
13 https://app.dimensions.ai/details/publication/pub.1077317490
14 https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
15 https://doi.org/10.1016/0734-189x(83)90032-4
16 https://doi.org/10.1016/j.compbiomed.2014.04.014
17 https://doi.org/10.1016/j.radonc.2012.12.003
18 https://doi.org/10.1088/0031-9155/58/2/187
19 https://doi.org/10.1097/jto.0000000000000185
20 https://doi.org/10.1097/jto.0b013e31815e6d6b
21 https://doi.org/10.1126/science.1253462
22 https://doi.org/10.1126/science.1256930
23 https://doi.org/10.1158/1078-0432.ccr-07-4937
24 https://doi.org/10.1200/jco.2007.12.7878
25 https://doi.org/10.1371/journal.pone.0094017
26 https://doi.org/10.1371/journal.pone.0102107
27 https://doi.org/10.1371/journal.pone.0124165
28 https://doi.org/10.1378/chest.12-2345
29 https://doi.org/10.1378/chest.12-2346
30 https://doi.org/10.1378/chest.12-2354
31 https://doi.org/10.18632/oncotarget.17856
32 https://doi.org/10.2217/pme.14.19
33 https://doi.org/10.3109/0284186x.2010.498437
34 https://doi.org/10.3322/caac.20107
35 https://doi.org/10.3389/fonc.2016.00071
36 https://doi.org/10.3978/j.issn.2218-6751.2013.03.09
37 https://doi.org/10.5152/balkanmedj.2016.140530
38 schema:datePublished 2019-02
39 schema:datePublishedReg 2019-02-01
40 schema:description PURPOSE: The aim of this multi-center study was to discover and validate radiomics classifiers as image-derived biomarkers for risk stratification of non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS: Pre-therapy PET scans from a total of 358 Stage I-III NSCLC patients scheduled for radiotherapy/chemo-radiotherapy acquired between October 2008 and December 2013 were included in this seven-institution study. A semi-automatic threshold method was used to segment the primary tumors. Radiomics predictive classifiers were derived from a training set of 133 scans using TexLAB v2. Least absolute shrinkage and selection operator (LASSO) regression analysis was used for data dimension reduction and radiomics feature vector (FV) discovery. Multivariable analysis was performed to establish the relationship between FV, stage and overall survival (OS). Performance of the optimal FV was tested in an independent validation set of 204 patients, and a further independent set of 21 (TESTI) patients. RESULTS: Of 358 patients, 249 died within the follow-up period [median 22 (range 0-85) months]. From each primary tumor, 665 three-dimensional radiomics features from each of seven gray levels were extracted. The most predictive feature vector discovered (FVX) was independent of known prognostic factors, such as stage and tumor volume, and of interest to multi-center studies, invariant to the type of PET/CT manufacturer. Using the median cut-off, FVX predicted a 14-month survival difference in the validation cohort (N = 204, p = 0.00465; HR = 1.61, 95% CI 1.16-2.24). In the TESTI cohort, a smaller cohort that presented with unusually poor survival of stage I cancers, FVX correctly indicated a lack of survival difference (N = 21, p = 0.501). In contrast to the radiomics classifier, clinically routine PET variables including SUVmax, SUVmean and SUVpeak lacked any prognostic information. CONCLUSION: PET-based radiomics classifiers derived from routine pre-treatment imaging possess intrinsic prognostic information for risk stratification of NSCLC patients to radiotherapy/chemo-radiotherapy.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N14d86a8e4d4c44458818a086041e0ff8
45 Nc4c1106cb52741309affd0b2f4c39922
46 sg:journal.1297401
47 schema:name Discovery of pre-therapy 2-deoxy-2-18F-fluoro-D-glucose positron emission tomography-based radiomics classifiers of survival outcome in non-small-cell lung cancer patients
48 schema:pagination 455-466
49 schema:productId N6a7ff55ea2e64703996d3de7cd1ebd65
50 N6e1ade065b794ca396dbcdb1193e46cd
51 N936b9aa54bef4448af0ec2e6aa4c55e5
52 Na6203935022b4d998139ad834f6bacee
53 Nb997bd1c62ed4afeb5693c06f93c86bf
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106466984
55 https://doi.org/10.1007/s00259-018-4139-4
56 schema:sdDatePublished 2019-04-11T08:57
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N136d9b4c67c448a9b62d392f6a9a6418
59 schema:url https://link.springer.com/10.1007%2Fs00259-018-4139-4
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N125e6293fae7484f8878dfb90e3c587e rdf:first sg:person.012646575564.07
64 rdf:rest Nd8d7679759474ca5b73a3bf0fd6682b7
65 N136d9b4c67c448a9b62d392f6a9a6418 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N14d86a8e4d4c44458818a086041e0ff8 schema:volumeNumber 46
68 rdf:type schema:PublicationVolume
69 N1f92f9f4b25842279caf7f8ea65030d2 rdf:first sg:person.0737666052.34
70 rdf:rest Nec0d3e3a52404fc5bff8a1c3b8901839
71 N2874da5677404d8db3059c1ed32ac29b rdf:first sg:person.01050161143.46
72 rdf:rest N4ee6b8378c6d4399b128855c5990fa46
73 N32955a9ba5304cadae7e4140d7d0974f schema:affiliation https://www.grid.ac/institutes/grid.413629.b
74 schema:familyName Rodgers
75 schema:givenName Nicola
76 rdf:type schema:Person
77 N3b835c4bf9724c2b86589e6bfaf3fd0b rdf:first sg:person.0650545374.67
78 rdf:rest N4b3bfc7cb2dd4571a0f8fac514dc332c
79 N3f3f8e9fc02b4f77885e565d6c497f6d rdf:first sg:person.01174752674.90
80 rdf:rest N125e6293fae7484f8878dfb90e3c587e
81 N47f3449b23024f8cb19601fcf02b7555 rdf:first sg:person.016076333407.31
82 rdf:rest Ne8addf0989aa41099177096addbe18d2
83 N4b3bfc7cb2dd4571a0f8fac514dc332c rdf:first sg:person.0767534533.05
84 rdf:rest N9f3e117aee6c4f48ad6f8ab69acc9e59
85 N4ee6b8378c6d4399b128855c5990fa46 rdf:first sg:person.0622705435.13
86 rdf:rest Nf19341a02db44062a18badd64a2f7ec9
87 N6a7ff55ea2e64703996d3de7cd1ebd65 schema:name pubmed_id
88 schema:value 30173391
89 rdf:type schema:PropertyValue
90 N6e1ade065b794ca396dbcdb1193e46cd schema:name doi
91 schema:value 10.1007/s00259-018-4139-4
92 rdf:type schema:PropertyValue
93 N936b9aa54bef4448af0ec2e6aa4c55e5 schema:name dimensions_id
94 schema:value pub.1106466984
95 rdf:type schema:PropertyValue
96 N9f3e117aee6c4f48ad6f8ab69acc9e59 rdf:first sg:person.01000053751.67
97 rdf:rest rdf:nil
98 Na4bbad4d9b6747cdae0a8747f6e5a4c0 rdf:first sg:person.01210427054.90
99 rdf:rest Nfa88e9e815414b9c80f9fd8a17854df6
100 Na6203935022b4d998139ad834f6bacee schema:name nlm_unique_id
101 schema:value 101140988
102 rdf:type schema:PropertyValue
103 Nb997bd1c62ed4afeb5693c06f93c86bf schema:name readcube_id
104 schema:value 17b16e7b19863ba18b17aaf91ae3393f5ce0a86c2b6f6109052949cc995ea9e8
105 rdf:type schema:PropertyValue
106 Nc4c1106cb52741309affd0b2f4c39922 schema:issueNumber 2
107 rdf:type schema:PublicationIssue
108 Nc5eafc996629440da26e6970120d5da3 schema:affiliation https://www.grid.ac/institutes/grid.415598.4
109 schema:familyName O’Connor
110 schema:givenName Richard
111 rdf:type schema:Person
112 Nc86e4ef6ead744f992a8bb130fca2b31 rdf:first sg:person.015211112657.10
113 rdf:rest N47f3449b23024f8cb19601fcf02b7555
114 Nd8d7679759474ca5b73a3bf0fd6682b7 rdf:first sg:person.016401334405.95
115 rdf:rest Nc86e4ef6ead744f992a8bb130fca2b31
116 Ne8addf0989aa41099177096addbe18d2 rdf:first N32955a9ba5304cadae7e4140d7d0974f
117 rdf:rest N2874da5677404d8db3059c1ed32ac29b
118 Ne95577b5ef244302b1ebfc74431b4e3b rdf:first sg:person.0651165174.14
119 rdf:rest N1f92f9f4b25842279caf7f8ea65030d2
120 Nec0d3e3a52404fc5bff8a1c3b8901839 rdf:first Nc5eafc996629440da26e6970120d5da3
121 rdf:rest Na4bbad4d9b6747cdae0a8747f6e5a4c0
122 Nf19341a02db44062a18badd64a2f7ec9 rdf:first sg:person.0742235171.27
123 rdf:rest Ne95577b5ef244302b1ebfc74431b4e3b
124 Nfa88e9e815414b9c80f9fd8a17854df6 rdf:first sg:person.012643163151.24
125 rdf:rest N3b835c4bf9724c2b86589e6bfaf3fd0b
126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical and Health Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
130 schema:name Oncology and Carcinogenesis
131 rdf:type schema:DefinedTerm
132 sg:grant.5138313 http://pending.schema.org/fundedItem sg:pub.10.1007/s00259-018-4139-4
133 rdf:type schema:MonetaryGrant
134 sg:grant.5498781 http://pending.schema.org/fundedItem sg:pub.10.1007/s00259-018-4139-4
135 rdf:type schema:MonetaryGrant
136 sg:journal.1297401 schema:issn 1619-7070
137 1619-7089
138 schema:name European Journal of Nuclear Medicine and Molecular Imaging
139 rdf:type schema:Periodical
140 sg:person.01000053751.67 schema:affiliation https://www.grid.ac/institutes/grid.413629.b
141 schema:familyName Aboagye
142 schema:givenName Eric O.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000053751.67
144 rdf:type schema:Person
145 sg:person.01050161143.46 schema:affiliation https://www.grid.ac/institutes/grid.9909.9
146 schema:familyName Scarsbrook
147 schema:givenName Andrew
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050161143.46
149 rdf:type schema:Person
150 sg:person.01174752674.90 schema:affiliation https://www.grid.ac/institutes/grid.413820.c
151 schema:familyName Arshad
152 schema:givenName Mubarik A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174752674.90
154 rdf:type schema:Person
155 sg:person.01210427054.90 schema:affiliation https://www.grid.ac/institutes/grid.416188.2
156 schema:familyName Dickson
157 schema:givenName Jeanette
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210427054.90
159 rdf:type schema:Person
160 sg:person.012643163151.24 schema:affiliation https://www.grid.ac/institutes/grid.413820.c
161 schema:familyName Power
162 schema:givenName Danielle A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012643163151.24
164 rdf:type schema:Person
165 sg:person.012646575564.07 schema:affiliation https://www.grid.ac/institutes/grid.413629.b
166 schema:familyName Thornton
167 schema:givenName Andrew
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012646575564.07
169 rdf:type schema:Person
170 sg:person.015211112657.10 schema:affiliation https://www.grid.ac/institutes/grid.413820.c
171 schema:familyName Tam
172 schema:givenName Henry
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015211112657.10
174 rdf:type schema:Person
175 sg:person.016076333407.31 schema:affiliation https://www.grid.ac/institutes/grid.413820.c
176 schema:familyName Wallitt
177 schema:givenName Kathryn
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076333407.31
179 rdf:type schema:Person
180 sg:person.016401334405.95 schema:affiliation https://www.grid.ac/institutes/grid.413629.b
181 schema:familyName Lu
182 schema:givenName Haonan
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401334405.95
184 rdf:type schema:Person
185 sg:person.0622705435.13 schema:affiliation https://www.grid.ac/institutes/grid.443984.6
186 schema:familyName McDermott
187 schema:givenName Garry
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622705435.13
189 rdf:type schema:Person
190 sg:person.0650545374.67 schema:affiliation https://www.grid.ac/institutes/grid.413820.c
191 schema:familyName Barwick
192 schema:givenName Tara D.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650545374.67
194 rdf:type schema:Person
195 sg:person.0651165174.14 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
196 schema:familyName Landau
197 schema:givenName David
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651165174.14
199 rdf:type schema:Person
200 sg:person.0737666052.34 schema:affiliation https://www.grid.ac/institutes/grid.424926.f
201 schema:familyName Chua
202 schema:givenName Sue
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737666052.34
204 rdf:type schema:Person
205 sg:person.0742235171.27 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
206 schema:familyName Cook
207 schema:givenName Gary J.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742235171.27
209 rdf:type schema:Person
210 sg:person.0767534533.05 schema:affiliation https://www.grid.ac/institutes/grid.413820.c
211 schema:familyName Rockall
212 schema:givenName Andrea
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767534533.05
214 rdf:type schema:Person
215 sg:pub.10.1007/s00259-014-2961-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008918527
216 https://doi.org/10.1007/s00259-014-2961-x
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s00259-017-3753-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1090385721
219 https://doi.org/10.1007/s00259-017-3753-x
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00259-017-3837-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091910879
222 https://doi.org/10.1007/s00259-017-3837-7
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nbt1306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048850628
225 https://doi.org/10.1038/nbt1306
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
228 https://doi.org/10.1038/ncomms5006
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nrc3064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041261140
231 https://doi.org/10.1038/nrc3064
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nrc3775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028519566
234 https://doi.org/10.1038/nrc3775
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/srep11075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038280199
237 https://doi.org/10.1038/srep11075
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1748-717x-8-294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528209
240 https://doi.org/10.1186/1748-717x-8-294
241 rdf:type schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1077317490 schema:CreativeWork
243 https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009434179
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/0734-189x(83)90032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002976464
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.compbiomed.2014.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002389601
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.radonc.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047563572
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1088/0031-9155/58/2/187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029964
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1097/jto.0000000000000185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033223508
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1097/jto.0b013e31815e6d6b schema:sameAs https://app.dimensions.ai/details/publication/pub.1004936335
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1126/science.1253462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046584781
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1126/science.1256930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018285655
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1158/1078-0432.ccr-07-4937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014805939
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1200/jco.2007.12.7878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022697035
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1371/journal.pone.0094017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016613484
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1371/journal.pone.0102107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009129057
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1371/journal.pone.0124165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010444870
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1378/chest.12-2345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041602040
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1378/chest.12-2346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001889235
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1378/chest.12-2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002036419
276 rdf:type schema:CreativeWork
277 https://doi.org/10.18632/oncotarget.17856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085419070
278 rdf:type schema:CreativeWork
279 https://doi.org/10.2217/pme.14.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047904208
280 rdf:type schema:CreativeWork
281 https://doi.org/10.3109/0284186x.2010.498437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039241763
282 rdf:type schema:CreativeWork
283 https://doi.org/10.3322/caac.20107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009055747
284 rdf:type schema:CreativeWork
285 https://doi.org/10.3389/fonc.2016.00071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040319901
286 rdf:type schema:CreativeWork
287 https://doi.org/10.3978/j.issn.2218-6751.2013.03.09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079061437
288 rdf:type schema:CreativeWork
289 https://doi.org/10.5152/balkanmedj.2016.140530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072632100
290 rdf:type schema:CreativeWork
291 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
292 schema:name Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, Westminster Bridge Rd, SE1 7EH, London, UK
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.413629.b schema:alternateName Hammersmith Hospital
295 schema:name Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.413820.c schema:alternateName Charing Cross Hospital
298 schema:name Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK
299 Imperial College Healthcare NHS Trust, Departments of Clinical Oncology, Radiology and Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London, UK
300 Imperial College London Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.415598.4 schema:alternateName Queen's Medical Centre
303 schema:name Department of Nuclear Medicine, Queen’s Medical Centre, Nottingham University Hospital, Derby Rd, NG7 2UH, Nottingham, UK
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.416188.2 schema:alternateName Mount Vernon Hospital
306 schema:name Department of Clinical Oncology, Mount Vernon Hospital, Rickmansworth Road, HA6 2RN, Northwood, UK
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.424926.f schema:alternateName Royal Marsden Hospital
309 schema:name Department of Nuclear Medicine, The Royal Marsden Hospital, Downs Rd, Sutton, SM2 5PT, London, UK
310 rdf:type schema:Organization
311 https://www.grid.ac/institutes/grid.443984.6 schema:alternateName St James's University Hospital
312 schema:name Department of Nuclear Medicine, Level 1, Bexley Wing, St James’s University Hospital, Beckett Street, LS9 7TF, Leeds, UK
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.9909.9 schema:alternateName University of Leeds
315 schema:name Department of Nuclear Medicine, Level 1, Bexley Wing, St James’s University Hospital, Beckett Street, LS9 7TF, Leeds, UK
316 Leeds Institute of Cancer and Pathology, School of Medicine, University of Leeds, Leeds, UK
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...