Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Manuel Röhrich, Kristin Huang, Daniel Schrimpf, Nathalie L. Albert, Thomas Hielscher, Andreas von Deimling, Ulrich Schüller, Antonia Dimitrakopoulou-Strauss, Uwe Haberkorn

ABSTRACT

PURPOSE: Dynamic 18F-FET PET/CT is a powerful tool for the diagnosis of gliomas.18F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18F-FET PET data, and the histological and epigenetic features of 44 gliomas. METHODS: Dynamic 18F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850 K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis. RESULTS: Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by methylation analysis. Multivariate analysis revealed slightly greater diagnostic accuracy with methylation-based diagnosis. IDH-mutant gliomas and GBM subgroups tended to differ in their 18F-FET PET kinetics. CONCLUSION: The status of dynamic 18F-FET PET as a biologically and clinically relevant imaging modality is confirmed in the context of molecular glioma diagnosis. More... »

PAGES

1573-1584

References to SciGraph publications

  • 2018-03. Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2007-12. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2005-04. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-01. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma in ACTA NEUROPATHOLOGICA
  • 2016-01. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-06. Early static 18F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-12. pROC: an open-source package for R and S+ to analyze and compare ROC curves in BMC BIOINFORMATICS
  • 2012-06. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2012-08. Dissecting the genomic complexity underlying medulloblastoma in NATURE
  • 2016-06. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary in ACTA NEUROPATHOLOGICA
  • 2014-10. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma in ACTA NEUROPATHOLOGICA
  • 2015-06. IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO in ACTA NEUROPATHOLOGICA
  • 2016-12-29. Advances in the molecular genetics of gliomas — implications for classification and therapy in NATURE REVIEWS CLINICAL ONCOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-018-4009-0

    DOI

    http://dx.doi.org/10.1007/s00259-018-4009-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103836882

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29732524


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University Hospital Heidelberg", 
              "id": "https://www.grid.ac/institutes/grid.5253.1", 
              "name": [
                "Division of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "R\u00f6hrich", 
            "givenName": "Manuel", 
            "id": "sg:person.01315465506.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315465506.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Hospital Heidelberg", 
              "id": "https://www.grid.ac/institutes/grid.5253.1", 
              "name": [
                "Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Kristin", 
            "id": "sg:person.011126270071.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126270071.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Hospital Heidelberg", 
              "id": "https://www.grid.ac/institutes/grid.5253.1", 
              "name": [
                "Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schrimpf", 
            "givenName": "Daniel", 
            "id": "sg:person.01234464637.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234464637.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Nuclear Medicine, University Hospital, LMU, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Albert", 
            "givenName": "Nathalie L.", 
            "id": "sg:person.01122647557.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122647557.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German Cancer Research Center", 
              "id": "https://www.grid.ac/institutes/grid.7497.d", 
              "name": [
                "Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hielscher", 
            "givenName": "Thomas", 
            "id": "sg:person.0751543667.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751543667.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Hospital Heidelberg", 
              "id": "https://www.grid.ac/institutes/grid.5253.1", 
              "name": [
                "Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "von Deimling", 
            "givenName": "Andreas", 
            "id": "sg:person.0627772654.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627772654.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kinderkrebs-Zentrum Hamburg", 
              "id": "https://www.grid.ac/institutes/grid.470174.1", 
              "name": [
                "Institute of Neuropathology, University Hospital Eppendorf, University of Hamburg, Hamburg, Germany", 
                "Department of Pediatric Hematology and Oncology, University Hospital Eppendorf, University of Hamburg, Hamburg, Germany", 
                "Research Institute Children\u2019s Cancer Center Hamburg, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00fcller", 
            "givenName": "Ulrich", 
            "id": "sg:person.0657747327.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657747327.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German Cancer Research Center", 
              "id": "https://www.grid.ac/institutes/grid.7497.d", 
              "name": [
                "Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dimitrakopoulou-Strauss", 
            "givenName": "Antonia", 
            "id": "sg:person.01371422644.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371422644.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German Cancer Research Center", 
              "id": "https://www.grid.ac/institutes/grid.7497.d", 
              "name": [
                "Division of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany", 
                "Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haberkorn", 
            "givenName": "Uwe", 
            "id": "sg:person.01142772466.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772466.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00401-014-1370-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000424731", 
              "https://doi.org/10.1007/s00401-014-1370-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rlu.0b013e3182291b40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003423522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.112.109603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007633329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/brain/awh399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008117412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.122333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009823995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3140-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011143326", 
              "https://doi.org/10.1007/s00259-015-3140-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3140-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011143326", 
              "https://doi.org/10.1007/s00259-015-3140-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014582441", 
              "https://doi.org/10.1186/1471-2105-12-77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014582441", 
              "https://doi.org/10.1186/1471-2105-12-77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00401-015-1438-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014845330", 
              "https://doi.org/10.1007/s00401-015-1438-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/neuonc/not199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015061161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3276-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015266314", 
              "https://doi.org/10.1007/s00259-015-3276-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00401-014-1315-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015534862", 
              "https://doi.org/10.1007/s00401-014-1315-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2016.204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021752009", 
              "https://doi.org/10.1038/nrclinonc.2016.204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00401-016-1545-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021788062", 
              "https://doi.org/10.1007/s00401-016-1545-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rlu.0b013e318203bb24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024901938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0534-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028889000", 
              "https://doi.org/10.1007/s00259-007-0534-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0534-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028889000", 
              "https://doi.org/10.1007/s00259-007-0534-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.123836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035050020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035723782", 
              "https://doi.org/10.1007/s00259-012-2109-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/neuonc/noq196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035960315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039302414", 
              "https://doi.org/10.1038/nature11284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-004-1705-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043548385", 
              "https://doi.org/10.1007/s00259-004-1705-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/neuonc/nos259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046986331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/neuonc/now058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052710861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2012.08.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052838309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/54/18/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059027788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/neuonc/nov118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059934965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/neuonc/nov148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059934976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(17)30155-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084052500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2017.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085589477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2017.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085589477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/neuonc/nox153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091132082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcp.26176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091512653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcp.26176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091512653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/bpa.12566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092131744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/bpa.12566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092131744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3846-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092249348", 
              "https://doi.org/10.1007/s00259-017-3846-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.semcancer.2017.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092917528"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07", 
        "datePublishedReg": "2018-07-01", 
        "description": "PURPOSE: Dynamic 18F-FET PET/CT is a powerful tool for the diagnosis of gliomas.18F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18F-FET PET data, and the histological and epigenetic features of 44 gliomas.\nMETHODS: Dynamic 18F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850\u00a0K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis.\nRESULTS: Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by methylation analysis. Multivariate analysis revealed slightly greater diagnostic accuracy with methylation-based diagnosis. IDH-mutant gliomas and GBM subgroups tended to differ in their 18F-FET PET kinetics.\nCONCLUSION: The status of dynamic 18F-FET PET as a biologically and clinically relevant imaging modality is confirmed in the context of molecular glioma diagnosis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00259-018-4009-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "name": "Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas", 
        "pagination": "1573-1584", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "509fad9c4088aa7aca90ef00752d065debf3a4bf9bc9e887e35b829d8f6b65b9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29732524"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101140988"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-018-4009-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103836882"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-018-4009-0", 
          "https://app.dimensions.ai/details/publication/pub.1103836882"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000609.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00259-018-4009-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4009-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4009-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4009-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-4009-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    250 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-018-4009-0 schema:about anzsrc-for:11
    2 anzsrc-for:1112
    3 schema:author N81e1d88936dc4b5cba73444d0e2d5a23
    4 schema:citation sg:pub.10.1007/s00259-004-1705-8
    5 sg:pub.10.1007/s00259-007-0534-y
    6 sg:pub.10.1007/s00259-012-2109-9
    7 sg:pub.10.1007/s00259-015-3140-4
    8 sg:pub.10.1007/s00259-015-3276-2
    9 sg:pub.10.1007/s00259-017-3846-6
    10 sg:pub.10.1007/s00401-014-1315-x
    11 sg:pub.10.1007/s00401-014-1370-3
    12 sg:pub.10.1007/s00401-015-1438-8
    13 sg:pub.10.1007/s00401-016-1545-1
    14 sg:pub.10.1038/nature11284
    15 sg:pub.10.1038/nrclinonc.2016.204
    16 sg:pub.10.1186/1471-2105-12-77
    17 https://doi.org/10.1002/jcp.26176
    18 https://doi.org/10.1016/j.ccr.2012.08.024
    19 https://doi.org/10.1016/j.semcancer.2017.11.010
    20 https://doi.org/10.1016/j.ymeth.2017.05.019
    21 https://doi.org/10.1016/s1470-2045(17)30155-9
    22 https://doi.org/10.1088/0031-9155/54/18/012
    23 https://doi.org/10.1093/brain/awh399
    24 https://doi.org/10.1093/neuonc/noq196
    25 https://doi.org/10.1093/neuonc/nos259
    26 https://doi.org/10.1093/neuonc/not199
    27 https://doi.org/10.1093/neuonc/nov118
    28 https://doi.org/10.1093/neuonc/nov148
    29 https://doi.org/10.1093/neuonc/now058
    30 https://doi.org/10.1093/neuonc/nox153
    31 https://doi.org/10.1097/rlu.0b013e318203bb24
    32 https://doi.org/10.1097/rlu.0b013e3182291b40
    33 https://doi.org/10.1111/bpa.12566
    34 https://doi.org/10.2967/jnumed.112.109603
    35 https://doi.org/10.2967/jnumed.113.122333
    36 https://doi.org/10.2967/jnumed.113.123836
    37 schema:datePublished 2018-07
    38 schema:datePublishedReg 2018-07-01
    39 schema:description PURPOSE: Dynamic 18F-FET PET/CT is a powerful tool for the diagnosis of gliomas.18F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18F-FET PET data, and the histological and epigenetic features of 44 gliomas. METHODS: Dynamic 18F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850 K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis. RESULTS: Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by methylation analysis. Multivariate analysis revealed slightly greater diagnostic accuracy with methylation-based diagnosis. IDH-mutant gliomas and GBM subgroups tended to differ in their 18F-FET PET kinetics. CONCLUSION: The status of dynamic 18F-FET PET as a biologically and clinically relevant imaging modality is confirmed in the context of molecular glioma diagnosis.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf Nc203ba2a49fc445b833ae09facae30b5
    44 Ndc017985d4084aaa8afb983e2e222f4e
    45 sg:journal.1297401
    46 schema:name Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas
    47 schema:pagination 1573-1584
    48 schema:productId N04488b4fdab3466c8d8fbcd6763f5b7d
    49 N385351d84daf42ff81644eb30247ea84
    50 N444c72ea898c4946874d4cc21dbdd8da
    51 N4ca807c0bf014f849ff547eb2d2a898c
    52 N9928dcd7d85e4e32bc9b86cb18922ed1
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103836882
    54 https://doi.org/10.1007/s00259-018-4009-0
    55 schema:sdDatePublished 2019-04-11T00:32
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Nd6c868095a654313b68391e30109cbe9
    58 schema:url https://link.springer.com/10.1007%2Fs00259-018-4009-0
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N04488b4fdab3466c8d8fbcd6763f5b7d schema:name doi
    63 schema:value 10.1007/s00259-018-4009-0
    64 rdf:type schema:PropertyValue
    65 N385351d84daf42ff81644eb30247ea84 schema:name dimensions_id
    66 schema:value pub.1103836882
    67 rdf:type schema:PropertyValue
    68 N444c72ea898c4946874d4cc21dbdd8da schema:name readcube_id
    69 schema:value 509fad9c4088aa7aca90ef00752d065debf3a4bf9bc9e887e35b829d8f6b65b9
    70 rdf:type schema:PropertyValue
    71 N47f53ca790e04547a617d9d41b5d53e1 rdf:first sg:person.01371422644.06
    72 rdf:rest N614b5f9001e74663a22fffedde3ceded
    73 N4ca807c0bf014f849ff547eb2d2a898c schema:name nlm_unique_id
    74 schema:value 101140988
    75 rdf:type schema:PropertyValue
    76 N614b5f9001e74663a22fffedde3ceded rdf:first sg:person.01142772466.17
    77 rdf:rest rdf:nil
    78 N7d580f3bc88c4e7fbbdb01e81a01c12d rdf:first sg:person.0657747327.23
    79 rdf:rest N47f53ca790e04547a617d9d41b5d53e1
    80 N81e1d88936dc4b5cba73444d0e2d5a23 rdf:first sg:person.01315465506.54
    81 rdf:rest Nce95111ff1c045e4aa087e792658c0ca
    82 N9928dcd7d85e4e32bc9b86cb18922ed1 schema:name pubmed_id
    83 schema:value 29732524
    84 rdf:type schema:PropertyValue
    85 Nc203ba2a49fc445b833ae09facae30b5 schema:issueNumber 9
    86 rdf:type schema:PublicationIssue
    87 Nce95111ff1c045e4aa087e792658c0ca rdf:first sg:person.011126270071.02
    88 rdf:rest Necedcc004d114ee2bcf58bc55b9e4822
    89 Nd6c868095a654313b68391e30109cbe9 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 Ndc017985d4084aaa8afb983e2e222f4e schema:volumeNumber 45
    92 rdf:type schema:PublicationVolume
    93 Ndce137c7dc244b7bb1673d10c75d4bda rdf:first sg:person.01122647557.95
    94 rdf:rest Ndce72131bab24edfac20dd704e79197c
    95 Ndce72131bab24edfac20dd704e79197c rdf:first sg:person.0751543667.09
    96 rdf:rest Nf6b186a876b04563aa5b278f6b24ab88
    97 Necedcc004d114ee2bcf58bc55b9e4822 rdf:first sg:person.01234464637.55
    98 rdf:rest Ndce137c7dc244b7bb1673d10c75d4bda
    99 Neeb3c9a2e4e64e7fae7921f60f611913 schema:name Department of Nuclear Medicine, University Hospital, LMU, Munich, Germany
    100 rdf:type schema:Organization
    101 Nf6b186a876b04563aa5b278f6b24ab88 rdf:first sg:person.0627772654.33
    102 rdf:rest N7d580f3bc88c4e7fbbdb01e81a01c12d
    103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Medical and Health Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Oncology and Carcinogenesis
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1297401 schema:issn 1619-7070
    110 1619-7089
    111 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    112 rdf:type schema:Periodical
    113 sg:person.011126270071.02 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
    114 schema:familyName Huang
    115 schema:givenName Kristin
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126270071.02
    117 rdf:type schema:Person
    118 sg:person.01122647557.95 schema:affiliation Neeb3c9a2e4e64e7fae7921f60f611913
    119 schema:familyName Albert
    120 schema:givenName Nathalie L.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122647557.95
    122 rdf:type schema:Person
    123 sg:person.01142772466.17 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
    124 schema:familyName Haberkorn
    125 schema:givenName Uwe
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772466.17
    127 rdf:type schema:Person
    128 sg:person.01234464637.55 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
    129 schema:familyName Schrimpf
    130 schema:givenName Daniel
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234464637.55
    132 rdf:type schema:Person
    133 sg:person.01315465506.54 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
    134 schema:familyName Röhrich
    135 schema:givenName Manuel
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315465506.54
    137 rdf:type schema:Person
    138 sg:person.01371422644.06 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
    139 schema:familyName Dimitrakopoulou-Strauss
    140 schema:givenName Antonia
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371422644.06
    142 rdf:type schema:Person
    143 sg:person.0627772654.33 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
    144 schema:familyName von Deimling
    145 schema:givenName Andreas
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627772654.33
    147 rdf:type schema:Person
    148 sg:person.0657747327.23 schema:affiliation https://www.grid.ac/institutes/grid.470174.1
    149 schema:familyName Schüller
    150 schema:givenName Ulrich
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657747327.23
    152 rdf:type schema:Person
    153 sg:person.0751543667.09 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
    154 schema:familyName Hielscher
    155 schema:givenName Thomas
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751543667.09
    157 rdf:type schema:Person
    158 sg:pub.10.1007/s00259-004-1705-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043548385
    159 https://doi.org/10.1007/s00259-004-1705-8
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00259-007-0534-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028889000
    162 https://doi.org/10.1007/s00259-007-0534-y
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00259-012-2109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035723782
    165 https://doi.org/10.1007/s00259-012-2109-9
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00259-015-3140-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011143326
    168 https://doi.org/10.1007/s00259-015-3140-4
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00259-015-3276-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015266314
    171 https://doi.org/10.1007/s00259-015-3276-2
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00259-017-3846-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092249348
    174 https://doi.org/10.1007/s00259-017-3846-6
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s00401-014-1315-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015534862
    177 https://doi.org/10.1007/s00401-014-1315-x
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s00401-014-1370-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000424731
    180 https://doi.org/10.1007/s00401-014-1370-3
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s00401-015-1438-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014845330
    183 https://doi.org/10.1007/s00401-015-1438-8
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00401-016-1545-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021788062
    186 https://doi.org/10.1007/s00401-016-1545-1
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature11284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039302414
    189 https://doi.org/10.1038/nature11284
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nrclinonc.2016.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021752009
    192 https://doi.org/10.1038/nrclinonc.2016.204
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/1471-2105-12-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014582441
    195 https://doi.org/10.1186/1471-2105-12-77
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/jcp.26176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091512653
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.ccr.2012.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052838309
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.semcancer.2017.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092917528
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.ymeth.2017.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085589477
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s1470-2045(17)30155-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084052500
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1088/0031-9155/54/18/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027788
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/brain/awh399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008117412
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/neuonc/noq196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035960315
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1093/neuonc/nos259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046986331
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1093/neuonc/not199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015061161
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/neuonc/nov118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059934965
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/neuonc/nov148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059934976
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/neuonc/now058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052710861
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1093/neuonc/nox153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091132082
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1097/rlu.0b013e318203bb24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024901938
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1097/rlu.0b013e3182291b40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003423522
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1111/bpa.12566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092131744
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.2967/jnumed.112.109603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007633329
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.2967/jnumed.113.122333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009823995
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.2967/jnumed.113.123836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035050020
    236 rdf:type schema:CreativeWork
    237 https://www.grid.ac/institutes/grid.470174.1 schema:alternateName Kinderkrebs-Zentrum Hamburg
    238 schema:name Department of Pediatric Hematology and Oncology, University Hospital Eppendorf, University of Hamburg, Hamburg, Germany
    239 Institute of Neuropathology, University Hospital Eppendorf, University of Hamburg, Hamburg, Germany
    240 Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
    241 rdf:type schema:Organization
    242 https://www.grid.ac/institutes/grid.5253.1 schema:alternateName University Hospital Heidelberg
    243 schema:name Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
    244 Division of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
    245 rdf:type schema:Organization
    246 https://www.grid.ac/institutes/grid.7497.d schema:alternateName German Cancer Research Center
    247 schema:name Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
    248 Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
    249 Division of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
    250 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...