Tumor metabolism assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-04

AUTHORS

David Groheux, L. Biard, J. Lehmann-Che, L. Teixeira, F. A. Bouhidel, B. Poirot, P. Bertheau, P. Merlet, M. Espié, M. Resche-Rigon, C. Sotiriou, P. de Cremoux

ABSTRACT

PurposeSurvival is increased when pathological complete response (pCR) is reached after neoadjuvant chemotherapy (NAC), especially in triple-negative breast cancer (TNBC) patients. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) and the genomic grade index (GGI), each separately, showed good potential to predict pCR. Our study was designed to evaluate the predictive value for the therapeutic response of a combination of parameters based on FDG-PET, histoclinical features and molecular markers of proliferation.MethodsMolecular parameters were measured on pre-treatment biopsy. Tumor metabolic activity was measured using two PET/CT scans, one before and one after 2 cycles of NAC. The pCR was determined on specimen after NAC. Event-free survival (EFS) was estimated using the Kaplan Meier method.ResultsOf 55 TNBC patients, 19 (35%) reached pCR after NAC. Tumor grade and Ki67 were not associated with pCR whereas GGI (P = 0.04) and its component KPNA2 (P = 0.04) showed a predictive value. The change of FDG uptake between PET1 and PET2 (ΔSUVmax) was highly associated with pCR (P = 0.0001) but the absolute value of baseline SUVmax was not (P = 0.11). However, the AUC of pCR prediction increased from 0.63 to 0.76 when baseline SUVmax was combined with the GGI (P = 0.016). The only two parameters associated with EFS were ΔSUVmax (P = 0.048) and pathological response (P = 0.014).ConclusionsThe early tumor metabolic change during NAC is a powerful parameter to predict pCR and outcome in TNBC patients. The GGI, determined on pretreatment biopsy, is also predictive of pCR and the combination GGI and baseline SUVmax improves the prediction. More... »

PAGES

1279-1288

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-018-3998-z

DOI

http://dx.doi.org/10.1007/s00259-018-3998-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103150825

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29616304


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triple Negative Breast Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM/CNRS UMR944/7212, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Department of Nuclear Medicine, Saint-Louis Hospital, AP-HP 1 avenue Claude Vellefaux, 75475, Paris Cedex 10, France", 
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM/CNRS UMR944/7212, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Groheux", 
        "givenName": "David", 
        "id": "sg:person.01334544647.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334544647.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 1153 ECSTRA team, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Department of Biostatistics, Saint-Louis Hospital, AP-HP, Paris, France", 
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 1153 ECSTRA team, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biard", 
        "givenName": "L.", 
        "id": "sg:person.01365034601.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365034601.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM/CNRS UMR944/7212, Paris, France", 
            "Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehmann-Che", 
        "givenName": "J.", 
        "id": "sg:person.01172665173.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172665173.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Breast Diseases Unit, Saint-Louis Hospital, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM/CNRS UMR944/7212, Paris, France", 
            "Breast Diseases Unit, Saint-Louis Hospital, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teixeira", 
        "givenName": "L.", 
        "id": "sg:person.01276530716.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276530716.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Saint-Louis Hospital, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Department of Pathology, Saint-Louis Hospital, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouhidel", 
        "givenName": "F. A.", 
        "id": "sg:person.0607274724.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607274724.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poirot", 
        "givenName": "B.", 
        "id": "sg:person.01345330311.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345330311.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR-S-1165, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Department of Pathology, Saint-Louis Hospital, AP-HP, Paris, France", 
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR-S-1165, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertheau", 
        "givenName": "P.", 
        "id": "sg:person.01233725277.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233725277.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Saint-Louis Hospital, AP-HP 1 avenue Claude Vellefaux, 75475, Paris Cedex 10, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Department of Nuclear Medicine, Saint-Louis Hospital, AP-HP 1 avenue Claude Vellefaux, 75475, Paris Cedex 10, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merlet", 
        "givenName": "P.", 
        "id": "sg:person.01130657144.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130657144.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Breast Diseases Unit, Saint-Louis Hospital, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM/CNRS UMR944/7212, Paris, France", 
            "Breast Diseases Unit, Saint-Louis Hospital, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Espi\u00e9", 
        "givenName": "M.", 
        "id": "sg:person.0624252305.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624252305.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 1153 ECSTRA team, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Department of Biostatistics, Saint-Louis Hospital, AP-HP, Paris, France", 
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 1153 ECSTRA team, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Resche-Rigon", 
        "givenName": "M.", 
        "id": "sg:person.01036155166.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036155166.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universit\u00e9 Libre de Bruxelles, Brusells, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universit\u00e9 Libre de Bruxelles, Brusells, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sotiriou", 
        "givenName": "C.", 
        "id": "sg:person.01352311331.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352311331.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "University Paris-Diderot, Sorbonne Paris Cit\u00e9, INSERM/CNRS UMR944/7212, Paris, France", 
            "Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Cremoux", 
        "givenName": "P.", 
        "id": "sg:person.01165505667.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165505667.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-013-2515-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038009196", 
          "https://doi.org/10.1007/s00259-013-2515-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-016-0765-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017590589", 
          "https://doi.org/10.1186/s13058-016-0765-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045581956", 
          "https://doi.org/10.1186/1471-2164-10-424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13000-016-0525-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022727549", 
          "https://doi.org/10.1186/s13000-016-0525-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-013-2691-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045256731", 
          "https://doi.org/10.1007/s10549-013-2691-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3295-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032300521", 
          "https://doi.org/10.1007/s00259-015-3295-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-011-1780-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006453542", 
          "https://doi.org/10.1007/s10549-011-1780-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-04", 
    "datePublishedReg": "2018-04-04", 
    "description": "PurposeSurvival is increased when pathological complete response (pCR) is reached after neoadjuvant chemotherapy (NAC), especially in triple-negative breast cancer (TNBC) patients. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) and the genomic grade index (GGI), each separately, showed good potential to predict pCR. Our study was designed to evaluate the predictive value for the therapeutic response of a combination of parameters based on FDG-PET, histoclinical features and molecular markers of proliferation.MethodsMolecular parameters were measured on pre-treatment biopsy. Tumor metabolic activity was measured using two PET/CT scans, one before and one after 2\u00a0cycles of NAC. The pCR was determined on specimen after NAC. Event-free survival (EFS) was estimated using the Kaplan Meier method.ResultsOf 55 TNBC patients, 19 (35%) reached pCR after NAC. Tumor grade and Ki67 were not associated with pCR whereas GGI (P\u2009=\u20090.04) and its component KPNA2 (P\u2009=\u20090.04) showed a predictive value. The change of FDG uptake between PET1 and PET2 (\u0394SUVmax) was highly associated with pCR (P\u2009=\u20090.0001) but the absolute value of baseline SUVmax was not (P\u2009=\u20090.11). However, the AUC of pCR prediction increased from 0.63 to 0.76 when baseline SUVmax was combined with the GGI (P\u2009=\u20090.016). The only two parameters associated with EFS were \u0394SUVmax (P\u2009=\u20090.048) and pathological response (P\u2009=\u20090.014).ConclusionsThe early tumor metabolic change during NAC is a powerful parameter to predict pCR and outcome in TNBC patients. The GGI, determined on pretreatment biopsy, is also predictive of pCR and the combination GGI and baseline SUVmax improves the prediction.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-018-3998-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "pathological complete response", 
      "genomic grade index", 
      "event-free survival", 
      "neoadjuvant chemotherapy", 
      "baseline SUVmax", 
      "TNBC patients", 
      "predictive value", 
      "triple-negative breast cancer patients", 
      "cycles of NAC", 
      "FDG PET/CT", 
      "positron emission tomography/", 
      "PET/CT scans", 
      "triple-negative breast cancer", 
      "pre-treatment biopsies", 
      "Kaplan-Meier method", 
      "breast cancer patients", 
      "tumor metabolic activity", 
      "emission tomography/", 
      "negative breast cancer", 
      "tumor metabolic changes", 
      "histoclinical features", 
      "pretreatment biopsies", 
      "complete response", 
      "Meier method", 
      "FDG-PET", 
      "FDG uptake", 
      "cancer patients", 
      "tomography/", 
      "therapeutic response", 
      "tumor grade", 
      "pathological response", 
      "breast cancer", 
      "CT scan", 
      "tumor proliferation", 
      "tumor metabolism", 
      "patients", 
      "SUVmax", 
      "metabolic changes", 
      "chemotherapy", 
      "biopsy", 
      "pCR prediction", 
      "grade index", 
      "metabolic activity", 
      "proliferation", 
      "response", 
      "powerful parameter", 
      "PurposeSurvival", 
      "Ki67", 
      "cancer", 
      "CT", 
      "AUC", 
      "index", 
      "molecular markers", 
      "survival", 
      "tomography", 
      "PET2", 
      "scans", 
      "PET1", 
      "markers", 
      "KPNA2", 
      "metabolism", 
      "grade", 
      "changes", 
      "uptake", 
      "activity", 
      "study", 
      "values", 
      "combination", 
      "specimen", 
      "potential", 
      "features", 
      "parameters", 
      "absolute value", 
      "combination of parameters", 
      "cycle", 
      "good potential", 
      "method", 
      "prediction"
    ], 
    "name": "Tumor metabolism assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in triple negative breast cancer", 
    "pagination": "1279-1288", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103150825"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-018-3998-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29616304"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-018-3998-z", 
      "https://app.dimensions.ai/details/publication/pub.1103150825"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_758.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-018-3998-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-3998-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-3998-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-3998-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-018-3998-z'


 

This table displays all metadata directly associated to this object as RDF triples.

316 TRIPLES      21 PREDICATES      123 URIs      107 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-018-3998-z schema:about N1602924c7945494d9587960d04c2b259
2 N1b6c80b3fcf2432b96cdc56989091817
3 N20f287ad491a4714b4c31d76cd50dc90
4 N3aa8e357dd3b4015bcc8dc901502de93
5 N4fb8d4ae2dd54ddc86edc9a14bbaf0a8
6 N5078bb9126c9469c9cc9211b19ff735b
7 N5210699e7a004a8e862a65f8bffe9d0f
8 N6814f874bf6142f899bf4c2d90b66496
9 N6c9b9429613a4fbea79b4052fedd4048
10 Nc3a4d04393844b7fa0b8b2f7277e89f3
11 Nfa30e9854eb44f4da51ad3f90c9420d1
12 Nfb75fa8c8a8f44cb890470185507735d
13 anzsrc-for:11
14 anzsrc-for:1103
15 anzsrc-for:1112
16 schema:author N640e73356ea145af827092b32da3af02
17 schema:citation sg:pub.10.1007/s00259-013-2515-7
18 sg:pub.10.1007/s00259-015-3295-z
19 sg:pub.10.1007/s10549-011-1780-z
20 sg:pub.10.1007/s10549-013-2691-y
21 sg:pub.10.1186/1471-2164-10-424
22 sg:pub.10.1186/s13000-016-0525-z
23 sg:pub.10.1186/s13058-016-0765-6
24 schema:datePublished 2018-04-04
25 schema:datePublishedReg 2018-04-04
26 schema:description PurposeSurvival is increased when pathological complete response (pCR) is reached after neoadjuvant chemotherapy (NAC), especially in triple-negative breast cancer (TNBC) patients. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) and the genomic grade index (GGI), each separately, showed good potential to predict pCR. Our study was designed to evaluate the predictive value for the therapeutic response of a combination of parameters based on FDG-PET, histoclinical features and molecular markers of proliferation.MethodsMolecular parameters were measured on pre-treatment biopsy. Tumor metabolic activity was measured using two PET/CT scans, one before and one after 2 cycles of NAC. The pCR was determined on specimen after NAC. Event-free survival (EFS) was estimated using the Kaplan Meier method.ResultsOf 55 TNBC patients, 19 (35%) reached pCR after NAC. Tumor grade and Ki67 were not associated with pCR whereas GGI (P = 0.04) and its component KPNA2 (P = 0.04) showed a predictive value. The change of FDG uptake between PET1 and PET2 (ΔSUVmax) was highly associated with pCR (P = 0.0001) but the absolute value of baseline SUVmax was not (P = 0.11). However, the AUC of pCR prediction increased from 0.63 to 0.76 when baseline SUVmax was combined with the GGI (P = 0.016). The only two parameters associated with EFS were ΔSUVmax (P = 0.048) and pathological response (P = 0.014).ConclusionsThe early tumor metabolic change during NAC is a powerful parameter to predict pCR and outcome in TNBC patients. The GGI, determined on pretreatment biopsy, is also predictive of pCR and the combination GGI and baseline SUVmax improves the prediction.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf Nf3b7dcadb19649d791d2e67ba41d668d
30 Nf51d8e7274f645e29b66e77456abb9d4
31 sg:journal.1297401
32 schema:keywords AUC
33 CT
34 CT scan
35 FDG PET/CT
36 FDG uptake
37 FDG-PET
38 KPNA2
39 Kaplan-Meier method
40 Ki67
41 Meier method
42 PET/CT scans
43 PET1
44 PET2
45 PurposeSurvival
46 SUVmax
47 TNBC patients
48 absolute value
49 activity
50 baseline SUVmax
51 biopsy
52 breast cancer
53 breast cancer patients
54 cancer
55 cancer patients
56 changes
57 chemotherapy
58 combination
59 combination of parameters
60 complete response
61 cycle
62 cycles of NAC
63 emission tomography/
64 event-free survival
65 features
66 genomic grade index
67 good potential
68 grade
69 grade index
70 histoclinical features
71 index
72 markers
73 metabolic activity
74 metabolic changes
75 metabolism
76 method
77 molecular markers
78 negative breast cancer
79 neoadjuvant chemotherapy
80 pCR prediction
81 parameters
82 pathological complete response
83 pathological response
84 patients
85 positron emission tomography/
86 potential
87 powerful parameter
88 pre-treatment biopsies
89 prediction
90 predictive value
91 pretreatment biopsies
92 proliferation
93 response
94 scans
95 specimen
96 study
97 survival
98 therapeutic response
99 tomography
100 tomography/
101 triple-negative breast cancer
102 triple-negative breast cancer patients
103 tumor grade
104 tumor metabolic activity
105 tumor metabolic changes
106 tumor metabolism
107 tumor proliferation
108 uptake
109 values
110 schema:name Tumor metabolism assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in triple negative breast cancer
111 schema:pagination 1279-1288
112 schema:productId N109469de9a6148e4b8a2d51b451e2e31
113 N7191e89c929e4434ae4352c66ea34932
114 N9faeb62ce46b46c5aa56a8b7f21f053e
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103150825
116 https://doi.org/10.1007/s00259-018-3998-z
117 schema:sdDatePublished 2022-10-01T06:43
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N5c027282f1f54b9ab270664121c1b463
120 schema:url https://doi.org/10.1007/s00259-018-3998-z
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N109469de9a6148e4b8a2d51b451e2e31 schema:name doi
125 schema:value 10.1007/s00259-018-3998-z
126 rdf:type schema:PropertyValue
127 N144705a357bb48abb082ec0061383e6c rdf:first sg:person.01130657144.51
128 rdf:rest Ncc8199ab46154f45a16c7a124bb55247
129 N1602924c7945494d9587960d04c2b259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Positron-Emission Tomography
131 rdf:type schema:DefinedTerm
132 N1b6c80b3fcf2432b96cdc56989091817 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Fluorodeoxyglucose F18
134 rdf:type schema:DefinedTerm
135 N20f287ad491a4714b4c31d76cd50dc90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Humans
137 rdf:type schema:DefinedTerm
138 N2dcec6d2146942feb729920b59e4152b rdf:first sg:person.01036155166.50
139 rdf:rest Nc3790360638a4120aabc3a608ef43545
140 N39767a73ef0a41afa276fe1cf4d0acb4 rdf:first sg:person.01345330311.27
141 rdf:rest Nf5fbd48888d24803bda114591df85434
142 N3aa8e357dd3b4015bcc8dc901502de93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Positron Emission Tomography Computed Tomography
144 rdf:type schema:DefinedTerm
145 N4fb8d4ae2dd54ddc86edc9a14bbaf0a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Retrospective Studies
147 rdf:type schema:DefinedTerm
148 N5078bb9126c9469c9cc9211b19ff735b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Triple Negative Breast Neoplasms
150 rdf:type schema:DefinedTerm
151 N5210699e7a004a8e862a65f8bffe9d0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Neoadjuvant Therapy
153 rdf:type schema:DefinedTerm
154 N5c027282f1f54b9ab270664121c1b463 schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 N640e73356ea145af827092b32da3af02 rdf:first sg:person.01334544647.30
157 rdf:rest N64afee14001949d6b7b1d8baacb4ef2a
158 N64afee14001949d6b7b1d8baacb4ef2a rdf:first sg:person.01365034601.15
159 rdf:rest N8289b14620eb4427970e8ecb7acd2123
160 N6814f874bf6142f899bf4c2d90b66496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cell Proliferation
162 rdf:type schema:DefinedTerm
163 N6c9b9429613a4fbea79b4052fedd4048 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Genomics
165 rdf:type schema:DefinedTerm
166 N7191e89c929e4434ae4352c66ea34932 schema:name dimensions_id
167 schema:value pub.1103150825
168 rdf:type schema:PropertyValue
169 N8289b14620eb4427970e8ecb7acd2123 rdf:first sg:person.01172665173.31
170 rdf:rest Ncb7d9095c8454d7da93345ee3c6c1c24
171 N9faeb62ce46b46c5aa56a8b7f21f053e schema:name pubmed_id
172 schema:value 29616304
173 rdf:type schema:PropertyValue
174 Nb5239e04854942b3955f74aa929c36c5 rdf:first sg:person.0607274724.24
175 rdf:rest N39767a73ef0a41afa276fe1cf4d0acb4
176 Nc3790360638a4120aabc3a608ef43545 rdf:first sg:person.01352311331.95
177 rdf:rest Ne50d040241e546b1887f8de3a1e0239d
178 Nc3a4d04393844b7fa0b8b2f7277e89f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Radiopharmaceuticals
180 rdf:type schema:DefinedTerm
181 Ncb7d9095c8454d7da93345ee3c6c1c24 rdf:first sg:person.01276530716.50
182 rdf:rest Nb5239e04854942b3955f74aa929c36c5
183 Ncc8199ab46154f45a16c7a124bb55247 rdf:first sg:person.0624252305.32
184 rdf:rest N2dcec6d2146942feb729920b59e4152b
185 Ne50d040241e546b1887f8de3a1e0239d rdf:first sg:person.01165505667.83
186 rdf:rest rdf:nil
187 Nf3b7dcadb19649d791d2e67ba41d668d schema:issueNumber 8
188 rdf:type schema:PublicationIssue
189 Nf51d8e7274f645e29b66e77456abb9d4 schema:volumeNumber 45
190 rdf:type schema:PublicationVolume
191 Nf5fbd48888d24803bda114591df85434 rdf:first sg:person.01233725277.72
192 rdf:rest N144705a357bb48abb082ec0061383e6c
193 Nfa30e9854eb44f4da51ad3f90c9420d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Treatment Outcome
195 rdf:type schema:DefinedTerm
196 Nfb75fa8c8a8f44cb890470185507735d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Tomography, X-Ray Computed
198 rdf:type schema:DefinedTerm
199 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
200 schema:name Medical and Health Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
203 schema:name Clinical Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
206 schema:name Oncology and Carcinogenesis
207 rdf:type schema:DefinedTerm
208 sg:journal.1297401 schema:issn 1619-7070
209 1619-7089
210 schema:name European Journal of Nuclear Medicine and Molecular Imaging
211 schema:publisher Springer Nature
212 rdf:type schema:Periodical
213 sg:person.01036155166.50 schema:affiliation grid-institutes:grid.508487.6
214 schema:familyName Resche-Rigon
215 schema:givenName M.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036155166.50
217 rdf:type schema:Person
218 sg:person.01130657144.51 schema:affiliation grid-institutes:grid.413328.f
219 schema:familyName Merlet
220 schema:givenName P.
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130657144.51
222 rdf:type schema:Person
223 sg:person.01165505667.83 schema:affiliation grid-institutes:grid.413328.f
224 schema:familyName de Cremoux
225 schema:givenName P.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165505667.83
227 rdf:type schema:Person
228 sg:person.01172665173.31 schema:affiliation grid-institutes:grid.413328.f
229 schema:familyName Lehmann-Che
230 schema:givenName J.
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172665173.31
232 rdf:type schema:Person
233 sg:person.01233725277.72 schema:affiliation grid-institutes:grid.508487.6
234 schema:familyName Bertheau
235 schema:givenName P.
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233725277.72
237 rdf:type schema:Person
238 sg:person.01276530716.50 schema:affiliation grid-institutes:grid.413328.f
239 schema:familyName Teixeira
240 schema:givenName L.
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276530716.50
242 rdf:type schema:Person
243 sg:person.01334544647.30 schema:affiliation grid-institutes:grid.508487.6
244 schema:familyName Groheux
245 schema:givenName David
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334544647.30
247 rdf:type schema:Person
248 sg:person.01345330311.27 schema:affiliation grid-institutes:grid.413328.f
249 schema:familyName Poirot
250 schema:givenName B.
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345330311.27
252 rdf:type schema:Person
253 sg:person.01352311331.95 schema:affiliation grid-institutes:grid.4989.c
254 schema:familyName Sotiriou
255 schema:givenName C.
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352311331.95
257 rdf:type schema:Person
258 sg:person.01365034601.15 schema:affiliation grid-institutes:grid.508487.6
259 schema:familyName Biard
260 schema:givenName L.
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365034601.15
262 rdf:type schema:Person
263 sg:person.0607274724.24 schema:affiliation grid-institutes:grid.413328.f
264 schema:familyName Bouhidel
265 schema:givenName F. A.
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607274724.24
267 rdf:type schema:Person
268 sg:person.0624252305.32 schema:affiliation grid-institutes:grid.413328.f
269 schema:familyName Espié
270 schema:givenName M.
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624252305.32
272 rdf:type schema:Person
273 sg:pub.10.1007/s00259-013-2515-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038009196
274 https://doi.org/10.1007/s00259-013-2515-7
275 rdf:type schema:CreativeWork
276 sg:pub.10.1007/s00259-015-3295-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032300521
277 https://doi.org/10.1007/s00259-015-3295-z
278 rdf:type schema:CreativeWork
279 sg:pub.10.1007/s10549-011-1780-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006453542
280 https://doi.org/10.1007/s10549-011-1780-z
281 rdf:type schema:CreativeWork
282 sg:pub.10.1007/s10549-013-2691-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045256731
283 https://doi.org/10.1007/s10549-013-2691-y
284 rdf:type schema:CreativeWork
285 sg:pub.10.1186/1471-2164-10-424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045581956
286 https://doi.org/10.1186/1471-2164-10-424
287 rdf:type schema:CreativeWork
288 sg:pub.10.1186/s13000-016-0525-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022727549
289 https://doi.org/10.1186/s13000-016-0525-z
290 rdf:type schema:CreativeWork
291 sg:pub.10.1186/s13058-016-0765-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017590589
292 https://doi.org/10.1186/s13058-016-0765-6
293 rdf:type schema:CreativeWork
294 grid-institutes:grid.413328.f schema:alternateName Breast Diseases Unit, Saint-Louis Hospital, AP-HP, Paris, France
295 Department of Nuclear Medicine, Saint-Louis Hospital, AP-HP 1 avenue Claude Vellefaux, 75475, Paris Cedex 10, France
296 Department of Pathology, Saint-Louis Hospital, AP-HP, Paris, France
297 Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France
298 schema:name Breast Diseases Unit, Saint-Louis Hospital, AP-HP, Paris, France
299 Department of Nuclear Medicine, Saint-Louis Hospital, AP-HP 1 avenue Claude Vellefaux, 75475, Paris Cedex 10, France
300 Department of Pathology, Saint-Louis Hospital, AP-HP, Paris, France
301 Molecular Oncology Unit, Saint-Louis Hospital, AP-HP, Paris, France
302 University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France
303 rdf:type schema:Organization
304 grid-institutes:grid.4989.c schema:alternateName Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium
305 schema:name Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium
306 rdf:type schema:Organization
307 grid-institutes:grid.508487.6 schema:alternateName University Paris-Diderot, Sorbonne Paris Cité, INSERM UMR 1153 ECSTRA team, Paris, France
308 University Paris-Diderot, Sorbonne Paris Cité, INSERM UMR-S-1165, Paris, France
309 University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France
310 schema:name Department of Biostatistics, Saint-Louis Hospital, AP-HP, Paris, France
311 Department of Nuclear Medicine, Saint-Louis Hospital, AP-HP 1 avenue Claude Vellefaux, 75475, Paris Cedex 10, France
312 Department of Pathology, Saint-Louis Hospital, AP-HP, Paris, France
313 University Paris-Diderot, Sorbonne Paris Cité, INSERM UMR 1153 ECSTRA team, Paris, France
314 University Paris-Diderot, Sorbonne Paris Cité, INSERM UMR-S-1165, Paris, France
315 University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France
316 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...