Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12-09

AUTHORS

François Lucia, Dimitris Visvikis, Marie-Charlotte Desseroit, Omar Miranda, Jean-Pierre Malhaire, Philippe Robin, Olivier Pradier, Mathieu Hatt, Ulrike Schick

ABSTRACT

PurposeThe aim of this study is to determine if radiomics features from 18fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) images could contribute to prognoses in cervical cancer.MethodsOne hundred and two patients (69 for training and 33 for testing) with locally advanced cervical cancer (LACC) receiving chemoradiotherapy (CRT) from 08/2010 to 12/2016 were enrolled in this study. 18F-FDG PET/CT and MRI examination [T1, T2, T1C, diffusion-weighted imaging (DWI)] were performed for each patient before CRT. Primary tumor volumes were delineated with the fuzzy locally adaptive Bayesian algorithm in the PET images and with 3D Slicer™ in the MRI images. Radiomics features (intensity, shape, and texture) were extracted and their prognostic value was compared with clinical parameters for recurrence-free and locoregional control.ResultsIn the training cohort, median follow-up was 3.0 years (range, 0.43–6.56 years) and relapse occurred in 36% of patients. In univariate analysis, FIGO stage (I–II vs. III–IV) and metabolic response (complete vs. non-complete) were probably associated with outcome without reaching statistical significance, contrary to several radiomics features from both PET and MRI sequences. Multivariate analysis in training test identified Grey Level Non UniformityGLRLM in PET and EntropyGLCM in ADC maps from DWI MRI as independent prognostic factors. These had significantly higher prognostic power than clinical parameters, as evaluated in the testing cohort with accuracy of 94% for predicting recurrence and 100% for predicting lack of loco-regional control (versus ~50–60% for clinical parameters).ConclusionsIn LACC treated with CRT, radiomics features such as EntropyGLCM and GLNUGLRLM from functional imaging DWI-MRI and PET, respectively, are independent predictors of recurrence and loco-regional control with significantly higher prognostic power than usual clinical parameters. Further research is warranted for their validation, which may justify more aggressive treatment in patients identified with high probability of recurrence. More... »

PAGES

768-786

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-017-3898-7

DOI

http://dx.doi.org/10.1007/s00259-017-3898-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099696659

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29222685


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemoradiotherapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uterine Cervical Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Service de Radioth\u00e9rapie, CHRU Morvan, 2 Avenue Foch, 29609, Cedex, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Radiation Oncology Department, University Hospital, Brest, France", 
            "Service de Radioth\u00e9rapie, CHRU Morvan, 2 Avenue Foch, 29609, Cedex, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lucia", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.07532416715.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532416715.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visvikis", 
        "givenName": "Dimitris", 
        "id": "sg:person.01255045106.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045106.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desseroit", 
        "givenName": "Marie-Charlotte", 
        "id": "sg:person.0727167367.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727167367.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiation Oncology Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Radiation Oncology Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miranda", 
        "givenName": "Omar", 
        "id": "sg:person.01331672750.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331672750.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiation Oncology Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Radiation Oncology Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malhaire", 
        "givenName": "Jean-Pierre", 
        "id": "sg:person.0625302516.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302516.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Nuclear Medicine Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robin", 
        "givenName": "Philippe", 
        "id": "sg:person.01307140060.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Radiation Oncology Department, University Hospital, Brest, France", 
            "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pradier", 
        "givenName": "Olivier", 
        "id": "sg:person.01024223375.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024223375.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatt", 
        "givenName": "Mathieu", 
        "id": "sg:person.01202724075.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202724075.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Radiation Oncology Department, University Hospital, Brest, France", 
            "LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schick", 
        "givenName": "Ulrike", 
        "id": "sg:person.01206441206.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206441206.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13139-013-0248-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045194664", 
          "https://doi.org/10.1007/s13139-013-0248-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074205537", 
          "https://doi.org/10.1038/nature21386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005180012", 
          "https://doi.org/10.1038/srep01364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3427-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524814", 
          "https://doi.org/10.1007/s00259-016-3427-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036587522", 
          "https://doi.org/10.1038/srep13087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019408664", 
          "https://doi.org/10.1038/srep03529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-09", 
    "datePublishedReg": "2017-12-09", 
    "description": "PurposeThe aim of this study is to determine if radiomics features from 18fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) images could contribute to prognoses in cervical cancer.MethodsOne hundred and two patients (69 for training and 33 for testing) with locally advanced cervical cancer (LACC) receiving chemoradiotherapy (CRT) from 08/2010 to 12/2016 were enrolled in this study. 18F-FDG PET/CT and MRI examination [T1, T2, T1C, diffusion-weighted imaging (DWI)] were performed for each patient before CRT. Primary tumor volumes were delineated with the fuzzy locally adaptive Bayesian algorithm in the PET images and with 3D Slicer\u2122 in the MRI images. Radiomics features (intensity, shape, and texture) were extracted and their prognostic value was compared with clinical parameters for recurrence-free and locoregional control.ResultsIn the training cohort, median follow-up was 3.0 years (range, 0.43\u20136.56 years) and relapse occurred in 36% of patients. In univariate analysis, FIGO stage (I\u2013II vs. III\u2013IV) and metabolic response (complete vs. non-complete) were probably associated with outcome without reaching statistical significance, contrary to several radiomics features from both PET and MRI sequences. Multivariate analysis in training test identified Grey Level Non UniformityGLRLM in PET and EntropyGLCM in ADC maps from DWI MRI as independent prognostic factors. These had significantly higher prognostic power than clinical parameters, as evaluated in the testing cohort with accuracy of 94% for predicting recurrence and 100% for predicting lack of loco-regional control (versus ~50\u201360% for clinical parameters).ConclusionsIn LACC treated with CRT, radiomics features such as EntropyGLCM and GLNUGLRLM from functional imaging DWI-MRI and PET, respectively, are independent predictors of recurrence and loco-regional control with significantly higher prognostic power than usual clinical parameters. Further research is warranted for their validation, which may justify more aggressive treatment in patients identified with high probability of recurrence.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-017-3898-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "advanced cervical cancer", 
      "loco-regional control", 
      "high prognostic power", 
      "PET/CT", 
      "cervical cancer", 
      "clinical parameters", 
      "DWI-MRI", 
      "prognostic power", 
      "positron emission tomography/", 
      "radiomic features", 
      "independent prognostic factor", 
      "primary tumor volume", 
      "emission tomography/", 
      "usual clinical parameters", 
      "prediction of outcome", 
      "locoregional control", 
      "resonance imaging images", 
      "FIGO stage", 
      "aggressive treatment", 
      "prognostic factors", 
      "independent predictors", 
      "prognostic value", 
      "tomography/", 
      "training cohort", 
      "MethodsOne hundred", 
      "univariate analysis", 
      "chemoradiotherapy", 
      "MRI examinations", 
      "tumor volume", 
      "testing cohort", 
      "patients", 
      "recurrence", 
      "magnetic resonance imaging (MRI) images", 
      "cancer", 
      "ADC maps", 
      "statistical significance", 
      "metabolic response", 
      "MRI sequences", 
      "cohort", 
      "imaging images", 
      "MRI", 
      "CT", 
      "outcomes", 
      "radiomics", 
      "PET images", 
      "MRI images", 
      "PET", 
      "further research", 
      "relapse", 
      "prognosis", 
      "training test", 
      "adaptive Bayesian algorithm", 
      "control", 
      "LACC", 
      "tomography", 
      "treatment", 
      "predictors", 
      "study", 
      "examination", 
      "high probability", 
      "pretreatment", 
      "aim", 
      "years", 
      "response", 
      "factors", 
      "significance", 
      "lack", 
      "test", 
      "analysis", 
      "volume", 
      "features", 
      "stage", 
      "validation", 
      "parameters", 
      "images", 
      "values", 
      "research", 
      "slicer", 
      "probability", 
      "sequence", 
      "hundreds", 
      "accuracy", 
      "prediction", 
      "Bayesian algorithm", 
      "maps", 
      "power", 
      "algorithm"
    ], 
    "name": "Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy", 
    "pagination": "768-786", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099696659"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-017-3898-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29222685"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-017-3898-7", 
      "https://app.dimensions.ai/details/publication/pub.1099696659"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_737.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-017-3898-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3898-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3898-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3898-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3898-7'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      21 PREDICATES      136 URIs      121 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-017-3898-7 schema:about N0f768e9087db4db3b0fb060554e0eb97
2 N0febbed2875f4f19b42d721ce49b6cdd
3 N2da69afa861d4cd09cd1ff4402d24fe3
4 N4309946f77804ad2ac42634d4093904d
5 N4e7fd86fcb8c433588379fad3f42a88f
6 N549ef8e775ba4b51be4e272ea90207bf
7 N569b1844e94f489e916cd3bb65ec9aea
8 N7319320c1bd0460f97a95b79d1d44856
9 N73d1311e07c94d4fb09b8d5c3c36a454
10 N8e8fde0653154e118c29d6a6f444d571
11 N9fe11344aeee47b3a1bc86cd02b4b40e
12 Na8d6808a266f4247b07873125672f895
13 Nc5f590b1ceaf43d982aa36590b43f25a
14 Nc8b2bb59406f4aeb8f6757a14399b57c
15 Ncb16bcb8d8a2482aa47d6033cfcb73ff
16 Ne0dbd1e9783b4ca28ebff46f8c96daf6
17 Ne20235f411644199bf2724c1318a4593
18 anzsrc-for:11
19 anzsrc-for:1103
20 anzsrc-for:1112
21 schema:author N0d7417b173914f67a00a1309f2f9bfa4
22 schema:citation sg:pub.10.1007/s00259-016-3427-0
23 sg:pub.10.1007/s13139-013-0248-y
24 sg:pub.10.1038/nature21386
25 sg:pub.10.1038/srep01364
26 sg:pub.10.1038/srep03529
27 sg:pub.10.1038/srep13087
28 schema:datePublished 2017-12-09
29 schema:datePublishedReg 2017-12-09
30 schema:description PurposeThe aim of this study is to determine if radiomics features from 18fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) images could contribute to prognoses in cervical cancer.MethodsOne hundred and two patients (69 for training and 33 for testing) with locally advanced cervical cancer (LACC) receiving chemoradiotherapy (CRT) from 08/2010 to 12/2016 were enrolled in this study. 18F-FDG PET/CT and MRI examination [T1, T2, T1C, diffusion-weighted imaging (DWI)] were performed for each patient before CRT. Primary tumor volumes were delineated with the fuzzy locally adaptive Bayesian algorithm in the PET images and with 3D Slicer™ in the MRI images. Radiomics features (intensity, shape, and texture) were extracted and their prognostic value was compared with clinical parameters for recurrence-free and locoregional control.ResultsIn the training cohort, median follow-up was 3.0 years (range, 0.43–6.56 years) and relapse occurred in 36% of patients. In univariate analysis, FIGO stage (I–II vs. III–IV) and metabolic response (complete vs. non-complete) were probably associated with outcome without reaching statistical significance, contrary to several radiomics features from both PET and MRI sequences. Multivariate analysis in training test identified Grey Level Non UniformityGLRLM in PET and EntropyGLCM in ADC maps from DWI MRI as independent prognostic factors. These had significantly higher prognostic power than clinical parameters, as evaluated in the testing cohort with accuracy of 94% for predicting recurrence and 100% for predicting lack of loco-regional control (versus ~50–60% for clinical parameters).ConclusionsIn LACC treated with CRT, radiomics features such as EntropyGLCM and GLNUGLRLM from functional imaging DWI-MRI and PET, respectively, are independent predictors of recurrence and loco-regional control with significantly higher prognostic power than usual clinical parameters. Further research is warranted for their validation, which may justify more aggressive treatment in patients identified with high probability of recurrence.
31 schema:genre article
32 schema:isAccessibleForFree true
33 schema:isPartOf Ndc0f81437f1c485f80a1caeddb67869f
34 Nfb6eab3b4b504211ad79afa7b9859f12
35 sg:journal.1297401
36 schema:keywords ADC maps
37 Bayesian algorithm
38 CT
39 DWI-MRI
40 FIGO stage
41 LACC
42 MRI
43 MRI examinations
44 MRI images
45 MRI sequences
46 MethodsOne hundred
47 PET
48 PET images
49 PET/CT
50 accuracy
51 adaptive Bayesian algorithm
52 advanced cervical cancer
53 aggressive treatment
54 aim
55 algorithm
56 analysis
57 cancer
58 cervical cancer
59 chemoradiotherapy
60 clinical parameters
61 cohort
62 control
63 emission tomography/
64 examination
65 factors
66 features
67 further research
68 high probability
69 high prognostic power
70 hundreds
71 images
72 imaging images
73 independent predictors
74 independent prognostic factor
75 lack
76 loco-regional control
77 locoregional control
78 magnetic resonance imaging (MRI) images
79 maps
80 metabolic response
81 outcomes
82 parameters
83 patients
84 positron emission tomography/
85 power
86 prediction
87 prediction of outcome
88 predictors
89 pretreatment
90 primary tumor volume
91 probability
92 prognosis
93 prognostic factors
94 prognostic power
95 prognostic value
96 radiomic features
97 radiomics
98 recurrence
99 relapse
100 research
101 resonance imaging images
102 response
103 sequence
104 significance
105 slicer
106 stage
107 statistical significance
108 study
109 test
110 testing cohort
111 tomography
112 tomography/
113 training cohort
114 training test
115 treatment
116 tumor volume
117 univariate analysis
118 usual clinical parameters
119 validation
120 values
121 volume
122 years
123 schema:name Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy
124 schema:pagination 768-786
125 schema:productId N83e2b4c6535b49d3a6fb1545d40cb013
126 N9360fdc8df9f44afb96acef75633ac6b
127 Nb418dc3fc9624bb7b55ea84580babb41
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696659
129 https://doi.org/10.1007/s00259-017-3898-7
130 schema:sdDatePublished 2022-08-04T17:06
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher N5b98780f1d2745638b903d238c5d15b0
133 schema:url https://doi.org/10.1007/s00259-017-3898-7
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N0d7417b173914f67a00a1309f2f9bfa4 rdf:first sg:person.07532416715.90
138 rdf:rest N34c4c8c93d17485c9ac0f9cceac81005
139 N0f768e9087db4db3b0fb060554e0eb97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Adult
141 rdf:type schema:DefinedTerm
142 N0febbed2875f4f19b42d721ce49b6cdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Aged
144 rdf:type schema:DefinedTerm
145 N2d5bb1fcd08844ffa4a7426dec92b633 rdf:first sg:person.01331672750.62
146 rdf:rest N605a7f48e12f495da0bb285e9e38b7fd
147 N2da69afa861d4cd09cd1ff4402d24fe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Uterine Cervical Neoplasms
149 rdf:type schema:DefinedTerm
150 N34c4c8c93d17485c9ac0f9cceac81005 rdf:first sg:person.01255045106.49
151 rdf:rest N8a7e49357b8d4512b8d15dac985f6ebf
152 N4309946f77804ad2ac42634d4093904d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Female
154 rdf:type schema:DefinedTerm
155 N4e7fd86fcb8c433588379fad3f42a88f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Positron-Emission Tomography
157 rdf:type schema:DefinedTerm
158 N5077f5904bde46b0b168259c8d702797 rdf:first sg:person.01202724075.78
159 rdf:rest N92ad24451ca849b887efc3fb626783a2
160 N549ef8e775ba4b51be4e272ea90207bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Chemoradiotherapy
162 rdf:type schema:DefinedTerm
163 N569b1844e94f489e916cd3bb65ec9aea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Humans
165 rdf:type schema:DefinedTerm
166 N5b98780f1d2745638b903d238c5d15b0 schema:name Springer Nature - SN SciGraph project
167 rdf:type schema:Organization
168 N605a7f48e12f495da0bb285e9e38b7fd rdf:first sg:person.0625302516.05
169 rdf:rest Nddb17f372338421baf356d1a6dbe98b8
170 N7319320c1bd0460f97a95b79d1d44856 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Neoplasm Recurrence, Local
172 rdf:type schema:DefinedTerm
173 N73d1311e07c94d4fb09b8d5c3c36a454 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Magnetic Resonance Imaging
175 rdf:type schema:DefinedTerm
176 N83e2b4c6535b49d3a6fb1545d40cb013 schema:name doi
177 schema:value 10.1007/s00259-017-3898-7
178 rdf:type schema:PropertyValue
179 N8a7e49357b8d4512b8d15dac985f6ebf rdf:first sg:person.0727167367.16
180 rdf:rest N2d5bb1fcd08844ffa4a7426dec92b633
181 N8e8fde0653154e118c29d6a6f444d571 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Bayes Theorem
183 rdf:type schema:DefinedTerm
184 N92ad24451ca849b887efc3fb626783a2 rdf:first sg:person.01206441206.87
185 rdf:rest rdf:nil
186 N9360fdc8df9f44afb96acef75633ac6b schema:name pubmed_id
187 schema:value 29222685
188 rdf:type schema:PropertyValue
189 N98625707c867492cb862664cbec695a7 rdf:first sg:person.01024223375.85
190 rdf:rest N5077f5904bde46b0b168259c8d702797
191 N9fe11344aeee47b3a1bc86cd02b4b40e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Tomography, X-Ray Computed
193 rdf:type schema:DefinedTerm
194 Na8d6808a266f4247b07873125672f895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Fluorodeoxyglucose F18
196 rdf:type schema:DefinedTerm
197 Nb418dc3fc9624bb7b55ea84580babb41 schema:name dimensions_id
198 schema:value pub.1099696659
199 rdf:type schema:PropertyValue
200 Nc5f590b1ceaf43d982aa36590b43f25a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Positron Emission Tomography Computed Tomography
202 rdf:type schema:DefinedTerm
203 Nc8b2bb59406f4aeb8f6757a14399b57c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Middle Aged
205 rdf:type schema:DefinedTerm
206 Ncb16bcb8d8a2482aa47d6033cfcb73ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Aged, 80 and over
208 rdf:type schema:DefinedTerm
209 Ndc0f81437f1c485f80a1caeddb67869f schema:volumeNumber 45
210 rdf:type schema:PublicationVolume
211 Nddb17f372338421baf356d1a6dbe98b8 rdf:first sg:person.01307140060.86
212 rdf:rest N98625707c867492cb862664cbec695a7
213 Ne0dbd1e9783b4ca28ebff46f8c96daf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Radiopharmaceuticals
215 rdf:type schema:DefinedTerm
216 Ne20235f411644199bf2724c1318a4593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Retrospective Studies
218 rdf:type schema:DefinedTerm
219 Nfb6eab3b4b504211ad79afa7b9859f12 schema:issueNumber 5
220 rdf:type schema:PublicationIssue
221 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
222 schema:name Medical and Health Sciences
223 rdf:type schema:DefinedTerm
224 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
225 schema:name Clinical Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
228 schema:name Oncology and Carcinogenesis
229 rdf:type schema:DefinedTerm
230 sg:journal.1297401 schema:issn 1619-7070
231 1619-7089
232 schema:name European Journal of Nuclear Medicine and Molecular Imaging
233 schema:publisher Springer Nature
234 rdf:type schema:Periodical
235 sg:person.01024223375.85 schema:affiliation grid-institutes:None
236 schema:familyName Pradier
237 schema:givenName Olivier
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024223375.85
239 rdf:type schema:Person
240 sg:person.01202724075.78 schema:affiliation grid-institutes:None
241 schema:familyName Hatt
242 schema:givenName Mathieu
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202724075.78
244 rdf:type schema:Person
245 sg:person.01206441206.87 schema:affiliation grid-institutes:None
246 schema:familyName Schick
247 schema:givenName Ulrike
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206441206.87
249 rdf:type schema:Person
250 sg:person.01255045106.49 schema:affiliation grid-institutes:None
251 schema:familyName Visvikis
252 schema:givenName Dimitris
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045106.49
254 rdf:type schema:Person
255 sg:person.01307140060.86 schema:affiliation grid-institutes:grid.411766.3
256 schema:familyName Robin
257 schema:givenName Philippe
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86
259 rdf:type schema:Person
260 sg:person.01331672750.62 schema:affiliation grid-institutes:grid.411766.3
261 schema:familyName Miranda
262 schema:givenName Omar
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331672750.62
264 rdf:type schema:Person
265 sg:person.0625302516.05 schema:affiliation grid-institutes:grid.411766.3
266 schema:familyName Malhaire
267 schema:givenName Jean-Pierre
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625302516.05
269 rdf:type schema:Person
270 sg:person.0727167367.16 schema:affiliation grid-institutes:None
271 schema:familyName Desseroit
272 schema:givenName Marie-Charlotte
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727167367.16
274 rdf:type schema:Person
275 sg:person.07532416715.90 schema:affiliation grid-institutes:grid.411766.3
276 schema:familyName Lucia
277 schema:givenName François
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532416715.90
279 rdf:type schema:Person
280 sg:pub.10.1007/s00259-016-3427-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524814
281 https://doi.org/10.1007/s00259-016-3427-0
282 rdf:type schema:CreativeWork
283 sg:pub.10.1007/s13139-013-0248-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045194664
284 https://doi.org/10.1007/s13139-013-0248-y
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/nature21386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074205537
287 https://doi.org/10.1038/nature21386
288 rdf:type schema:CreativeWork
289 sg:pub.10.1038/srep01364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005180012
290 https://doi.org/10.1038/srep01364
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/srep03529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019408664
293 https://doi.org/10.1038/srep03529
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/srep13087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036587522
296 https://doi.org/10.1038/srep13087
297 rdf:type schema:CreativeWork
298 grid-institutes:None schema:alternateName LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
299 schema:name LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
300 Radiation Oncology Department, University Hospital, Brest, France
301 rdf:type schema:Organization
302 grid-institutes:grid.411766.3 schema:alternateName Nuclear Medicine Department, University Hospital, Brest, France
303 Radiation Oncology Department, University Hospital, Brest, France
304 Service de Radiothérapie, CHRU Morvan, 2 Avenue Foch, 29609, Cedex, Brest, France
305 schema:name Nuclear Medicine Department, University Hospital, Brest, France
306 Radiation Oncology Department, University Hospital, Brest, France
307 Service de Radiothérapie, CHRU Morvan, 2 Avenue Foch, 29609, Cedex, Brest, France
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...