Heterogeneity index evaluated by slope of linear regression on 18F-FDG PET/CT as a prognostic marker for predicting tumor recurrence in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-20

AUTHORS

Yong-il Kim, Yong Joong Kim, Jin Chul Paeng, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, Keon Wook Kang

ABSTRACT

Purpose18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been investigated as a method to predict pancreatic cancer recurrence after pancreatic surgery. We evaluated the recently introduced heterogeneity indices of 18F-FDG PET/CT used for predicting pancreatic cancer recurrence after surgery and compared them with current clinicopathologic and 18F-FDG PET/CT parameters.MethodsA total of 93 pancreatic ductal adenocarcinoma patients (M:F = 60:33, mean age = 64.2 ± 9.1 years) who underwent preoperative 18F-FDG PET/CT following pancreatic surgery were retrospectively enrolled. The standardized uptake values (SUVs) and tumor-to-background ratios (TBR) were measured on each 18F-FDG PET/CT, as metabolic parameters. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were examined as volumetric parameters. The coefficient of variance (heterogeneity index-1; SUVmean divided by the standard deviation) and linear regression slopes (heterogeneity index-2) of the MTV, according to SUV thresholds of 2.0, 2.5 and 3.0, were evaluated as heterogeneity indices. Predictive values of clinicopathologic and 18F-FDG PET/CT parameters and heterogeneity indices were compared in terms of pancreatic cancer recurrence.ResultsSeventy patients (75.3%) showed recurrence after pancreatic cancer surgery (mean recurrence = 9.4 ± 8.4 months). Comparing the recurrence and no recurrence patients, all of the 18F-FDG PET/CT parameters and heterogeneity indices demonstrated significant differences. In univariate Cox-regression analyses, MTV (P = 0.013), TLG (P = 0.007), and heterogeneity index-2 (P = 0.027) were significant. Among the clinicopathologic parameters, CA19–9 (P = 0.025) and venous invasion (P = 0.002) were selected as significant parameters. In multivariate Cox-regression analyses, MTV (P = 0.005), TLG (P = 0.004), and heterogeneity index-2 (P = 0.016) with venous invasion (P < 0.001, 0.001, and 0.001, respectively) demonstrated significant results.ConclusionsThe heterogeneity index obtained using the linear regression slope, could be an effective predictor of pancreatic cancer recurrence after pancreatic cancer surgery, in addition to 18F-FDG PET/CT volumetric parameters and clinicopathologic parameters. More... »

PAGES

1995-2003

References to SciGraph publications

  • 2015-09-09. Standardized uptake value on positron emission tomography/computed tomography predicts prognosis in patients with locally advanced pancreatic cancer in ABDOMINAL RADIOLOGY
  • 2016-04-27. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in patients with epithelial ovarian cancer in EUROPEAN RADIOLOGY
  • 2012-03-19. Prognostic value of gross tumor volume delineated by FDG-PET-CT based radiotherapy treatment planning in patients with locally advanced pancreatic cancer treated with chemoradiotherapy in RADIATION ONCOLOGY
  • 2014-02-13. Metabolic tumour burden assessed by 18F-FDG PET/CT associated with serum CA19-9 predicts pancreatic cancer outcome after resection in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-02-10. SUV and segmentation: pressing challenges in tumour assessment and treatment in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-09-05. Preoperative FDG-PET Predicts Early Recurrence and a Poor Prognosis After Resection of Pancreatic Adenocarcinoma in ANNALS OF SURGICAL ONCOLOGY
  • 2012-10-13. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-03-25. Correlation Between F-18 Fluorodeoxyglucose Positron Emission Tomography Metabolic Parameters and Dynamic Contrast-Enhanced MRI-Derived Perfusion Data in Patients with Invasive Ductal Breast Carcinoma in ANNALS OF SURGICAL ONCOLOGY
  • 2016-02-12. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-09-13. Prognostic significance of standardized uptake value on preoperative 18F-FDG PET/CT in patients with ampullary adenocarcinoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-017-3755-8

    DOI

    http://dx.doi.org/10.1007/s00259-017-3755-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086106033

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28634684


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Pancreatic Ductal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recurrence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Burden", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Yong-il", 
            "id": "sg:person.01001337521.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Veterans Health Service Medical Center, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Veterans Health Service Medical Center, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Yong Joong", 
            "id": "sg:person.010221436257.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221436257.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paeng", 
            "givenName": "Jin Chul", 
            "id": "sg:person.01343511335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheon", 
            "givenName": "Gi Jeong", 
            "id": "sg:person.01333472502.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Cancer Research Institute, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "June-Key", 
            "id": "sg:person.0751347234.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Cancer Research Institute, Seoul National University, Seoul, South Korea", 
                "Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Keon Wook", 
            "id": "sg:person.0761746266.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00261-015-0544-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027960026", 
              "https://doi.org/10.1007/s00261-015-0544-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2688-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014674408", 
              "https://doi.org/10.1007/s00259-014-2688-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-016-3316-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018990778", 
              "https://doi.org/10.1007/s00259-016-3316-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2247-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051316850", 
              "https://doi.org/10.1007/s00259-012-2247-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-014-4046-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003849151", 
              "https://doi.org/10.1245/s10434-014-4046-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1748-717x-7-37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004612303", 
              "https://doi.org/10.1186/1748-717x-7-37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1085-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052795461", 
              "https://doi.org/10.1007/s00259-009-1085-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-015-4526-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027196820", 
              "https://doi.org/10.1245/s10434-015-4526-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2907-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025096004", 
              "https://doi.org/10.1007/s00259-014-2907-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-016-4368-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409100", 
              "https://doi.org/10.1007/s00330-016-4368-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-20", 
        "datePublishedReg": "2017-06-20", 
        "description": "Purpose18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been investigated as a method to predict pancreatic cancer recurrence after pancreatic surgery. We evaluated the recently introduced heterogeneity indices of 18F-FDG PET/CT used for predicting pancreatic cancer recurrence after surgery and compared them with current clinicopathologic and 18F-FDG PET/CT parameters.MethodsA total of 93 pancreatic ductal adenocarcinoma patients (M:F\u00a0=\u00a060:33, mean age\u00a0=\u00a064.2\u00a0\u00b1\u00a09.1\u00a0years) who underwent preoperative 18F-FDG PET/CT following pancreatic surgery were retrospectively enrolled. The standardized uptake values (SUVs) and tumor-to-background ratios (TBR) were measured on each 18F-FDG PET/CT, as metabolic parameters. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were examined as volumetric parameters. The coefficient of variance (heterogeneity index-1; SUVmean divided by the standard deviation) and linear regression slopes (heterogeneity index-2) of the MTV, according to SUV thresholds of 2.0, 2.5 and 3.0, were evaluated as heterogeneity indices. Predictive values of clinicopathologic and 18F-FDG PET/CT parameters and heterogeneity indices were compared in terms of pancreatic cancer recurrence.ResultsSeventy patients (75.3%) showed recurrence after pancreatic cancer surgery (mean recurrence\u00a0=\u00a09.4\u00a0\u00b1\u00a08.4\u00a0months). Comparing the recurrence and no recurrence patients, all of the 18F-FDG PET/CT parameters and heterogeneity indices demonstrated significant differences. In univariate Cox-regression analyses, MTV (P\u00a0=\u00a00.013), TLG (P\u00a0=\u00a00.007), and heterogeneity index-2 (P\u00a0=\u00a00.027) were significant. Among the clinicopathologic parameters, CA19\u20139 (P\u00a0=\u00a00.025) and venous invasion (P\u00a0=\u00a00.002) were selected as significant parameters. In multivariate Cox-regression analyses, MTV (P\u00a0=\u00a00.005), TLG (P\u00a0=\u00a00.004), and heterogeneity index-2 (P\u00a0=\u00a00.016) with venous invasion (P\u00a0<\u00a00.001, 0.001, and 0.001, respectively) demonstrated significant results.ConclusionsThe heterogeneity index obtained using the linear regression slope, could be an effective predictor of pancreatic cancer recurrence after pancreatic cancer surgery, in addition to 18F-FDG PET/CT volumetric parameters and clinicopathologic parameters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00259-017-3755-8", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "metabolic tumor volume", 
          "pancreatic cancer recurrence", 
          "PET/CT parameters", 
          "total lesion glycolysis", 
          "PET/CT", 
          "Purpose18F-fluorodeoxyglucose (FDG) positron emission tomography", 
          "standardized uptake value", 
          "pancreatic cancer surgery", 
          "Cox regression analysis", 
          "cancer recurrence", 
          "CT parameters", 
          "pancreatic surgery", 
          "cancer surgery", 
          "venous invasion", 
          "clinicopathologic parameters", 
          "PET/CT volumetric parameters", 
          "multivariate Cox regression analysis", 
          "pancreatic ductal adenocarcinoma patients", 
          "univariate Cox regression analysis", 
          "ductal adenocarcinoma patients", 
          "pancreatic ductal adenocarcinoma", 
          "positron emission tomography", 
          "volumetric parameters", 
          "lesion glycolysis", 
          "ResultsSeventy patients", 
          "adenocarcinoma patients", 
          "recurrence patients", 
          "CA19-9", 
          "heterogeneity index", 
          "tumor recurrence", 
          "prognostic marker", 
          "ductal adenocarcinoma", 
          "metabolic parameters", 
          "tumor volume", 
          "recurrence", 
          "surgery", 
          "uptake value", 
          "predictive value", 
          "emission tomography", 
          "patients", 
          "linear regression slope", 
          "CT", 
          "clinicopathologic", 
          "significant differences", 
          "tomography", 
          "regression slope", 
          "effective predictor", 
          "invasion", 
          "coefficient of variance", 
          "index", 
          "linear regression", 
          "adenocarcinoma", 
          "tumors", 
          "background ratio", 
          "index 2", 
          "significant results", 
          "total", 
          "predictors", 
          "markers", 
          "glycolysis", 
          "regression", 
          "differences", 
          "analysis", 
          "volume", 
          "values", 
          "addition", 
          "ratio", 
          "parameters", 
          "variance", 
          "results", 
          "significant parameters", 
          "method", 
          "slope", 
          "terms", 
          "coefficient"
        ], 
        "name": "Heterogeneity index evaluated by slope of linear regression on 18F-FDG PET/CT as a prognostic marker for predicting tumor recurrence in pancreatic ductal adenocarcinoma", 
        "pagination": "1995-2003", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086106033"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-017-3755-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28634684"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-017-3755-8", 
          "https://app.dimensions.ai/details/publication/pub.1086106033"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_747.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00259-017-3755-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3755-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3755-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3755-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3755-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    293 TRIPLES      21 PREDICATES      126 URIs      107 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-017-3755-8 schema:about N159ee61b53d546e8bcd9c8b6aea02d6f
    2 N18d8c74d92b146ce80d0d2332f3f936e
    3 N20c7d745de164e388cfcde1e2e75945d
    4 N35085688aaae483d8cb23560fb337ffa
    5 N3d13bb6149784e6b9bbc80b28bb113c5
    6 N5587109b8c5b49d888a558ed59e8cddb
    7 N727a9356d6c1465c94c87e97a0fb6d26
    8 N79e6cd1284574151afb41334fdf52844
    9 N849673e7b8544929bbda60fc66323649
    10 Na9e7394f5b4e4541aa7ef180b13ec3ba
    11 Naee11b010bd24669ad6c8caedcf244cd
    12 Naf08abb95dc54257bd2958184288059f
    13 Nbd513a72ffe64190a0c296462baf1168
    14 Ne40616e55f2c4736aedd2a9994ab4d57
    15 Nfc1f3e897d7843dd9da7b357f5fc78a0
    16 anzsrc-for:11
    17 anzsrc-for:1103
    18 anzsrc-for:1112
    19 schema:author N9271a2ae0e2844dca7104feb1ca5444b
    20 schema:citation sg:pub.10.1007/s00259-009-1085-1
    21 sg:pub.10.1007/s00259-012-2247-0
    22 sg:pub.10.1007/s00259-014-2688-8
    23 sg:pub.10.1007/s00259-014-2907-3
    24 sg:pub.10.1007/s00259-016-3316-6
    25 sg:pub.10.1007/s00261-015-0544-3
    26 sg:pub.10.1007/s00330-016-4368-5
    27 sg:pub.10.1186/1748-717x-7-37
    28 sg:pub.10.1245/s10434-014-4046-2
    29 sg:pub.10.1245/s10434-015-4526-z
    30 schema:datePublished 2017-06-20
    31 schema:datePublishedReg 2017-06-20
    32 schema:description Purpose18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been investigated as a method to predict pancreatic cancer recurrence after pancreatic surgery. We evaluated the recently introduced heterogeneity indices of 18F-FDG PET/CT used for predicting pancreatic cancer recurrence after surgery and compared them with current clinicopathologic and 18F-FDG PET/CT parameters.MethodsA total of 93 pancreatic ductal adenocarcinoma patients (M:F = 60:33, mean age = 64.2 ± 9.1 years) who underwent preoperative 18F-FDG PET/CT following pancreatic surgery were retrospectively enrolled. The standardized uptake values (SUVs) and tumor-to-background ratios (TBR) were measured on each 18F-FDG PET/CT, as metabolic parameters. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were examined as volumetric parameters. The coefficient of variance (heterogeneity index-1; SUVmean divided by the standard deviation) and linear regression slopes (heterogeneity index-2) of the MTV, according to SUV thresholds of 2.0, 2.5 and 3.0, were evaluated as heterogeneity indices. Predictive values of clinicopathologic and 18F-FDG PET/CT parameters and heterogeneity indices were compared in terms of pancreatic cancer recurrence.ResultsSeventy patients (75.3%) showed recurrence after pancreatic cancer surgery (mean recurrence = 9.4 ± 8.4 months). Comparing the recurrence and no recurrence patients, all of the 18F-FDG PET/CT parameters and heterogeneity indices demonstrated significant differences. In univariate Cox-regression analyses, MTV (P = 0.013), TLG (P = 0.007), and heterogeneity index-2 (P = 0.027) were significant. Among the clinicopathologic parameters, CA19–9 (P = 0.025) and venous invasion (P = 0.002) were selected as significant parameters. In multivariate Cox-regression analyses, MTV (P = 0.005), TLG (P = 0.004), and heterogeneity index-2 (P = 0.016) with venous invasion (P < 0.001, 0.001, and 0.001, respectively) demonstrated significant results.ConclusionsThe heterogeneity index obtained using the linear regression slope, could be an effective predictor of pancreatic cancer recurrence after pancreatic cancer surgery, in addition to 18F-FDG PET/CT volumetric parameters and clinicopathologic parameters.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N589a8ba09f7547a4b472908bc2f7a195
    36 N5ed4582437754adeb2fae8a940c5fb9d
    37 sg:journal.1297401
    38 schema:keywords CA19-9
    39 CT
    40 CT parameters
    41 Cox regression analysis
    42 PET/CT
    43 PET/CT parameters
    44 PET/CT volumetric parameters
    45 Purpose18F-fluorodeoxyglucose (FDG) positron emission tomography
    46 ResultsSeventy patients
    47 addition
    48 adenocarcinoma
    49 adenocarcinoma patients
    50 analysis
    51 background ratio
    52 cancer recurrence
    53 cancer surgery
    54 clinicopathologic
    55 clinicopathologic parameters
    56 coefficient
    57 coefficient of variance
    58 differences
    59 ductal adenocarcinoma
    60 ductal adenocarcinoma patients
    61 effective predictor
    62 emission tomography
    63 glycolysis
    64 heterogeneity index
    65 index
    66 index 2
    67 invasion
    68 lesion glycolysis
    69 linear regression
    70 linear regression slope
    71 markers
    72 metabolic parameters
    73 metabolic tumor volume
    74 method
    75 multivariate Cox regression analysis
    76 pancreatic cancer recurrence
    77 pancreatic cancer surgery
    78 pancreatic ductal adenocarcinoma
    79 pancreatic ductal adenocarcinoma patients
    80 pancreatic surgery
    81 parameters
    82 patients
    83 positron emission tomography
    84 predictive value
    85 predictors
    86 prognostic marker
    87 ratio
    88 recurrence
    89 recurrence patients
    90 regression
    91 regression slope
    92 results
    93 significant differences
    94 significant parameters
    95 significant results
    96 slope
    97 standardized uptake value
    98 surgery
    99 terms
    100 tomography
    101 total
    102 total lesion glycolysis
    103 tumor recurrence
    104 tumor volume
    105 tumors
    106 univariate Cox regression analysis
    107 uptake value
    108 values
    109 variance
    110 venous invasion
    111 volume
    112 volumetric parameters
    113 schema:name Heterogeneity index evaluated by slope of linear regression on 18F-FDG PET/CT as a prognostic marker for predicting tumor recurrence in pancreatic ductal adenocarcinoma
    114 schema:pagination 1995-2003
    115 schema:productId N7410d6e4e43d4bd2b9cf9c15ba6cba79
    116 N7a69b8a8d18e43b2b8e3eaeedeaf1df1
    117 Nf1f9c4ba8e474f7aa774b772ac8fb520
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086106033
    119 https://doi.org/10.1007/s00259-017-3755-8
    120 schema:sdDatePublished 2022-10-01T06:43
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher N028c7fd4a4e345a1a42dd3f047802f2b
    123 schema:url https://doi.org/10.1007/s00259-017-3755-8
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N028c7fd4a4e345a1a42dd3f047802f2b schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 N1115da3a4c2642ba9eac5c035f2d3526 rdf:first sg:person.015617314175.88
    130 rdf:rest Ncd83821ccdca451b856b247d16c86933
    131 N159ee61b53d546e8bcd9c8b6aea02d6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Carcinoma, Pancreatic Ductal
    133 rdf:type schema:DefinedTerm
    134 N18d8c74d92b146ce80d0d2332f3f936e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Positron Emission Tomography Computed Tomography
    136 rdf:type schema:DefinedTerm
    137 N20c7d745de164e388cfcde1e2e75945d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Recurrence
    139 rdf:type schema:DefinedTerm
    140 N2d9f821cb27b42a6adf45511a3c896a6 rdf:first sg:person.01333472502.31
    141 rdf:rest N1115da3a4c2642ba9eac5c035f2d3526
    142 N35085688aaae483d8cb23560fb337ffa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Aged
    144 rdf:type schema:DefinedTerm
    145 N3d13bb6149784e6b9bbc80b28bb113c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Aged, 80 and over
    147 rdf:type schema:DefinedTerm
    148 N5587109b8c5b49d888a558ed59e8cddb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Male
    150 rdf:type schema:DefinedTerm
    151 N589a8ba09f7547a4b472908bc2f7a195 schema:volumeNumber 44
    152 rdf:type schema:PublicationVolume
    153 N5ed4582437754adeb2fae8a940c5fb9d schema:issueNumber 12
    154 rdf:type schema:PublicationIssue
    155 N727a9356d6c1465c94c87e97a0fb6d26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Tumor Burden
    157 rdf:type schema:DefinedTerm
    158 N7410d6e4e43d4bd2b9cf9c15ba6cba79 schema:name dimensions_id
    159 schema:value pub.1086106033
    160 rdf:type schema:PropertyValue
    161 N7473eb79d6f240fb8ad8bddb94435baa rdf:first sg:person.01343511335.32
    162 rdf:rest N2d9f821cb27b42a6adf45511a3c896a6
    163 N79e6cd1284574151afb41334fdf52844 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Prognosis
    165 rdf:type schema:DefinedTerm
    166 N7a69b8a8d18e43b2b8e3eaeedeaf1df1 schema:name pubmed_id
    167 schema:value 28634684
    168 rdf:type schema:PropertyValue
    169 N849673e7b8544929bbda60fc66323649 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Fluorodeoxyglucose F18
    171 rdf:type schema:DefinedTerm
    172 N8890f83ddd76422bbae2d67db98cd009 rdf:first sg:person.0761746266.86
    173 rdf:rest rdf:nil
    174 N9271a2ae0e2844dca7104feb1ca5444b rdf:first sg:person.01001337521.67
    175 rdf:rest Nec325e469b464b69930f3f420dbc725b
    176 Na9e7394f5b4e4541aa7ef180b13ec3ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Humans
    178 rdf:type schema:DefinedTerm
    179 Naee11b010bd24669ad6c8caedcf244cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Linear Models
    181 rdf:type schema:DefinedTerm
    182 Naf08abb95dc54257bd2958184288059f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Middle Aged
    184 rdf:type schema:DefinedTerm
    185 Nbd513a72ffe64190a0c296462baf1168 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Female
    187 rdf:type schema:DefinedTerm
    188 Ncd83821ccdca451b856b247d16c86933 rdf:first sg:person.0751347234.39
    189 rdf:rest N8890f83ddd76422bbae2d67db98cd009
    190 Ne40616e55f2c4736aedd2a9994ab4d57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Image Processing, Computer-Assisted
    192 rdf:type schema:DefinedTerm
    193 Nec325e469b464b69930f3f420dbc725b rdf:first sg:person.010221436257.58
    194 rdf:rest N7473eb79d6f240fb8ad8bddb94435baa
    195 Nf1f9c4ba8e474f7aa774b772ac8fb520 schema:name doi
    196 schema:value 10.1007/s00259-017-3755-8
    197 rdf:type schema:PropertyValue
    198 Nfc1f3e897d7843dd9da7b357f5fc78a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Adult
    200 rdf:type schema:DefinedTerm
    201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Medical and Health Sciences
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Clinical Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Oncology and Carcinogenesis
    209 rdf:type schema:DefinedTerm
    210 sg:journal.1297401 schema:issn 1619-7070
    211 1619-7089
    212 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    213 schema:publisher Springer Nature
    214 rdf:type schema:Periodical
    215 sg:person.01001337521.67 schema:affiliation grid-institutes:grid.412484.f
    216 schema:familyName Kim
    217 schema:givenName Yong-il
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67
    219 rdf:type schema:Person
    220 sg:person.010221436257.58 schema:affiliation grid-institutes:None
    221 schema:familyName Kim
    222 schema:givenName Yong Joong
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221436257.58
    224 rdf:type schema:Person
    225 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
    226 schema:familyName Cheon
    227 schema:givenName Gi Jeong
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
    229 rdf:type schema:Person
    230 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
    231 schema:familyName Paeng
    232 schema:givenName Jin Chul
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
    234 rdf:type schema:Person
    235 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
    236 schema:familyName Lee
    237 schema:givenName Dong Soo
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    239 rdf:type schema:Person
    240 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
    241 schema:familyName Chung
    242 schema:givenName June-Key
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
    244 rdf:type schema:Person
    245 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
    246 schema:familyName Kang
    247 schema:givenName Keon Wook
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
    249 rdf:type schema:Person
    250 sg:pub.10.1007/s00259-009-1085-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052795461
    251 https://doi.org/10.1007/s00259-009-1085-1
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s00259-012-2247-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051316850
    254 https://doi.org/10.1007/s00259-012-2247-0
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s00259-014-2688-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014674408
    257 https://doi.org/10.1007/s00259-014-2688-8
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s00259-014-2907-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025096004
    260 https://doi.org/10.1007/s00259-014-2907-3
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s00259-016-3316-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018990778
    263 https://doi.org/10.1007/s00259-016-3316-6
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s00261-015-0544-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027960026
    266 https://doi.org/10.1007/s00261-015-0544-3
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s00330-016-4368-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409100
    269 https://doi.org/10.1007/s00330-016-4368-5
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/1748-717x-7-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004612303
    272 https://doi.org/10.1186/1748-717x-7-37
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1245/s10434-014-4046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003849151
    275 https://doi.org/10.1245/s10434-014-4046-2
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1245/s10434-015-4526-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027196820
    278 https://doi.org/10.1245/s10434-015-4526-z
    279 rdf:type schema:CreativeWork
    280 grid-institutes:None schema:alternateName Veterans Health Service Medical Center, Seoul, South Korea
    281 schema:name Veterans Health Service Medical Center, Seoul, South Korea
    282 rdf:type schema:Organization
    283 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University, Seoul, South Korea
    284 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, South Korea
    285 schema:name Cancer Research Institute, Seoul National University, Seoul, South Korea
    286 Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
    287 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, South Korea
    288 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
    289 rdf:type schema:Organization
    290 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
    291 schema:name Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
    292 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
    293 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...