Prediction of breast cancer recurrence using lymph node metabolic and volumetric parameters from 18F-FDG PET/CT in operable triple-negative breast cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-14

AUTHORS

Yong-il Kim, Yong Joong Kim, Jin Chul Paeng, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, Keon Wook Kang

ABSTRACT

PurposeTriple-negative breast cancer has a poor prognosis. We evaluated several metabolic and volumetric parameters from preoperative 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in the prognosis of triple-negative breast cancer and compared them with current clinicopathologic parameters.MethodsA total of 228 patients with triple-negative breast cancer (mean age 47.0 ± 10.8 years, all women) who had undergone preoperative PET/CT were included. The PET/CT metabolic parameters evaluated included maximum, peak, and mean standardized uptake values (SUVmax, SUVpeak, and SUVmean, respectively). The volumetric parameters evaluated included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Metabolic and volumetric parameters were evaluated separately for tumor (T) and lymph nodes (N). The prognostic value of these parameters was compared with that of clinicopathologic parameters.ResultsAll lymph node metabolic and volumetric parameters showed significant differences between patients with and without recurrence. However, tumor metabolic and volumetric parameters showed no significant differences. In a univariate survival analysis, all lymph node metabolic and volumetric parameters (SUVmax-N, SUVpeak-N, SUVmean-N, MTV-N, and TLG-N; all P < 0.001), T stage (P = 0.010), N stage (P < 0.001), and TNM stage (P < 0.001) were significant parameters. In a multivariate survival analysis, SUVmax-N (P = 0.005), MTV (P = 0.008), and TLG (P = 0.006) with TNM stage (all P < 0.001) were significant parameters.ConclusionsLymph node metabolic and volumetric parameters were significant predictors of recurrence in patients with triple-negative breast cancer after surgery. Lymph node metabolic and volumetric parameters were useful parameters for evaluating prognosis in patients with triple-negative breast cancer by 18F-FDG PET/CT, rather than tumor parameters. More... »

PAGES

1787-1795

References to SciGraph publications

  • 2010-11-06. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-02-20. Utility of 18F FDG-PET/CT for predicting prognosis of luminal-type breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2014-10-02. Correlation of Primary Tumor FDG Uptake with Clinicopathologic Prognostic Factors in Invasive Ductal Carcinoma of the Breast in NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2000-08-17. Molecular portraits of human breast tumours in NATURE
  • 2009-02-10. SUV and segmentation: pressing challenges in tumour assessment and treatment in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-09-07. Stratifying triple-negative breast cancer prognosis using 18F-FDG-PET/CT imaging in BREAST CANCER RESEARCH AND TREATMENT
  • 2009-10-14. Prognostic Value of Metabolic Tumor Volume Measured by 18F-Fluorodeoxyglucose Positron Emission Tomography in Patients with Esophageal Carcinoma in ANNALS OF SURGICAL ONCOLOGY
  • 2012-08-25. Prognostic Significance of Metabolic Tumor Volume Measured by 18F-FDG PET/CT in Operable Primary Breast Cancer in NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-11-29. Prognostic impact of 18F-FDG PET/CT staging and of pathological response to neoadjuvant chemotherapy in triple-negative breast cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-04-30. Molecular subtypes of breast cancer: metabolic correlation with 18F-FDG PET/CT in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-04-23. Correlation between 18F-FDG uptake on PET/CT and prognostic factors in triple-negative breast cancer in EUROPEAN RADIOLOGY
  • 2016-01-13. 18F-FDG PET/CT in the early prediction of pathological response in aggressive subtypes of breast cancer: review of the literature and recommendations for use in clinical trials in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-017-3748-7

    DOI

    http://dx.doi.org/10.1007/s00259-017-3748-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086032553

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28616695


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymph Nodes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphatic Metastasis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Recurrence, Local", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triple Negative Breast Neoplasms", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Yong-il", 
            "id": "sg:person.01001337521.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Veterans Health Service Medical Center, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Veterans Health Service Medical Center, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Yong Joong", 
            "id": "sg:person.010221436257.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221436257.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paeng", 
            "givenName": "Jin Chul", 
            "id": "sg:person.01343511335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheon", 
            "givenName": "Gi Jeong", 
            "id": "sg:person.01333472502.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute, Seoul National University, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
                "Cancer Research Institute, Seoul National University, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "June-Key", 
            "id": "sg:person.0751347234.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
                "Cancer Research Institute, Seoul National University, Seoul, Korea", 
                "Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea", 
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Keon Wook", 
            "id": "sg:person.0761746266.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13139-014-0296-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037523904", 
              "https://doi.org/10.1007/s13139-014-0296-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3734-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026982756", 
              "https://doi.org/10.1007/s00330-015-3734-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2941-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000694423", 
              "https://doi.org/10.1007/s00259-014-2941-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-009-0719-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022874094", 
              "https://doi.org/10.1245/s10434-009-0719-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1085-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052795461", 
              "https://doi.org/10.1007/s00259-009-1085-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-015-3303-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043147314", 
              "https://doi.org/10.1007/s10549-015-3303-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3295-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032300521", 
              "https://doi.org/10.1007/s00259-015-3295-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-012-0161-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035574812", 
              "https://doi.org/10.1007/s13139-012-0161-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35021093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033846543", 
              "https://doi.org/10.1038/35021093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2418-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043890252", 
              "https://doi.org/10.1007/s00259-013-2418-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-015-3558-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051394670", 
              "https://doi.org/10.1007/s10549-015-3558-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-010-1640-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047271203", 
              "https://doi.org/10.1007/s00259-010-1640-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-14", 
        "datePublishedReg": "2017-06-14", 
        "description": "PurposeTriple-negative breast cancer has a poor prognosis. We evaluated several metabolic and volumetric parameters from preoperative 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in the prognosis of triple-negative breast cancer and compared them with current clinicopathologic parameters.MethodsA total of 228 patients with triple-negative breast cancer (mean age 47.0\u00a0\u00b1\u00a010.8\u00a0years, all women) who had undergone preoperative PET/CT were included. The PET/CT metabolic parameters evaluated included maximum, peak, and mean standardized uptake values (SUVmax, SUVpeak, and SUVmean, respectively). The volumetric parameters evaluated included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Metabolic and volumetric parameters were evaluated separately for tumor (T) and lymph nodes (N). The prognostic value of these parameters was compared with that of clinicopathologic parameters.ResultsAll lymph node metabolic and volumetric parameters showed significant differences between patients with and without recurrence. However, tumor metabolic and volumetric parameters showed no significant differences. In a univariate survival analysis, all lymph node metabolic and volumetric parameters (SUVmax-N, SUVpeak-N, SUVmean-N, MTV-N, and TLG-N; all P\u00a0<\u00a00.001), T stage (P\u00a0=\u00a00.010), N stage (P\u00a0<\u00a00.001), and TNM stage (P\u00a0<\u00a00.001) were significant parameters. In a multivariate survival analysis, SUVmax-N (P\u00a0=\u00a00.005), MTV (P\u00a0=\u00a00.008), and TLG (P\u00a0=\u00a00.006) with TNM stage (all P\u00a0<\u00a00.001) were significant parameters.ConclusionsLymph node metabolic and volumetric parameters were significant predictors of recurrence in patients with triple-negative breast cancer after surgery. Lymph node metabolic and volumetric parameters were useful parameters for evaluating prognosis in patients with triple-negative breast cancer by 18F-FDG PET/CT, rather than tumor parameters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00259-017-3748-7", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "triple-negative breast cancer", 
          "total lesion glycolysis", 
          "metabolic tumor volume", 
          "PET/CT", 
          "breast cancer", 
          "positron emission tomography", 
          "lymph nodes", 
          "TNM stage", 
          "clinicopathologic parameters", 
          "operable triple-negative breast cancer", 
          "survival analysis", 
          "PET/CT metabolic parameters", 
          "volumetric parameters", 
          "PurposeTriple-negative breast cancer", 
          "preoperative PET/CT", 
          "univariate survival analysis", 
          "multivariate survival analysis", 
          "breast cancer recurrence", 
          "standardized uptake value", 
          "significant differences", 
          "lesion glycolysis", 
          "T stage", 
          "poor prognosis", 
          "prognostic value", 
          "cancer recurrence", 
          "metabolic parameters", 
          "tumor volume", 
          "tumor parameters", 
          "uptake value", 
          "patients", 
          "emission tomography", 
          "cancer", 
          "lymph", 
          "prognosis", 
          "recurrence", 
          "significant predictors", 
          "CT", 
          "tumors", 
          "tomography", 
          "useful parameter", 
          "SUVmax", 
          "surgery", 
          "total", 
          "differences", 
          "predictors", 
          "stage", 
          "glycolysis", 
          "nodes", 
          "analysis", 
          "volume", 
          "significant parameters", 
          "values", 
          "parameters", 
          "peak", 
          "maximum", 
          "prediction"
        ], 
        "name": "Prediction of breast cancer recurrence using lymph node metabolic and volumetric parameters from 18F-FDG PET/CT in operable triple-negative breast cancer", 
        "pagination": "1787-1795", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086032553"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-017-3748-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28616695"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-017-3748-7", 
          "https://app.dimensions.ai/details/publication/pub.1086032553"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_753.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00259-017-3748-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3748-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3748-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3748-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-017-3748-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    266 TRIPLES      21 PREDICATES      105 URIs      85 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-017-3748-7 schema:about N13ea8651d91744f3ad888dcc63804c04
    2 N148a93cd554549098d99365480970dbb
    3 N505b95382fef40c1b744b3c30414810d
    4 N67222fd9e1334ffc8de7dddb7d1aa217
    5 N718ed3d8e1fe4eb59ab44460ff98121e
    6 N8b4b71f976dd4c938dfc8c6d2f835593
    7 N9f1668ad9daf4dd3bdb97dce96594f46
    8 Nd7c3bcb027c84c4c94d88f5f906d9d67
    9 Ne64a38bdb36b417186ac0f10cc85c578
    10 Ne7963eaeb02545dba379059d90fe4281
    11 Nf794688453e9462395aa03a08336e94a
    12 Nfc907f5ea2134135a0c9a3c4ecd3334b
    13 anzsrc-for:11
    14 anzsrc-for:1112
    15 schema:author N69907223e3e1419ea54d0541927739ba
    16 schema:citation sg:pub.10.1007/s00259-009-1085-1
    17 sg:pub.10.1007/s00259-010-1640-9
    18 sg:pub.10.1007/s00259-013-2418-7
    19 sg:pub.10.1007/s00259-014-2941-1
    20 sg:pub.10.1007/s00259-015-3295-z
    21 sg:pub.10.1007/s00330-015-3734-z
    22 sg:pub.10.1007/s10549-015-3303-9
    23 sg:pub.10.1007/s10549-015-3558-1
    24 sg:pub.10.1007/s13139-012-0161-9
    25 sg:pub.10.1007/s13139-014-0296-y
    26 sg:pub.10.1038/35021093
    27 sg:pub.10.1245/s10434-009-0719-7
    28 schema:datePublished 2017-06-14
    29 schema:datePublishedReg 2017-06-14
    30 schema:description PurposeTriple-negative breast cancer has a poor prognosis. We evaluated several metabolic and volumetric parameters from preoperative 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in the prognosis of triple-negative breast cancer and compared them with current clinicopathologic parameters.MethodsA total of 228 patients with triple-negative breast cancer (mean age 47.0 ± 10.8 years, all women) who had undergone preoperative PET/CT were included. The PET/CT metabolic parameters evaluated included maximum, peak, and mean standardized uptake values (SUVmax, SUVpeak, and SUVmean, respectively). The volumetric parameters evaluated included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Metabolic and volumetric parameters were evaluated separately for tumor (T) and lymph nodes (N). The prognostic value of these parameters was compared with that of clinicopathologic parameters.ResultsAll lymph node metabolic and volumetric parameters showed significant differences between patients with and without recurrence. However, tumor metabolic and volumetric parameters showed no significant differences. In a univariate survival analysis, all lymph node metabolic and volumetric parameters (SUVmax-N, SUVpeak-N, SUVmean-N, MTV-N, and TLG-N; all P < 0.001), T stage (P = 0.010), N stage (P < 0.001), and TNM stage (P < 0.001) were significant parameters. In a multivariate survival analysis, SUVmax-N (P = 0.005), MTV (P = 0.008), and TLG (P = 0.006) with TNM stage (all P < 0.001) were significant parameters.ConclusionsLymph node metabolic and volumetric parameters were significant predictors of recurrence in patients with triple-negative breast cancer after surgery. Lymph node metabolic and volumetric parameters were useful parameters for evaluating prognosis in patients with triple-negative breast cancer by 18F-FDG PET/CT, rather than tumor parameters.
    31 schema:genre article
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N2b40ca5b3c8a4e44a8e542658ed6aba4
    34 N72b7516350af4ce6a92112e1c9b17bbf
    35 sg:journal.1297401
    36 schema:keywords CT
    37 PET/CT
    38 PET/CT metabolic parameters
    39 PurposeTriple-negative breast cancer
    40 SUVmax
    41 T stage
    42 TNM stage
    43 analysis
    44 breast cancer
    45 breast cancer recurrence
    46 cancer
    47 cancer recurrence
    48 clinicopathologic parameters
    49 differences
    50 emission tomography
    51 glycolysis
    52 lesion glycolysis
    53 lymph
    54 lymph nodes
    55 maximum
    56 metabolic parameters
    57 metabolic tumor volume
    58 multivariate survival analysis
    59 nodes
    60 operable triple-negative breast cancer
    61 parameters
    62 patients
    63 peak
    64 poor prognosis
    65 positron emission tomography
    66 prediction
    67 predictors
    68 preoperative PET/CT
    69 prognosis
    70 prognostic value
    71 recurrence
    72 significant differences
    73 significant parameters
    74 significant predictors
    75 stage
    76 standardized uptake value
    77 surgery
    78 survival analysis
    79 tomography
    80 total
    81 total lesion glycolysis
    82 triple-negative breast cancer
    83 tumor parameters
    84 tumor volume
    85 tumors
    86 univariate survival analysis
    87 uptake value
    88 useful parameter
    89 values
    90 volume
    91 volumetric parameters
    92 schema:name Prediction of breast cancer recurrence using lymph node metabolic and volumetric parameters from 18F-FDG PET/CT in operable triple-negative breast cancer
    93 schema:pagination 1787-1795
    94 schema:productId N46d09438539548579bba58ff3787dcb8
    95 Ne45d2ff110e84e5abc7cea69e996a972
    96 Nfac4126a7dd548488c93ab418b0967de
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086032553
    98 https://doi.org/10.1007/s00259-017-3748-7
    99 schema:sdDatePublished 2022-10-01T06:44
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N7f9cca2ce6fd43d2b1f0cd4903bdd74e
    102 schema:url https://doi.org/10.1007/s00259-017-3748-7
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N0786755cc2c8495da621ba5db76ecbcd rdf:first sg:person.015617314175.88
    107 rdf:rest Nf5551bbbf2574e5084ea3a0947242e61
    108 N13ea8651d91744f3ad888dcc63804c04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Triple Negative Breast Neoplasms
    110 rdf:type schema:DefinedTerm
    111 N148a93cd554549098d99365480970dbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Fluorodeoxyglucose F18
    113 rdf:type schema:DefinedTerm
    114 N2b40ca5b3c8a4e44a8e542658ed6aba4 schema:volumeNumber 44
    115 rdf:type schema:PublicationVolume
    116 N3a0dbb44191b4bf393a93a119d058326 rdf:first sg:person.01333472502.31
    117 rdf:rest N0786755cc2c8495da621ba5db76ecbcd
    118 N46d09438539548579bba58ff3787dcb8 schema:name pubmed_id
    119 schema:value 28616695
    120 rdf:type schema:PropertyValue
    121 N505b95382fef40c1b744b3c30414810d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Female
    123 rdf:type schema:DefinedTerm
    124 N57ddd4a7903640f3bc1c4209d28bed0e rdf:first sg:person.010221436257.58
    125 rdf:rest N96625c6afe584a669b4295eeaa73868c
    126 N67222fd9e1334ffc8de7dddb7d1aa217 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Lymph Nodes
    128 rdf:type schema:DefinedTerm
    129 N69907223e3e1419ea54d0541927739ba rdf:first sg:person.01001337521.67
    130 rdf:rest N57ddd4a7903640f3bc1c4209d28bed0e
    131 N718ed3d8e1fe4eb59ab44460ff98121e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Neoplasm Recurrence, Local
    133 rdf:type schema:DefinedTerm
    134 N72b7516350af4ce6a92112e1c9b17bbf schema:issueNumber 11
    135 rdf:type schema:PublicationIssue
    136 N7f9cca2ce6fd43d2b1f0cd4903bdd74e schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 N8b4b71f976dd4c938dfc8c6d2f835593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Aged
    140 rdf:type schema:DefinedTerm
    141 N96625c6afe584a669b4295eeaa73868c rdf:first sg:person.01343511335.32
    142 rdf:rest N3a0dbb44191b4bf393a93a119d058326
    143 N9f1668ad9daf4dd3bdb97dce96594f46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Radiopharmaceuticals
    145 rdf:type schema:DefinedTerm
    146 Nd7c3bcb027c84c4c94d88f5f906d9d67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Middle Aged
    148 rdf:type schema:DefinedTerm
    149 Ne07dd59f3f0a493d88e89f925d156e0b rdf:first sg:person.0761746266.86
    150 rdf:rest rdf:nil
    151 Ne45d2ff110e84e5abc7cea69e996a972 schema:name dimensions_id
    152 schema:value pub.1086032553
    153 rdf:type schema:PropertyValue
    154 Ne64a38bdb36b417186ac0f10cc85c578 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Humans
    156 rdf:type schema:DefinedTerm
    157 Ne7963eaeb02545dba379059d90fe4281 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Adult
    159 rdf:type schema:DefinedTerm
    160 Nf5551bbbf2574e5084ea3a0947242e61 rdf:first sg:person.0751347234.39
    161 rdf:rest Ne07dd59f3f0a493d88e89f925d156e0b
    162 Nf794688453e9462395aa03a08336e94a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Positron Emission Tomography Computed Tomography
    164 rdf:type schema:DefinedTerm
    165 Nfac4126a7dd548488c93ab418b0967de schema:name doi
    166 schema:value 10.1007/s00259-017-3748-7
    167 rdf:type schema:PropertyValue
    168 Nfc907f5ea2134135a0c9a3c4ecd3334b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Lymphatic Metastasis
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Medical and Health Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Oncology and Carcinogenesis
    176 rdf:type schema:DefinedTerm
    177 sg:journal.1297401 schema:issn 1619-7070
    178 1619-7089
    179 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.01001337521.67 schema:affiliation grid-institutes:grid.412484.f
    183 schema:familyName Kim
    184 schema:givenName Yong-il
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67
    186 rdf:type schema:Person
    187 sg:person.010221436257.58 schema:affiliation grid-institutes:None
    188 schema:familyName Kim
    189 schema:givenName Yong Joong
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221436257.58
    191 rdf:type schema:Person
    192 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
    193 schema:familyName Cheon
    194 schema:givenName Gi Jeong
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
    196 rdf:type schema:Person
    197 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
    198 schema:familyName Paeng
    199 schema:givenName Jin Chul
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
    201 rdf:type schema:Person
    202 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
    203 schema:familyName Lee
    204 schema:givenName Dong Soo
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    206 rdf:type schema:Person
    207 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
    208 schema:familyName Chung
    209 schema:givenName June-Key
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
    211 rdf:type schema:Person
    212 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
    213 schema:familyName Kang
    214 schema:givenName Keon Wook
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
    216 rdf:type schema:Person
    217 sg:pub.10.1007/s00259-009-1085-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052795461
    218 https://doi.org/10.1007/s00259-009-1085-1
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00259-010-1640-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047271203
    221 https://doi.org/10.1007/s00259-010-1640-9
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00259-013-2418-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043890252
    224 https://doi.org/10.1007/s00259-013-2418-7
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00259-014-2941-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000694423
    227 https://doi.org/10.1007/s00259-014-2941-1
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00259-015-3295-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032300521
    230 https://doi.org/10.1007/s00259-015-3295-z
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00330-015-3734-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026982756
    233 https://doi.org/10.1007/s00330-015-3734-z
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s10549-015-3303-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043147314
    236 https://doi.org/10.1007/s10549-015-3303-9
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s10549-015-3558-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051394670
    239 https://doi.org/10.1007/s10549-015-3558-1
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s13139-012-0161-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035574812
    242 https://doi.org/10.1007/s13139-012-0161-9
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s13139-014-0296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037523904
    245 https://doi.org/10.1007/s13139-014-0296-y
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
    248 https://doi.org/10.1038/35021093
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1245/s10434-009-0719-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022874094
    251 https://doi.org/10.1245/s10434-009-0719-7
    252 rdf:type schema:CreativeWork
    253 grid-institutes:None schema:alternateName Veterans Health Service Medical Center, Seoul, Korea
    254 schema:name Veterans Health Service Medical Center, Seoul, Korea
    255 rdf:type schema:Organization
    256 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University, Seoul, Korea
    257 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea
    258 schema:name Cancer Research Institute, Seoul National University, Seoul, Korea
    259 Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
    260 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea
    261 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
    262 rdf:type schema:Organization
    263 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
    264 schema:name Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
    265 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
    266 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...