18F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

Jahae Kim, Kang-Ho Choi, Ho-Chun Song, Joon-Tae Kim, Man-Seok Park, Ki-Hyun Cho

ABSTRACT

PURPOSE: 18F-FDG PET/CT can acquire both anatomical and functional images in a single session. We investigated which factors of 18F-FDG PET/CT imaging have potential as biomarkers for an increased risk of ischaemic stroke in cancer patients. METHODS: From among cancer patients presenting with various neurological symptoms and hemiparesis, 134 were selected as eligible for this retrospective analysis. A new infarct lesion on brain MRI within 1 year of FDG PET/CT defined future ischaemic stroke. The target-to-background ratio (TBR) of each arterial segment was used to define arterial inflammation on PET imaging. Abdominal obesity was defined in terms of the area and proportion of visceral adipose tissue (VAT), subcutaneous adipose tissue and total adipose tissue (TAT) on a single CT slice at the umbilical level. RESULTS: Ischaemic stroke confirmed by MRI occurred in 30 patients. Patients with stroke had higher TBRs in the carotid arteries and abdominal aorta (P < 0.001) and a higher VAT proportion (P = 0.021) and TAT proportion (P = 0.041) than patients without stroke. Multiple logistic regression analysis showed that TBRs of the carotid arteries and abdominal aorta, VAT and TAT proportions, and the presence of a metabolically active tumour were significantly associated with future ischaemic stroke. Combining PET and CT variables improved the power for predicting future ischaemic stroke. CONCLUSION: Our findings suggest that arterial FDG uptake and hypermetabolic malignancy on PET and the VAT proportion on CT could be independent predictors of future ischaemic stroke in patients with cancer and could identify those patients who would benefit from medical treatment. More... »

PAGES

2228-2235

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-016-3460-z

DOI

http://dx.doi.org/10.1007/s00259-016-3460-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052643844

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27470328


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Causality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Republic of Korea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jahae", 
        "id": "sg:person.01372301631.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372301631.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hwasun Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411602.0", 
          "name": [
            "Cerebrovascular Center, Chonnam National University Hospital, Gwangju, Korea", 
            "Department of Neurology, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, 58128, Hwasun-gun, Jeollanam-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Kang-Ho", 
        "id": "sg:person.0742202174.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742202174.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Ho-Chun", 
        "id": "sg:person.01340702204.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340702204.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Cerebrovascular Center, Chonnam National University Hospital, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Joon-Tae", 
        "id": "sg:person.01116405176.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116405176.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Cerebrovascular Center, Chonnam National University Hospital, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Man-Seok", 
        "id": "sg:person.01232633576.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232633576.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Cerebrovascular Center, Chonnam National University Hospital, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Ki-Hyun", 
        "id": "sg:person.0762423300.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762423300.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/00004872-200311000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006591110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-200311000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006591110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.675355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006717644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013352023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.114.006488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013429570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.114.006488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013429570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(08)60269-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016030406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ene.12374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020434333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000020548.60110.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020598728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2008.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021378257", 
          "https://doi.org/10.1038/ijo.2008.254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.484113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025842525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.484113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025842525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rlu.0b013e318203bb42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026033539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.109.065151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029297027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/acel.12040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030560405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.05.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032429626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.521393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.521393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.106.131755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035853371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.106.131755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035853371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038077598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.29.5.939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038830863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2012.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039676347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0120598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041884599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.050294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042708508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-s062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042714871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.107.710509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043011753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1432-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047229035", 
          "https://doi.org/10.1007/s00259-010-1432-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1432-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047229035", 
          "https://doi.org/10.1007/s00259-010-1432-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000348703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049690388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3988/jcn.2011.7.2.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052458192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000129912.56486.2b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000129912.56486.2b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000129912.56486.2b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000000408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064352153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000000408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064352153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000000408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064352153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.149.2.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069314423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diab.46.5.860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070738193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076862222", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "PURPOSE: 18F-FDG PET/CT can acquire both anatomical and functional images in a single session. We investigated which factors of 18F-FDG PET/CT imaging have potential as biomarkers for an increased risk of ischaemic stroke in cancer patients.\nMETHODS: From among cancer patients presenting with various neurological symptoms and hemiparesis, 134 were selected as eligible for this retrospective analysis. A new infarct lesion on brain MRI within 1\u00a0year of FDG PET/CT defined future ischaemic stroke. The target-to-background ratio (TBR) of each arterial segment was used to define arterial inflammation on PET imaging. Abdominal obesity was defined in terms of the area and proportion of visceral adipose tissue (VAT), subcutaneous adipose tissue and total adipose tissue (TAT) on a single CT slice at the umbilical level.\nRESULTS: Ischaemic stroke confirmed by MRI occurred in 30 patients. Patients with stroke had higher TBRs in the carotid arteries and abdominal aorta (P\u2009<\u20090.001) and a higher VAT proportion (P\u2009=\u20090.021) and TAT proportion (P\u2009=\u20090.041) than patients without stroke. Multiple logistic regression analysis showed that TBRs of the carotid arteries and abdominal aorta, VAT and TAT proportions, and the presence of a metabolically active tumour were significantly associated with future ischaemic stroke. Combining PET and CT variables improved the power for predicting future ischaemic stroke.\nCONCLUSION: Our findings suggest that arterial FDG uptake and hypermetabolic malignancy on PET and the VAT proportion on CT could be independent predictors of future ischaemic stroke in patients with cancer and could identify those patients who would benefit from medical treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-016-3460-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "18F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients", 
    "pagination": "2228-2235", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fac26e7f9a46e81a3891716d3c5ef66461e8b22ef59445aa95051f661a289f0e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27470328"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-016-3460-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052643844"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-016-3460-z", 
      "https://app.dimensions.ai/details/publication/pub.1052643844"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00259-016-3460-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3460-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3460-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3460-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3460-z'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      77 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-016-3460-z schema:about N2288383586f6499a86141f42966adb30
2 N29392e427bf849adae3bbe729574bf96
3 N2b7140ffee0e4a42852ea7f2e96af859
4 N320e6dca73d14367ae9226d3e96c1fe2
5 N32908e9d961a4a56aaaaf2ea421596e0
6 N3534aeb19459400bb410b7a3069f32da
7 N5dda95f7c27746e99aa02916155c5700
8 N69a2270733a94719b75604018a9cbf5c
9 N6e8e1277c45b42928927c0d8961a5662
10 N7643e587edfa41feac96905fb1225074
11 N8151b349b6ca4d4c8bf60743fde9a19e
12 N8ba4e5f65b8448819d754da7039f3823
13 N8eedadeb3748479191f79e22cf17468e
14 N96da2a606310474582fd6a167f318009
15 Na07ff191934441eb96b3c29a834cb213
16 Nb1213645af214a8096161ed1a35e96a5
17 Ne483581f981d4a28beeca5b4da776edb
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N23d7bc63d15b4af0858f09f80bc95cf6
21 schema:citation sg:pub.10.1007/s00259-010-1432-2
22 sg:pub.10.1038/ijo.2008.254
23 https://app.dimensions.ai/details/publication/pub.1076862222
24 https://doi.org/10.1016/j.atherosclerosis.2012.03.018
25 https://doi.org/10.1016/j.jacc.2006.05.076
26 https://doi.org/10.1016/j.jacc.2007.05.024
27 https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.01.007
28 https://doi.org/10.1016/s0140-6736(08)60269-x
29 https://doi.org/10.1097/00004872-200311000-00002
30 https://doi.org/10.1097/rlu.0b013e318203bb42
31 https://doi.org/10.1111/acel.12040
32 https://doi.org/10.1111/ene.12374
33 https://doi.org/10.1159/000348703
34 https://doi.org/10.1161/01.cir.0000020548.60110.76
35 https://doi.org/10.1161/01.str.29.5.939
36 https://doi.org/10.1161/atvbaha.106.131755
37 https://doi.org/10.1161/circulationaha.106.675355
38 https://doi.org/10.1161/circulationaha.107.710509
39 https://doi.org/10.1161/strokeaha.107.484113
40 https://doi.org/10.1161/strokeaha.108.521393
41 https://doi.org/10.1161/strokeaha.114.006488
42 https://doi.org/10.1212/01.wnl.0000129912.56486.2b
43 https://doi.org/10.1212/wnl.0000000000000408
44 https://doi.org/10.1371/journal.pone.0120598
45 https://doi.org/10.2214/ajr.149.2.351
46 https://doi.org/10.2337/dc10-s062
47 https://doi.org/10.2337/diab.46.5.860
48 https://doi.org/10.2967/jnumed.107.050294
49 https://doi.org/10.2967/jnumed.109.065151
50 https://doi.org/10.3174/ajnr.a2381
51 https://doi.org/10.3988/jcn.2011.7.2.53
52 schema:datePublished 2016-11
53 schema:datePublishedReg 2016-11-01
54 schema:description PURPOSE: 18F-FDG PET/CT can acquire both anatomical and functional images in a single session. We investigated which factors of 18F-FDG PET/CT imaging have potential as biomarkers for an increased risk of ischaemic stroke in cancer patients. METHODS: From among cancer patients presenting with various neurological symptoms and hemiparesis, 134 were selected as eligible for this retrospective analysis. A new infarct lesion on brain MRI within 1 year of FDG PET/CT defined future ischaemic stroke. The target-to-background ratio (TBR) of each arterial segment was used to define arterial inflammation on PET imaging. Abdominal obesity was defined in terms of the area and proportion of visceral adipose tissue (VAT), subcutaneous adipose tissue and total adipose tissue (TAT) on a single CT slice at the umbilical level. RESULTS: Ischaemic stroke confirmed by MRI occurred in 30 patients. Patients with stroke had higher TBRs in the carotid arteries and abdominal aorta (P < 0.001) and a higher VAT proportion (P = 0.021) and TAT proportion (P = 0.041) than patients without stroke. Multiple logistic regression analysis showed that TBRs of the carotid arteries and abdominal aorta, VAT and TAT proportions, and the presence of a metabolically active tumour were significantly associated with future ischaemic stroke. Combining PET and CT variables improved the power for predicting future ischaemic stroke. CONCLUSION: Our findings suggest that arterial FDG uptake and hypermetabolic malignancy on PET and the VAT proportion on CT could be independent predictors of future ischaemic stroke in patients with cancer and could identify those patients who would benefit from medical treatment.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N2c595c37509e461f93f13700b7ced713
59 N31692dcb2f7e4a58b47c6306a0dc67aa
60 sg:journal.1297401
61 schema:name 18F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients
62 schema:pagination 2228-2235
63 schema:productId N060199b91d3a4eb7ae848547dd6ffb4d
64 N0921c43e162b4b14b999293c067af561
65 N6e7d15f7f33a42f6b6dbf23efb830f18
66 N80f7f7d878624cef91b65641a342c6f1
67 N99ac813bf94443d4a1ecb0afcb640498
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052643844
69 https://doi.org/10.1007/s00259-016-3460-z
70 schema:sdDatePublished 2019-04-11T12:43
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N8221b28c566b486fa7f87c9b16ea6abe
73 schema:url https://link.springer.com/10.1007%2Fs00259-016-3460-z
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N060199b91d3a4eb7ae848547dd6ffb4d schema:name doi
78 schema:value 10.1007/s00259-016-3460-z
79 rdf:type schema:PropertyValue
80 N0921c43e162b4b14b999293c067af561 schema:name nlm_unique_id
81 schema:value 101140988
82 rdf:type schema:PropertyValue
83 N1a0944f541cb4f208fb7a9d341c5b1c3 rdf:first sg:person.01340702204.27
84 rdf:rest N66e9cb364a1847fa83fc07b8a88f24ee
85 N2288383586f6499a86141f42966adb30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Stroke
87 rdf:type schema:DefinedTerm
88 N23d7bc63d15b4af0858f09f80bc95cf6 rdf:first sg:person.01372301631.83
89 rdf:rest N8f2585689c234a61b265381056064708
90 N29392e427bf849adae3bbe729574bf96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Fluorodeoxyglucose F18
92 rdf:type schema:DefinedTerm
93 N2b7140ffee0e4a42852ea7f2e96af859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Risk Factors
95 rdf:type schema:DefinedTerm
96 N2c595c37509e461f93f13700b7ced713 schema:issueNumber 12
97 rdf:type schema:PublicationIssue
98 N31692dcb2f7e4a58b47c6306a0dc67aa schema:volumeNumber 43
99 rdf:type schema:PublicationVolume
100 N320e6dca73d14367ae9226d3e96c1fe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Female
102 rdf:type schema:DefinedTerm
103 N32908e9d961a4a56aaaaf2ea421596e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Causality
105 rdf:type schema:DefinedTerm
106 N3534aeb19459400bb410b7a3069f32da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Humans
108 rdf:type schema:DefinedTerm
109 N386843e4a9984cd6976de42a040c47c4 rdf:first sg:person.0762423300.10
110 rdf:rest rdf:nil
111 N5dda95f7c27746e99aa02916155c5700 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Radiopharmaceuticals
113 rdf:type schema:DefinedTerm
114 N66e9cb364a1847fa83fc07b8a88f24ee rdf:first sg:person.01116405176.19
115 rdf:rest Nffe45507c3c64fe3ab963fe558f89b92
116 N69a2270733a94719b75604018a9cbf5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Prevalence
118 rdf:type schema:DefinedTerm
119 N6e7d15f7f33a42f6b6dbf23efb830f18 schema:name readcube_id
120 schema:value fac26e7f9a46e81a3891716d3c5ef66461e8b22ef59445aa95051f661a289f0e
121 rdf:type schema:PropertyValue
122 N6e8e1277c45b42928927c0d8961a5662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Prognosis
124 rdf:type schema:DefinedTerm
125 N7643e587edfa41feac96905fb1225074 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Male
127 rdf:type schema:DefinedTerm
128 N80f7f7d878624cef91b65641a342c6f1 schema:name dimensions_id
129 schema:value pub.1052643844
130 rdf:type schema:PropertyValue
131 N8151b349b6ca4d4c8bf60743fde9a19e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Positron Emission Tomography Computed Tomography
133 rdf:type schema:DefinedTerm
134 N8221b28c566b486fa7f87c9b16ea6abe schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N8ba4e5f65b8448819d754da7039f3823 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Republic of Korea
138 rdf:type schema:DefinedTerm
139 N8eedadeb3748479191f79e22cf17468e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Neoplasms
141 rdf:type schema:DefinedTerm
142 N8f2585689c234a61b265381056064708 rdf:first sg:person.0742202174.81
143 rdf:rest N1a0944f541cb4f208fb7a9d341c5b1c3
144 N96da2a606310474582fd6a167f318009 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Longitudinal Studies
146 rdf:type schema:DefinedTerm
147 N99ac813bf94443d4a1ecb0afcb640498 schema:name pubmed_id
148 schema:value 27470328
149 rdf:type schema:PropertyValue
150 Na07ff191934441eb96b3c29a834cb213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Sensitivity and Specificity
152 rdf:type schema:DefinedTerm
153 Nb1213645af214a8096161ed1a35e96a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Reproducibility of Results
155 rdf:type schema:DefinedTerm
156 Ne483581f981d4a28beeca5b4da776edb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Aged
158 rdf:type schema:DefinedTerm
159 Nffe45507c3c64fe3ab963fe558f89b92 rdf:first sg:person.01232633576.09
160 rdf:rest N386843e4a9984cd6976de42a040c47c4
161 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
162 schema:name Medical and Health Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
165 schema:name Clinical Sciences
166 rdf:type schema:DefinedTerm
167 sg:journal.1297401 schema:issn 1619-7070
168 1619-7089
169 schema:name European Journal of Nuclear Medicine and Molecular Imaging
170 rdf:type schema:Periodical
171 sg:person.01116405176.19 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
172 schema:familyName Kim
173 schema:givenName Joon-Tae
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116405176.19
175 rdf:type schema:Person
176 sg:person.01232633576.09 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
177 schema:familyName Park
178 schema:givenName Man-Seok
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232633576.09
180 rdf:type schema:Person
181 sg:person.01340702204.27 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
182 schema:familyName Song
183 schema:givenName Ho-Chun
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340702204.27
185 rdf:type schema:Person
186 sg:person.01372301631.83 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
187 schema:familyName Kim
188 schema:givenName Jahae
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372301631.83
190 rdf:type schema:Person
191 sg:person.0742202174.81 schema:affiliation https://www.grid.ac/institutes/grid.411602.0
192 schema:familyName Choi
193 schema:givenName Kang-Ho
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742202174.81
195 rdf:type schema:Person
196 sg:person.0762423300.10 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
197 schema:familyName Cho
198 schema:givenName Ki-Hyun
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762423300.10
200 rdf:type schema:Person
201 sg:pub.10.1007/s00259-010-1432-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047229035
202 https://doi.org/10.1007/s00259-010-1432-2
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/ijo.2008.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021378257
205 https://doi.org/10.1038/ijo.2008.254
206 rdf:type schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1076862222 schema:CreativeWork
208 https://doi.org/10.1016/j.atherosclerosis.2012.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039676347
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.jacc.2006.05.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032429626
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jacc.2007.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013352023
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844277
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0140-6736(08)60269-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016030406
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1097/00004872-200311000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006591110
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1097/rlu.0b013e318203bb42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026033539
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1111/acel.12040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030560405
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/ene.12374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020434333
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1159/000348703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049690388
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1161/01.cir.0000020548.60110.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020598728
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1161/01.str.29.5.939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038830863
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1161/atvbaha.106.131755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035853371
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1161/circulationaha.106.675355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006717644
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1161/circulationaha.107.710509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043011753
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1161/strokeaha.107.484113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025842525
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1161/strokeaha.108.521393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032838338
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1161/strokeaha.114.006488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013429570
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1212/01.wnl.0000129912.56486.2b schema:sameAs https://app.dimensions.ai/details/publication/pub.1064346084
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1212/wnl.0000000000000408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064352153
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pone.0120598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041884599
249 rdf:type schema:CreativeWork
250 https://doi.org/10.2214/ajr.149.2.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069314423
251 rdf:type schema:CreativeWork
252 https://doi.org/10.2337/dc10-s062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042714871
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2337/diab.46.5.860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070738193
255 rdf:type schema:CreativeWork
256 https://doi.org/10.2967/jnumed.107.050294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042708508
257 rdf:type schema:CreativeWork
258 https://doi.org/10.2967/jnumed.109.065151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029297027
259 rdf:type schema:CreativeWork
260 https://doi.org/10.3174/ajnr.a2381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038077598
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3988/jcn.2011.7.2.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052458192
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.411597.f schema:alternateName Chonnam National University Hospital
265 schema:name Cerebrovascular Center, Chonnam National University Hospital, Gwangju, Korea
266 Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.411602.0 schema:alternateName Chonnam National University Hwasun Hospital
269 schema:name Cerebrovascular Center, Chonnam National University Hospital, Gwangju, Korea
270 Department of Neurology, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, 58128, Hwasun-gun, Jeollanam-do, Republic of Korea
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...