Laparoscopic sentinel lymph node dissection in prostate cancer patients: the additional value depends on preoperative data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05-11

AUTHORS

Caroline Rousseau, Thierry Rousseau, Cédric Mathieu, Jacques Lacoste, Eric Potiron, Geneviève Aillet, Pierre Nevoux, Georges Le Coguic, Loïc Campion, Françoise Kraeber-Bodéré

ABSTRACT

AimIn intermediate- or high-risk prostate cancer (PC) patients, to avoid extended pelvic lymph node dissection (ePLND), the updated Briganti nomogram is recommended with the cost of missing 1.5 % of patients with lymph node invasion (LNI). Is it possible to reduce the percentage of unexpected LNI patients (nomogram false negative)? We used the isotopic sentinel lymph node (SLN) technique systematically associated with laparoscopic ePLND to assess the potential value of isotopic SLN method to adress this point.MethodsTwo hundred and two consecutive patients had procedures with isotopic SLN detection associated with laparoscopic ePLND for high or intermediate risk of PC. The area under the curve (AUC) of the receiver operating characteristics (ROC) analysis was used to quantify the accuracy of different models as: the updated Briganti nomogram, the percentage of positive cores, and an equation of the best predictors of LNI. We tested the model cutoffs associated with an optimal negative predictive value (NPV) and the best cutoff associated with avoiding false negative SLN detection, in order to assist the clinician’s decision of when to spare ePLND.ResultsLNI was detected in 35 patients (17.2 %). Based on preoperative primary Gleason grade and percentage of positive cores, a bivariate model was built to calculate a combined score reflecting the risk of LNI. For the Briganti nomogram, the 5 % probability cutoff avoided ePLND in 53 % (108/202) of patients, missing three LNI patients (8.6 %), but all were detected by the SLN technique. For our bivariate model, the best cutoff was <10, leaving no patient with LNI due to positive SLN detection (four patients = 11.4 %), and avoiding ePLND in 52 % (105/202) of patients.ConclusionFor patients with a low risk of LNI determined using the updated Briganti nomogram or bivariate model, SLN technique could be used alone for lymph node staging in intermediate- or high-risk PC patients. More... »

PAGES

1849-1856

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-016-3397-2

DOI

http://dx.doi.org/10.1007/s00259-016-3397-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016507461

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27164901


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Laparoscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Node Excision", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphoscintigraphy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preoperative Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Lymph Node", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Lymph Node Biopsy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Nuclear Medicine Unit, ICO Gauducheau Cancer Center, Saint Herblain, France", 
            "Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "Caroline", 
        "id": "sg:person.01240530667.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "Thierry", 
        "id": "sg:person.01352534457.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352534457.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Unit, ICO Gauducheau Cancer Center, Saint Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Nuclear Medicine Unit, ICO Gauducheau Cancer Center, Saint Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathieu", 
        "givenName": "C\u00e9dric", 
        "id": "sg:person.01300720363.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300720363.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacoste", 
        "givenName": "Jacques", 
        "id": "sg:person.0743356757.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743356757.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potiron", 
        "givenName": "Eric", 
        "id": "sg:person.01327676407.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327676407.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anatomopathology Unit, Institut d\u2019Histopathologie, Nantes, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Anatomopathology Unit, Institut d\u2019Histopathologie, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aillet", 
        "givenName": "Genevi\u00e8ve", 
        "id": "sg:person.01246301041.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246301041.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevoux", 
        "givenName": "Pierre", 
        "id": "sg:person.01047664462.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047664462.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Urologic Clinic Nantes-Atlantis, Saint-Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Coguic", 
        "givenName": "Georges", 
        "id": "sg:person.01213450007.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213450007.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Statistics Unit, ICO Gauducheau Cancer Center, Saint Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France", 
            "Statistics Unit, ICO Gauducheau Cancer Center, Saint Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campion", 
        "givenName": "Lo\u00efc", 
        "id": "sg:person.01100327307.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100327307.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Nuclear Medicine Unit, ICO Gauducheau Cancer Center, Saint Herblain, France", 
            "Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kraeber-Bod\u00e9r\u00e9", 
        "givenName": "Fran\u00e7oise", 
        "id": "sg:person.0653324404.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653324404.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-011-1975-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001696818", 
          "https://doi.org/10.1007/s00259-011-1975-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-11", 
    "datePublishedReg": "2016-05-11", 
    "description": "AimIn intermediate- or high-risk prostate cancer (PC) patients, to avoid extended pelvic lymph node dissection (ePLND), the updated Briganti nomogram is recommended with the cost of missing 1.5\u00a0% of patients with lymph node invasion (LNI). Is it possible to reduce the percentage of unexpected LNI patients (nomogram false negative)? We used the isotopic sentinel lymph node (SLN) technique systematically associated with laparoscopic ePLND to assess the potential value of isotopic SLN method to adress this point.MethodsTwo hundred and two consecutive patients had procedures with isotopic SLN detection associated with laparoscopic ePLND for high or intermediate risk of PC. The area under the curve (AUC) of the receiver operating characteristics (ROC) analysis was used to quantify the accuracy of different models as: the updated Briganti nomogram, the percentage of positive cores, and an equation of the best predictors of LNI. We tested the model cutoffs associated with an optimal negative predictive value (NPV) and the best cutoff associated with avoiding false negative SLN detection, in order to assist the clinician\u2019s decision of when to spare ePLND.ResultsLNI was detected in 35 patients (17.2\u00a0%). Based on preoperative primary Gleason grade and percentage of positive cores, a bivariate model was built to calculate a combined score reflecting the risk of LNI. For the Briganti nomogram, the 5\u00a0% probability cutoff avoided ePLND in 53\u00a0% (108/202) of patients, missing three LNI patients (8.6\u00a0%), but all were detected by the SLN technique. For our bivariate model, the best cutoff was <10, leaving no patient with LNI due to positive SLN detection (four patients\u2009=\u200911.4\u00a0%), and avoiding ePLND in 52\u00a0% (105/202) of patients.ConclusionFor patients with a low risk of LNI determined using the updated Briganti nomogram or bivariate model, SLN technique could be used alone for lymph node staging in intermediate- or high-risk PC patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-016-3397-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "extended pelvic lymph node dissection", 
      "lymph node invasion", 
      "prostate cancer patients", 
      "Briganti nomogram", 
      "SLN detection", 
      "negative predictive value", 
      "LNI patients", 
      "SLN technique", 
      "cancer patients", 
      "best cutoff", 
      "positive cores", 
      "risk of LNI", 
      "high-risk prostate cancer patients", 
      "sentinel lymph node technique", 
      "high-risk PC patients", 
      "pelvic lymph node dissection", 
      "optimal negative predictive value", 
      "laparoscopic sentinel lymph", 
      "lymph node dissection", 
      "primary Gleason grade", 
      "ConclusionFor patients", 
      "node dissection", 
      "consecutive patients", 
      "intermediate risk", 
      "PC patients", 
      "sentinel lymph", 
      "node invasion", 
      "preoperative data", 
      "clinicians' decisions", 
      "MethodsTwo hundred", 
      "Gleason grade", 
      "lower risk", 
      "patients", 
      "predictive value", 
      "SLN method", 
      "nomogram", 
      "probability cutoff", 
      "combined score", 
      "lymph", 
      "node technique", 
      "bivariate model", 
      "risk", 
      "dissection", 
      "characteristic analysis", 
      "additional value", 
      "best predictor", 
      "cutoff", 
      "percentage", 
      "potential value", 
      "scores", 
      "predictors", 
      "invasion", 
      "grade", 
      "detection", 
      "procedure", 
      "values", 
      "technique", 
      "data", 
      "decisions", 
      "model", 
      "receiver", 
      "curves", 
      "analysis", 
      "area", 
      "different models", 
      "method", 
      "point", 
      "cost", 
      "PC", 
      "hundreds", 
      "accuracy", 
      "order", 
      "intermediates", 
      "core", 
      "equations"
    ], 
    "name": "Laparoscopic sentinel lymph node dissection in prostate cancer patients: the additional value depends on preoperative data", 
    "pagination": "1849-1856", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016507461"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-016-3397-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27164901"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-016-3397-2", 
      "https://app.dimensions.ai/details/publication/pub.1016507461"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_683.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-016-3397-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3397-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3397-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3397-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-016-3397-2'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      116 URIs      107 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-016-3397-2 schema:about N13e966cbaaf344fdb8405d5dca5cbeaf
2 N4657c3c8e0114539bbf854945146eab5
3 N50122066653f49ca87140e10f6115282
4 N5d413367b6e945eca4dae61a350d65cd
5 N5e75f5f8315d4193baed61d6d9e48186
6 N73fe2a35ee0b4d82a3fea7d02e1942de
7 N8d20fabd0b8044cf9dcb301c91baab55
8 N8e4be9036bcd43dd87c71d0d0f791880
9 N9604a23afdd64f6fb54dbfb97a1664e9
10 N987152511aa34bca8ee951502dc78edc
11 Na96a4ddb1cbe4a92bd31d0b85a41a34b
12 Nd7da417460cb4717bf1161030102e164
13 Nd8ff40e17e1848528240799bdf578028
14 Ndc891b6788b84d23bf564ed35aa7d127
15 Ned7fe772ccfb443ea1c82c1020a712da
16 anzsrc-for:11
17 anzsrc-for:1112
18 schema:author N70f9e43034984ab1a54e7e2efc245a6e
19 schema:citation sg:pub.10.1007/s00259-011-1975-x
20 schema:datePublished 2016-05-11
21 schema:datePublishedReg 2016-05-11
22 schema:description AimIn intermediate- or high-risk prostate cancer (PC) patients, to avoid extended pelvic lymph node dissection (ePLND), the updated Briganti nomogram is recommended with the cost of missing 1.5 % of patients with lymph node invasion (LNI). Is it possible to reduce the percentage of unexpected LNI patients (nomogram false negative)? We used the isotopic sentinel lymph node (SLN) technique systematically associated with laparoscopic ePLND to assess the potential value of isotopic SLN method to adress this point.MethodsTwo hundred and two consecutive patients had procedures with isotopic SLN detection associated with laparoscopic ePLND for high or intermediate risk of PC. The area under the curve (AUC) of the receiver operating characteristics (ROC) analysis was used to quantify the accuracy of different models as: the updated Briganti nomogram, the percentage of positive cores, and an equation of the best predictors of LNI. We tested the model cutoffs associated with an optimal negative predictive value (NPV) and the best cutoff associated with avoiding false negative SLN detection, in order to assist the clinician’s decision of when to spare ePLND.ResultsLNI was detected in 35 patients (17.2 %). Based on preoperative primary Gleason grade and percentage of positive cores, a bivariate model was built to calculate a combined score reflecting the risk of LNI. For the Briganti nomogram, the 5 % probability cutoff avoided ePLND in 53 % (108/202) of patients, missing three LNI patients (8.6 %), but all were detected by the SLN technique. For our bivariate model, the best cutoff was <10, leaving no patient with LNI due to positive SLN detection (four patients = 11.4 %), and avoiding ePLND in 52 % (105/202) of patients.ConclusionFor patients with a low risk of LNI determined using the updated Briganti nomogram or bivariate model, SLN technique could be used alone for lymph node staging in intermediate- or high-risk PC patients.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N6b3ecbfcd05047f29beea61459922653
26 Nf2fe376014394ff0a012c59eb708f4fe
27 sg:journal.1297401
28 schema:keywords Briganti nomogram
29 ConclusionFor patients
30 Gleason grade
31 LNI patients
32 MethodsTwo hundred
33 PC
34 PC patients
35 SLN detection
36 SLN method
37 SLN technique
38 accuracy
39 additional value
40 analysis
41 area
42 best cutoff
43 best predictor
44 bivariate model
45 cancer patients
46 characteristic analysis
47 clinicians' decisions
48 combined score
49 consecutive patients
50 core
51 cost
52 curves
53 cutoff
54 data
55 decisions
56 detection
57 different models
58 dissection
59 equations
60 extended pelvic lymph node dissection
61 grade
62 high-risk PC patients
63 high-risk prostate cancer patients
64 hundreds
65 intermediate risk
66 intermediates
67 invasion
68 laparoscopic sentinel lymph
69 lower risk
70 lymph
71 lymph node dissection
72 lymph node invasion
73 method
74 model
75 negative predictive value
76 node dissection
77 node invasion
78 node technique
79 nomogram
80 optimal negative predictive value
81 order
82 patients
83 pelvic lymph node dissection
84 percentage
85 point
86 positive cores
87 potential value
88 predictive value
89 predictors
90 preoperative data
91 primary Gleason grade
92 probability cutoff
93 procedure
94 prostate cancer patients
95 receiver
96 risk
97 risk of LNI
98 scores
99 sentinel lymph
100 sentinel lymph node technique
101 technique
102 values
103 schema:name Laparoscopic sentinel lymph node dissection in prostate cancer patients: the additional value depends on preoperative data
104 schema:pagination 1849-1856
105 schema:productId N2c06e3ee6f04497b9ab2b94d6f31565f
106 N570cda3a3e5147fda3b84f7b1ef013c7
107 Nf1864234cbc94a3b9abfa17d6dab188b
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016507461
109 https://doi.org/10.1007/s00259-016-3397-2
110 schema:sdDatePublished 2022-12-01T06:34
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nc966714a959e4740b51727b8e2676201
113 schema:url https://doi.org/10.1007/s00259-016-3397-2
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N00746e5df02046659be737f07a43e917 rdf:first sg:person.01327676407.70
118 rdf:rest N5d12e7bff3dc4f6aa448bc949dfde132
119 N13e966cbaaf344fdb8405d5dca5cbeaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Laparoscopy
121 rdf:type schema:DefinedTerm
122 N1a329ec6332940d39b6a5ff242298b47 rdf:first sg:person.01100327307.34
123 rdf:rest N64a30deb9b0c4475b03c33641f64372a
124 N2c06e3ee6f04497b9ab2b94d6f31565f schema:name pubmed_id
125 schema:value 27164901
126 rdf:type schema:PropertyValue
127 N4657c3c8e0114539bbf854945146eab5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Lymph Node Excision
129 rdf:type schema:DefinedTerm
130 N50122066653f49ca87140e10f6115282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Lymphatic Metastasis
132 rdf:type schema:DefinedTerm
133 N570cda3a3e5147fda3b84f7b1ef013c7 schema:name dimensions_id
134 schema:value pub.1016507461
135 rdf:type schema:PropertyValue
136 N5d12e7bff3dc4f6aa448bc949dfde132 rdf:first sg:person.01246301041.90
137 rdf:rest Nccbce285a4e049bea08bfd2cf92f6117
138 N5d413367b6e945eca4dae61a350d65cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Reproducibility of Results
140 rdf:type schema:DefinedTerm
141 N5e75f5f8315d4193baed61d6d9e48186 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Lymphoscintigraphy
143 rdf:type schema:DefinedTerm
144 N64a30deb9b0c4475b03c33641f64372a rdf:first sg:person.0653324404.03
145 rdf:rest rdf:nil
146 N6b3ecbfcd05047f29beea61459922653 schema:issueNumber 10
147 rdf:type schema:PublicationIssue
148 N70f9e43034984ab1a54e7e2efc245a6e rdf:first sg:person.01240530667.47
149 rdf:rest Nfbf3c7be12c74d6f8cda2ffdd34ee37a
150 N734edc68146741fe8b1cc5c471522592 rdf:first sg:person.01213450007.88
151 rdf:rest N1a329ec6332940d39b6a5ff242298b47
152 N73fe2a35ee0b4d82a3fea7d02e1942de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Sentinel Lymph Node Biopsy
154 rdf:type schema:DefinedTerm
155 N8d20fabd0b8044cf9dcb301c91baab55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Middle Aged
157 rdf:type schema:DefinedTerm
158 N8e4be9036bcd43dd87c71d0d0f791880 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Male
160 rdf:type schema:DefinedTerm
161 N909667d7686744beba0e30f2a0fa34f5 rdf:first sg:person.01300720363.95
162 rdf:rest Nd521f19f14e94f429b513bd95f9e8bcc
163 N9604a23afdd64f6fb54dbfb97a1664e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Humans
165 rdf:type schema:DefinedTerm
166 N987152511aa34bca8ee951502dc78edc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Prostatic Neoplasms
168 rdf:type schema:DefinedTerm
169 Na96a4ddb1cbe4a92bd31d0b85a41a34b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Aged
171 rdf:type schema:DefinedTerm
172 Nc966714a959e4740b51727b8e2676201 schema:name Springer Nature - SN SciGraph project
173 rdf:type schema:Organization
174 Nccbce285a4e049bea08bfd2cf92f6117 rdf:first sg:person.01047664462.84
175 rdf:rest N734edc68146741fe8b1cc5c471522592
176 Nd521f19f14e94f429b513bd95f9e8bcc rdf:first sg:person.0743356757.68
177 rdf:rest N00746e5df02046659be737f07a43e917
178 Nd7da417460cb4717bf1161030102e164 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Sensitivity and Specificity
180 rdf:type schema:DefinedTerm
181 Nd8ff40e17e1848528240799bdf578028 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Preoperative Care
183 rdf:type schema:DefinedTerm
184 Ndc891b6788b84d23bf564ed35aa7d127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Sentinel Lymph Node
186 rdf:type schema:DefinedTerm
187 Ned7fe772ccfb443ea1c82c1020a712da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Neoplasm Staging
189 rdf:type schema:DefinedTerm
190 Nf1864234cbc94a3b9abfa17d6dab188b schema:name doi
191 schema:value 10.1007/s00259-016-3397-2
192 rdf:type schema:PropertyValue
193 Nf2fe376014394ff0a012c59eb708f4fe schema:volumeNumber 43
194 rdf:type schema:PublicationVolume
195 Nfbf3c7be12c74d6f8cda2ffdd34ee37a rdf:first sg:person.01352534457.70
196 rdf:rest N909667d7686744beba0e30f2a0fa34f5
197 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
198 schema:name Medical and Health Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
201 schema:name Oncology and Carcinogenesis
202 rdf:type schema:DefinedTerm
203 sg:journal.1297401 schema:issn 1619-7070
204 1619-7089
205 schema:name European Journal of Nuclear Medicine and Molecular Imaging
206 schema:publisher Springer Nature
207 rdf:type schema:Periodical
208 sg:person.01047664462.84 schema:affiliation grid-institutes:None
209 schema:familyName Nevoux
210 schema:givenName Pierre
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047664462.84
212 rdf:type schema:Person
213 sg:person.01100327307.34 schema:affiliation grid-institutes:None
214 schema:familyName Campion
215 schema:givenName Loïc
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100327307.34
217 rdf:type schema:Person
218 sg:person.01213450007.88 schema:affiliation grid-institutes:None
219 schema:familyName Le Coguic
220 schema:givenName Georges
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213450007.88
222 rdf:type schema:Person
223 sg:person.01240530667.47 schema:affiliation grid-institutes:grid.4817.a
224 schema:familyName Rousseau
225 schema:givenName Caroline
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47
227 rdf:type schema:Person
228 sg:person.01246301041.90 schema:affiliation grid-institutes:None
229 schema:familyName Aillet
230 schema:givenName Geneviève
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246301041.90
232 rdf:type schema:Person
233 sg:person.01300720363.95 schema:affiliation grid-institutes:None
234 schema:familyName Mathieu
235 schema:givenName Cédric
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300720363.95
237 rdf:type schema:Person
238 sg:person.01327676407.70 schema:affiliation grid-institutes:None
239 schema:familyName Potiron
240 schema:givenName Eric
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327676407.70
242 rdf:type schema:Person
243 sg:person.01352534457.70 schema:affiliation grid-institutes:None
244 schema:familyName Rousseau
245 schema:givenName Thierry
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352534457.70
247 rdf:type schema:Person
248 sg:person.0653324404.03 schema:affiliation grid-institutes:grid.4817.a
249 schema:familyName Kraeber-Bodéré
250 schema:givenName Françoise
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653324404.03
252 rdf:type schema:Person
253 sg:person.0743356757.68 schema:affiliation grid-institutes:None
254 schema:familyName Lacoste
255 schema:givenName Jacques
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743356757.68
257 rdf:type schema:Person
258 sg:pub.10.1007/s00259-011-1975-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001696818
259 https://doi.org/10.1007/s00259-011-1975-x
260 rdf:type schema:CreativeWork
261 grid-institutes:None schema:alternateName Anatomopathology Unit, Institut d’Histopathologie, Nantes, France
262 Nuclear Medicine Unit, ICO Gauducheau Cancer Center, Saint Herblain, France
263 Statistics Unit, ICO Gauducheau Cancer Center, Saint Herblain, France
264 Urologic Clinic Nantes-Atlantis, Saint-Herblain, France
265 schema:name Anatomopathology Unit, Institut d’Histopathologie, Nantes, France
266 Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France
267 Nuclear Medicine Unit, ICO Gauducheau Cancer Center, Saint Herblain, France
268 Statistics Unit, ICO Gauducheau Cancer Center, Saint Herblain, France
269 Urologic Clinic Nantes-Atlantis, Saint-Herblain, France
270 rdf:type schema:Organization
271 grid-institutes:grid.4817.a schema:alternateName Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France
272 schema:name Nantes-Angers Cancer Research Center, INSERM U892, CNRS UMR 6299, University of Nantes, Nantes, France
273 Nuclear Medicine Unit, ICO Gauducheau Cancer Center, Saint Herblain, France
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...