Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Elske Quak, Pierre-Yves Le Roux, Michael S. Hofman, Philippe Robin, David Bourhis, Jason Callahan, David Binns, Cédric Desmonts, Pierre-Yves Salaun, Rodney J. Hicks, Nicolas Aide

ABSTRACT

PURPOSE: Point-spread function (PSF) or PSF + time-of-flight (TOF) reconstruction may improve lesion detection in oncologic PET, but can alter quantitation resulting in variable standardized uptake values (SUVs) between different PET systems. This study aims to validate a proprietary software tool (EQ.PET) to harmonize SUVs across different PET systems independent of the reconstruction algorithm used. METHODS: NEMA NU2 phantom data were used to calculate the appropriate filter for each PSF or PSF+TOF reconstruction from three different PET systems, in order to obtain EANM compliant recovery coefficients. PET data from 517 oncology patients were reconstructed with a PSF or PSF+TOF reconstruction for optimal tumour detection and an ordered subset expectation maximization (OSEM3D) reconstruction known to fulfil EANM guidelines. Post-reconstruction, the proprietary filter was applied to the PSF or PSF+TOF data (PSFEQ or PSF+TOFEQ). SUVs for PSF or PSF+TOF and PSFEQ or PSF+TOFEQ were compared to SUVs for the OSEM3D reconstruction. The impact of potential confounders on the EQ.PET methodology including lesion and patient characteristics was studied, as was the adherence to imaging guidelines. RESULTS: For the 1380 tumour lesions studied, Bland-Altman analysis showed a mean ratio between PSF or PSF+TOF and OSEM3D of 1.46 (95%CI: 0.86-2.06) and 1.23 (95%CI: 0.95-1.51) for SUVmax and SUVpeak, respectively. Application of the proprietary filter improved these ratios to 1.02 (95%CI: 0.88-1.16) and 1.04 (95%CI: 0.92-1.17) for SUVmax and SUVpeak, respectively. The influence of the different confounding factors studied (lesion size, location, radial offset and patient's BMI) was less than 5%. Adherence to the European Association of Nuclear Medicine (EANM) guidelines for tumour imaging was good. CONCLUSION: These data indicate that it is not necessary to sacrifice the superior lesion detection and image quality achieved by newer reconstruction techniques in the quest for harmonizing quantitative comparability between PET systems. More... »

PAGES

2072-2082

References to SciGraph publications

  • 2007-03. Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-12. SUVref: reducing reconstruction-dependent variation in PET SUV in EJNMMI RESEARCH
  • 2013-07. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-05. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT in ANNALS OF NUCLEAR MEDICINE
  • 2010-01. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-07. qPET – a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-10. Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-06. Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-02. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-015-3128-0

    DOI

    http://dx.doi.org/10.1007/s00259-015-3128-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037717808

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26219870


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Non-Small-Cell Lung", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphoma, Non-Hodgkin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Melanoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quak", 
            "givenName": "Elske", 
            "id": "sg:person.01233564514.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233564514.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Roux", 
            "givenName": "Pierre-Yves", 
            "id": "sg:person.01156373352.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373352.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peter MacCallum Cancer Centre", 
              "id": "https://www.grid.ac/institutes/grid.1055.1", 
              "name": [
                "Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne and University of Melbourne, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hofman", 
            "givenName": "Michael S.", 
            "id": "sg:person.01012460764.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012460764.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robin", 
            "givenName": "Philippe", 
            "id": "sg:person.01307140060.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourhis", 
            "givenName": "David", 
            "id": "sg:person.0636567456.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peter MacCallum Cancer Centre", 
              "id": "https://www.grid.ac/institutes/grid.1055.1", 
              "name": [
                "Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne and University of Melbourne, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Callahan", 
            "givenName": "Jason", 
            "id": "sg:person.0616621550.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616621550.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peter MacCallum Cancer Centre", 
              "id": "https://www.grid.ac/institutes/grid.1055.1", 
              "name": [
                "Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne and University of Melbourne, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Binns", 
            "givenName": "David", 
            "id": "sg:person.01213140513.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213140513.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre Hospitalier Universitaire de Caen", 
              "id": "https://www.grid.ac/institutes/grid.411149.8", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Avenue C\u00f4te de Nacre, 14000, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Desmonts", 
            "givenName": "C\u00e9dric", 
            "id": "sg:person.0715336115.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715336115.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salaun", 
            "givenName": "Pierre-Yves", 
            "id": "sg:person.01021766527.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peter MacCallum Cancer Centre", 
              "id": "https://www.grid.ac/institutes/grid.1055.1", 
              "name": [
                "Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne and University of Melbourne, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hicks", 
            "givenName": "Rodney J.", 
            "id": "sg:person.01121233254.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121233254.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 de Caen Basse-Normandie", 
              "id": "https://www.grid.ac/institutes/grid.412043.0", 
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
                "Nuclear Medicine Department, University Hospital, Avenue C\u00f4te de Nacre, 14000, Caen, France", 
                "INSERM 1199, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
                "Normandie University, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aide", 
            "givenName": "Nicolas", 
            "id": "sg:person.01152406451.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152406451.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ejrad.2014.10.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000011438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnmt.110.086439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002267161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2715-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002676223", 
              "https://doi.org/10.1007/s00259-014-2715-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.110.085662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003909781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.057307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009233958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2013.53.5229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011190890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.111.101733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014167272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2013.09.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015207517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0224-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015743919", 
              "https://doi.org/10.1007/s00259-006-0224-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2391-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016046039", 
              "https://doi.org/10.1007/s00259-013-2391-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2391-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016046039", 
              "https://doi.org/10.1007/s00259-013-2391-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2465-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016939976", 
              "https://doi.org/10.1007/s00259-013-2465-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1297-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021250910", 
              "https://doi.org/10.1007/s00259-009-1297-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1297-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021250910", 
              "https://doi.org/10.1007/s00259-009-1297-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1297-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021250910", 
              "https://doi.org/10.1007/s00259-009-1297-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-014-0815-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021417424", 
              "https://doi.org/10.1007/s12149-014-0815-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.114.148056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023215819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2689-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024627703", 
              "https://doi.org/10.1007/s00259-014-2689-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2689-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024627703", 
              "https://doi.org/10.1007/s00259-014-2689-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2191-219x-1-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025107920", 
              "https://doi.org/10.1186/2191-219x-1-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.4800806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025345986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rlu.0b013e318251e3d1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039409497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040287180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040287180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-8049(99)00229-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049505783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.115.158402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051396191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3324/haematol.2014.104125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053332356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/56/8/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059029129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2010.2040188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3413/nukmed-0665-14-05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071311701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077229509", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "PURPOSE: Point-spread function (PSF) or PSF + time-of-flight (TOF) reconstruction may improve lesion detection in oncologic PET, but can alter quantitation resulting in variable standardized uptake values (SUVs) between different PET systems. This study aims to validate a proprietary software tool (EQ.PET) to harmonize SUVs across different PET systems independent of the reconstruction algorithm used.\nMETHODS: NEMA NU2 phantom data were used to calculate the appropriate filter for each PSF or PSF+TOF reconstruction from three different PET systems, in order to obtain EANM compliant recovery coefficients. PET data from 517 oncology patients were reconstructed with a PSF or PSF+TOF reconstruction for optimal tumour detection and an ordered subset expectation maximization (OSEM3D) reconstruction known to fulfil EANM guidelines. Post-reconstruction, the proprietary filter was applied to the PSF or PSF+TOF data (PSFEQ or PSF+TOFEQ). SUVs for PSF or PSF+TOF and PSFEQ or PSF+TOFEQ were compared to SUVs for the OSEM3D reconstruction. The impact of potential confounders on the EQ.PET methodology including lesion and patient characteristics was studied, as was the adherence to imaging guidelines.\nRESULTS: For the 1380 tumour lesions studied, Bland-Altman analysis showed a mean ratio between PSF or PSF+TOF and OSEM3D of 1.46 (95%CI: 0.86-2.06) and 1.23 (95%CI: 0.95-1.51) for SUVmax and SUVpeak, respectively. Application of the proprietary filter improved these ratios to 1.02 (95%CI: 0.88-1.16) and 1.04 (95%CI: 0.92-1.17) for SUVmax and SUVpeak, respectively. The influence of the different confounding factors studied (lesion size, location, radial offset and patient's BMI) was less than 5%. Adherence to the European Association of Nuclear Medicine (EANM) guidelines for tumour imaging was good.\nCONCLUSION: These data indicate that it is not necessary to sacrifice the superior lesion detection and image quality achieved by newer reconstruction techniques in the quest for harmonizing quantitative comparability between PET systems.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00259-015-3128-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "13", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "name": "Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients", 
        "pagination": "2072-2082", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b3acc48401729b9490ce695add198be318282e1b50868977fa23c8357cd1e684"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26219870"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101140988"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-015-3128-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037717808"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-015-3128-0", 
          "https://app.dimensions.ai/details/publication/pub.1037717808"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00259-015-3128-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-015-3128-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-015-3128-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-015-3128-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-015-3128-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    299 TRIPLES      21 PREDICATES      69 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-015-3128-0 schema:about N060f689dd0144d70a8311388f1c35149
    2 N0c95d67672c9436185731f989464f865
    3 N19d0c8ab904d43a7ab534ce284abc552
    4 N2ba26bcc99c243f2b62e7afa9143048a
    5 N39fe7e9a97384ca784dd0a5d0f700acc
    6 N66df8232515b435d89b1abd88501e6c3
    7 N66e7c9a3aef14eaea1e7643c2ce31593
    8 N7df4c4361d154542ade35b58d5cada31
    9 N7fe49ddad03947ce92f0083c44edfd64
    10 Nc7a4cf5d76ee45d79a9f0d21c239c485
    11 Nded3e98148f440e1a6a90d259380879e
    12 Nf509148d02b2464995828430b04fb21e
    13 Nfdbc1f41ff3c4c7897430b5d9d3f0b7d
    14 anzsrc-for:08
    15 anzsrc-for:0801
    16 schema:author N5683389ac2ef435f8a52b319271fc694
    17 schema:citation sg:pub.10.1007/s00259-006-0224-1
    18 sg:pub.10.1007/s00259-009-1297-4
    19 sg:pub.10.1007/s00259-013-2391-1
    20 sg:pub.10.1007/s00259-013-2465-0
    21 sg:pub.10.1007/s00259-014-2689-7
    22 sg:pub.10.1007/s00259-014-2715-9
    23 sg:pub.10.1007/s00259-014-2961-x
    24 sg:pub.10.1007/s12149-014-0815-z
    25 sg:pub.10.1186/2191-219x-1-16
    26 https://app.dimensions.ai/details/publication/pub.1077229509
    27 https://doi.org/10.1016/j.ejrad.2013.09.030
    28 https://doi.org/10.1016/j.ejrad.2014.10.018
    29 https://doi.org/10.1016/s0140-6736(86)90837-8
    30 https://doi.org/10.1016/s0959-8049(99)00229-4
    31 https://doi.org/10.1088/0031-9155/56/8/004
    32 https://doi.org/10.1097/rlu.0b013e318251e3d1
    33 https://doi.org/10.1109/tmi.2010.2040188
    34 https://doi.org/10.1118/1.4800806
    35 https://doi.org/10.1200/jco.2013.53.5229
    36 https://doi.org/10.2967/jnmt.110.086439
    37 https://doi.org/10.2967/jnumed.108.057307
    38 https://doi.org/10.2967/jnumed.110.085662
    39 https://doi.org/10.2967/jnumed.111.101733
    40 https://doi.org/10.2967/jnumed.114.148056
    41 https://doi.org/10.2967/jnumed.115.158402
    42 https://doi.org/10.3324/haematol.2014.104125
    43 https://doi.org/10.3413/nukmed-0665-14-05
    44 schema:datePublished 2015-12
    45 schema:datePublishedReg 2015-12-01
    46 schema:description PURPOSE: Point-spread function (PSF) or PSF + time-of-flight (TOF) reconstruction may improve lesion detection in oncologic PET, but can alter quantitation resulting in variable standardized uptake values (SUVs) between different PET systems. This study aims to validate a proprietary software tool (EQ.PET) to harmonize SUVs across different PET systems independent of the reconstruction algorithm used. METHODS: NEMA NU2 phantom data were used to calculate the appropriate filter for each PSF or PSF+TOF reconstruction from three different PET systems, in order to obtain EANM compliant recovery coefficients. PET data from 517 oncology patients were reconstructed with a PSF or PSF+TOF reconstruction for optimal tumour detection and an ordered subset expectation maximization (OSEM3D) reconstruction known to fulfil EANM guidelines. Post-reconstruction, the proprietary filter was applied to the PSF or PSF+TOF data (PSFEQ or PSF+TOFEQ). SUVs for PSF or PSF+TOF and PSFEQ or PSF+TOFEQ were compared to SUVs for the OSEM3D reconstruction. The impact of potential confounders on the EQ.PET methodology including lesion and patient characteristics was studied, as was the adherence to imaging guidelines. RESULTS: For the 1380 tumour lesions studied, Bland-Altman analysis showed a mean ratio between PSF or PSF+TOF and OSEM3D of 1.46 (95%CI: 0.86-2.06) and 1.23 (95%CI: 0.95-1.51) for SUVmax and SUVpeak, respectively. Application of the proprietary filter improved these ratios to 1.02 (95%CI: 0.88-1.16) and 1.04 (95%CI: 0.92-1.17) for SUVmax and SUVpeak, respectively. The influence of the different confounding factors studied (lesion size, location, radial offset and patient's BMI) was less than 5%. Adherence to the European Association of Nuclear Medicine (EANM) guidelines for tumour imaging was good. CONCLUSION: These data indicate that it is not necessary to sacrifice the superior lesion detection and image quality achieved by newer reconstruction techniques in the quest for harmonizing quantitative comparability between PET systems.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree true
    50 schema:isPartOf N684a31687eb740f896def741001568ad
    51 Nde2448142f84422aa052c0d4ec5e05fe
    52 sg:journal.1297401
    53 schema:name Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients
    54 schema:pagination 2072-2082
    55 schema:productId N1c67b879a42b4d37a16647994ea6db6c
    56 N65b1b9137aea4c0fa7521ba6e6052218
    57 N8c1322cf8d0343cebaea04c38d422b82
    58 Nacab53d13ab94913a7e8e040695ad3f2
    59 Ndb9c42f8a78940c3a8372faf98bd1ddf
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037717808
    61 https://doi.org/10.1007/s00259-015-3128-0
    62 schema:sdDatePublished 2019-04-11T09:54
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher Naade16f6d1704da08d34ee13f204417d
    65 schema:url http://link.springer.com/10.1007%2Fs00259-015-3128-0
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N05646745f7da44babc8db94aa4b8a5cc rdf:first sg:person.01121233254.97
    70 rdf:rest N962db61e984f4476967442285907e846
    71 N060f689dd0144d70a8311388f1c35149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Melanoma
    73 rdf:type schema:DefinedTerm
    74 N0c95d67672c9436185731f989464f865 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Carcinoma, Non-Small-Cell Lung
    76 rdf:type schema:DefinedTerm
    77 N19d0c8ab904d43a7ab534ce284abc552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Positron-Emission Tomography
    79 rdf:type schema:DefinedTerm
    80 N1c67b879a42b4d37a16647994ea6db6c schema:name doi
    81 schema:value 10.1007/s00259-015-3128-0
    82 rdf:type schema:PropertyValue
    83 N2ba26bcc99c243f2b62e7afa9143048a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Radiopharmaceuticals
    85 rdf:type schema:DefinedTerm
    86 N39fe7e9a97384ca784dd0a5d0f700acc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Aged
    88 rdf:type schema:DefinedTerm
    89 N5683389ac2ef435f8a52b319271fc694 rdf:first sg:person.01233564514.37
    90 rdf:rest Ndc789c5899a6414e87acd9a035fa2118
    91 N5d142bbea68e456fb0de59d72a09e687 schema:name Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France
    92 rdf:type schema:Organization
    93 N5feab88fe93245678c8b3d94106109c0 schema:name Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France
    94 rdf:type schema:Organization
    95 N63f8ef14b78842fabea249fd645a4c12 schema:name Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
    96 rdf:type schema:Organization
    97 N65b1b9137aea4c0fa7521ba6e6052218 schema:name readcube_id
    98 schema:value b3acc48401729b9490ce695add198be318282e1b50868977fa23c8357cd1e684
    99 rdf:type schema:PropertyValue
    100 N66df8232515b435d89b1abd88501e6c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Female
    102 rdf:type schema:DefinedTerm
    103 N66e7c9a3aef14eaea1e7643c2ce31593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Image Processing, Computer-Assisted
    105 rdf:type schema:DefinedTerm
    106 N684a31687eb740f896def741001568ad schema:volumeNumber 42
    107 rdf:type schema:PublicationVolume
    108 N6f5cb31efc9e483292207e1fce649656 rdf:first sg:person.0616621550.24
    109 rdf:rest Ncab087205b444b96ab7aafcaf8b0dab9
    110 N7405a43ef66141b29c7c4b809d38d977 rdf:first sg:person.0636567456.08
    111 rdf:rest N6f5cb31efc9e483292207e1fce649656
    112 N7df4c4361d154542ade35b58d5cada31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Fluorodeoxyglucose F18
    114 rdf:type schema:DefinedTerm
    115 N7fe49ddad03947ce92f0083c44edfd64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Liver Neoplasms
    117 rdf:type schema:DefinedTerm
    118 N8c1322cf8d0343cebaea04c38d422b82 schema:name nlm_unique_id
    119 schema:value 101140988
    120 rdf:type schema:PropertyValue
    121 N962db61e984f4476967442285907e846 rdf:first sg:person.01152406451.51
    122 rdf:rest rdf:nil
    123 Naade16f6d1704da08d34ee13f204417d schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 Nacab53d13ab94913a7e8e040695ad3f2 schema:name pubmed_id
    126 schema:value 26219870
    127 rdf:type schema:PropertyValue
    128 Nc7a4cf5d76ee45d79a9f0d21c239c485 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Humans
    130 rdf:type schema:DefinedTerm
    131 Ncab087205b444b96ab7aafcaf8b0dab9 rdf:first sg:person.01213140513.69
    132 rdf:rest Nefa6cc9b11e24b4097a6f2f744dc21fd
    133 Nd0042a0b6c7941b39d45de692d2dd812 rdf:first sg:person.01307140060.86
    134 rdf:rest N7405a43ef66141b29c7c4b809d38d977
    135 Ndb9c42f8a78940c3a8372faf98bd1ddf schema:name dimensions_id
    136 schema:value pub.1037717808
    137 rdf:type schema:PropertyValue
    138 Ndc789c5899a6414e87acd9a035fa2118 rdf:first sg:person.01156373352.82
    139 rdf:rest Nfc1fef4165e74701b8de288c29b3d1ae
    140 Nddf0a7e20ddc4d97b486913509711ee3 schema:name Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France
    141 rdf:type schema:Organization
    142 Nde2448142f84422aa052c0d4ec5e05fe schema:issueNumber 13
    143 rdf:type schema:PublicationIssue
    144 Nded3e98148f440e1a6a90d259380879e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Lymphoma, Non-Hodgkin
    146 rdf:type schema:DefinedTerm
    147 Nefa6cc9b11e24b4097a6f2f744dc21fd rdf:first sg:person.0715336115.22
    148 rdf:rest Nefa96febf8a847acbc1c9506cc46a3f6
    149 Nefa96febf8a847acbc1c9506cc46a3f6 rdf:first sg:person.01021766527.49
    150 rdf:rest N05646745f7da44babc8db94aa4b8a5cc
    151 Nf3e61305dc3d49ecaeb0ae6f73c38b02 schema:name Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France
    152 rdf:type schema:Organization
    153 Nf509148d02b2464995828430b04fb21e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Middle Aged
    155 rdf:type schema:DefinedTerm
    156 Nfc1fef4165e74701b8de288c29b3d1ae rdf:first sg:person.01012460764.55
    157 rdf:rest Nd0042a0b6c7941b39d45de692d2dd812
    158 Nfdbc1f41ff3c4c7897430b5d9d3f0b7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Male
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Information and Computing Sciences
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Artificial Intelligence and Image Processing
    166 rdf:type schema:DefinedTerm
    167 sg:journal.1297401 schema:issn 1619-7070
    168 1619-7089
    169 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    170 rdf:type schema:Periodical
    171 sg:person.01012460764.55 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
    172 schema:familyName Hofman
    173 schema:givenName Michael S.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012460764.55
    175 rdf:type schema:Person
    176 sg:person.01021766527.49 schema:affiliation N5feab88fe93245678c8b3d94106109c0
    177 schema:familyName Salaun
    178 schema:givenName Pierre-Yves
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49
    180 rdf:type schema:Person
    181 sg:person.01121233254.97 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
    182 schema:familyName Hicks
    183 schema:givenName Rodney J.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121233254.97
    185 rdf:type schema:Person
    186 sg:person.01152406451.51 schema:affiliation https://www.grid.ac/institutes/grid.412043.0
    187 schema:familyName Aide
    188 schema:givenName Nicolas
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152406451.51
    190 rdf:type schema:Person
    191 sg:person.01156373352.82 schema:affiliation Nf3e61305dc3d49ecaeb0ae6f73c38b02
    192 schema:familyName Le Roux
    193 schema:givenName Pierre-Yves
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373352.82
    195 rdf:type schema:Person
    196 sg:person.01213140513.69 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
    197 schema:familyName Binns
    198 schema:givenName David
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213140513.69
    200 rdf:type schema:Person
    201 sg:person.01233564514.37 schema:affiliation N63f8ef14b78842fabea249fd645a4c12
    202 schema:familyName Quak
    203 schema:givenName Elske
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233564514.37
    205 rdf:type schema:Person
    206 sg:person.01307140060.86 schema:affiliation N5d142bbea68e456fb0de59d72a09e687
    207 schema:familyName Robin
    208 schema:givenName Philippe
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86
    210 rdf:type schema:Person
    211 sg:person.0616621550.24 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
    212 schema:familyName Callahan
    213 schema:givenName Jason
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616621550.24
    215 rdf:type schema:Person
    216 sg:person.0636567456.08 schema:affiliation Nddf0a7e20ddc4d97b486913509711ee3
    217 schema:familyName Bourhis
    218 schema:givenName David
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08
    220 rdf:type schema:Person
    221 sg:person.0715336115.22 schema:affiliation https://www.grid.ac/institutes/grid.411149.8
    222 schema:familyName Desmonts
    223 schema:givenName Cédric
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715336115.22
    225 rdf:type schema:Person
    226 sg:pub.10.1007/s00259-006-0224-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743919
    227 https://doi.org/10.1007/s00259-006-0224-1
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
    230 https://doi.org/10.1007/s00259-009-1297-4
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00259-013-2391-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016046039
    233 https://doi.org/10.1007/s00259-013-2391-1
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00259-013-2465-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016939976
    236 https://doi.org/10.1007/s00259-013-2465-0
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s00259-014-2689-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024627703
    239 https://doi.org/10.1007/s00259-014-2689-7
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s00259-014-2715-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002676223
    242 https://doi.org/10.1007/s00259-014-2715-9
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s00259-014-2961-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008918527
    245 https://doi.org/10.1007/s00259-014-2961-x
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s12149-014-0815-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021417424
    248 https://doi.org/10.1007/s12149-014-0815-z
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/2191-219x-1-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107920
    251 https://doi.org/10.1186/2191-219x-1-16
    252 rdf:type schema:CreativeWork
    253 https://app.dimensions.ai/details/publication/pub.1077229509 schema:CreativeWork
    254 https://doi.org/10.1016/j.ejrad.2013.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015207517
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1016/j.ejrad.2014.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000011438
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1016/s0140-6736(86)90837-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287180
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1016/s0959-8049(99)00229-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049505783
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1088/0031-9155/56/8/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029129
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1097/rlu.0b013e318251e3d1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039409497
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1109/tmi.2010.2040188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695524
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1118/1.4800806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345986
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1200/jco.2013.53.5229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011190890
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.2967/jnmt.110.086439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002267161
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.2967/jnumed.110.085662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003909781
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.2967/jnumed.111.101733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014167272
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.2967/jnumed.114.148056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023215819
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.2967/jnumed.115.158402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051396191
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.3324/haematol.2014.104125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053332356
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.3413/nukmed-0665-14-05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071311701
    287 rdf:type schema:CreativeWork
    288 https://www.grid.ac/institutes/grid.1055.1 schema:alternateName Peter MacCallum Cancer Centre
    289 schema:name Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne and University of Melbourne, Melbourne, Australia
    290 rdf:type schema:Organization
    291 https://www.grid.ac/institutes/grid.411149.8 schema:alternateName Centre Hospitalier Universitaire de Caen
    292 schema:name Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France
    293 rdf:type schema:Organization
    294 https://www.grid.ac/institutes/grid.412043.0 schema:alternateName Université de Caen Basse-Normandie
    295 schema:name INSERM 1199, François Baclesse Cancer Centre, Caen, France
    296 Normandie University, Caen, France
    297 Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
    298 Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France
    299 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...