18F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05-08

AUTHORS

Pierre-Yves Salaun, Loïc Campion, Catherine Ansquer, Eric Frampas, Cédric Mathieu, Philippe Robin, Claire Bournaud, Jean-Philippe Vuillez, David Taieb, Caroline Rousseau, Delphine Drui, Eric Mirallié, Françoise Borson-Chazot, David M. Goldenberg, Jean-François Chatal, Jacques Barbet, Françoise Kraeber-Bodéré

ABSTRACT

PurposePET is a powerful tool for assessing targeted therapy. Since 18F-FDG shows a potential prognostic value in medullary thyroid carcinoma (MTC), this study evaluated 18F-FDG PET alone and combined with morphological and biomarker evaluations as a surrogate marker of overall survival (OS) in patients with progressive metastatic MTC treated with pretargeted anti-CEA radioimmunotherapy (pRAIT) in a phase II clinical trial.MethodsPatients underwent PET associated with morphological imaging (CT and MRI) and biomarker evaluations, before and 3 and 6 months, and then every 6 months, after pRAIT for 36 months. A combined evaluation was performed using anatomic, metabolic and biomarker methods. The prognostic value of the PET response was compared with demographic parameters at inclusion including age, sex, RET mutation, time from initial diagnosis, calcitonin and CEA concentrations and doubling times (DT), SUVmax, location of disease and bone marrow involvement, and with response using RECIST, biomarker concentration variation, impact on DT, and combined methods.ResultsEnrolled in the study were 25 men and 17 women with disease progression. The median OS from pRAIT was 3.7 years (0.2 to 6.5 years) and from MTC diagnosis 10.9 years (1.7 to 31.5 years). After pRAIT, PET/CT showed 1 patient with a complete response, 4 with a partial response and 24 with disease stabilization. The combined evaluation showed 20 responses. For OS from pRAIT, univariate analysis showed the prognostic value of biomarker DT (P = 0.011) and SUVmax (P = 0.038) calculated before pRAIT and impact on DT (P = 0.034), RECIST (P = 0.009), PET (P = 0.009), and combined response (P = 0.004) measured after pRAIT. PET had the highest predictive value with the lowest Akaike information criterion (AIC 74.26) as compared to RECIST (AIC 78.06), biomarker variation (AIC 81.94) and impact on DT (AIC 79.22). No benefit was obtained by combining the methods (AIC 78.75). This result was confirmed by the analysis of OS from MTC diagnosis.Conclusion18F-FDG PET appeared as the most potent and simplest prognostic method to predict survival in patients with progressive MTC treated with pRAIT. Biomarker DT before pRAIT also appeared as an independent prognostic factor, but no benefit was found by adding morphological and biomarker evaluation to PET assessment. More... »

PAGES

1501-1510

References to SciGraph publications

  • 2011-11-08. Clinical radioimmunotherapy—the role of radiobiology in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2003-11-25. The Ki67 index a prognostic marker in medullary thyroid carcinoma in BRITISH JOURNAL OF CANCER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-014-2772-0

    DOI

    http://dx.doi.org/10.1007/s00259-014-2772-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031925914

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24806110


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Medullary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Neuroendocrine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multimodal Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radioimmunotherapy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thyroid Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, University Hospital, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salaun", 
            "givenName": "Pierre-Yves", 
            "id": "sg:person.01021766527.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Statistical Department, ICO-Gauducheau Cancer Institute, Nantes, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Statistical Department, ICO-Gauducheau Cancer Institute, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Campion", 
            "givenName": "Lo\u00efc", 
            "id": "sg:person.01100327307.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100327307.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, University Hospital, Nantes, France", 
              "id": "http://www.grid.ac/institutes/grid.277151.7", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ansquer", 
            "givenName": "Catherine", 
            "id": "sg:person.01050273323.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050273323.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Universit\u00e9 de Nantes, Nantes, France", 
              "id": "http://www.grid.ac/institutes/grid.4817.a", 
              "name": [
                "Radiology Department, University Hospital, Nantes, France", 
                "Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Universit\u00e9 de Nantes, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frampas", 
            "givenName": "Eric", 
            "id": "sg:person.0720415666.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720415666.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, University Hospital, Nantes, France", 
              "id": "http://www.grid.ac/institutes/grid.277151.7", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mathieu", 
            "givenName": "C\u00e9dric", 
            "id": "sg:person.01300720363.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300720363.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, University Hospital, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robin", 
            "givenName": "Philippe", 
            "id": "sg:person.01307140060.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, University Hospital, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.413852.9", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bournaud", 
            "givenName": "Claire", 
            "id": "sg:person.01060766754.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060766754.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, University Hospital, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.410529.b", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vuillez", 
            "givenName": "Jean-Philippe", 
            "id": "sg:person.01171243155.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171243155.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, University Hospital, Marseille, France", 
              "id": "http://www.grid.ac/institutes/grid.414336.7", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taieb", 
            "givenName": "David", 
            "id": "sg:person.0712575061.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712575061.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, ICO-Ren\u00e9 Gauducheau, Nantes, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Universit\u00e9 de Nantes, Nantes, France", 
                "Nuclear Medicine Department, ICO-Ren\u00e9 Gauducheau, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rousseau", 
            "givenName": "Caroline", 
            "id": "sg:person.01240530667.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Endocrinology Department, University Hospital, Nantes, France", 
              "id": "http://www.grid.ac/institutes/grid.277151.7", 
              "name": [
                "Endocrinology Department, University Hospital, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Drui", 
            "givenName": "Delphine", 
            "id": "sg:person.01116406523.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116406523.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Surgery Department, University Hospital, Nantes, France", 
              "id": "http://www.grid.ac/institutes/grid.277151.7", 
              "name": [
                "Surgery Department, University Hospital, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miralli\u00e9", 
            "givenName": "Eric", 
            "id": "sg:person.01123460061.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123460061.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Endocrinology Department, University Hospital, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.413852.9", 
              "name": [
                "Endocrinology Department, University Hospital, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borson-Chazot", 
            "givenName": "Fran\u00e7oise", 
            "id": "sg:person.01016420620.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016420620.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.280985.e", 
              "name": [
                "IBC Pharmaceuticals, Inc., and Immunomedics, Inc., Morris Plains, NJ, USA", 
                "Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goldenberg", 
            "givenName": "David M.", 
            "id": "sg:person.0744776153.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744776153.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GIP ARRONAX, Saint-Herblain, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "GIP ARRONAX, Saint-Herblain, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chatal", 
            "givenName": "Jean-Fran\u00e7ois", 
            "id": "sg:person.0623457423.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623457423.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GIP ARRONAX, Saint-Herblain, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Universit\u00e9 de Nantes, Nantes, France", 
                "GIP ARRONAX, Saint-Herblain, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barbet", 
            "givenName": "Jacques", 
            "id": "sg:person.01001654663.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001654663.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, H\u00f4tel Dieu University Hospital, 1 place Ricordeau, 44093, Nantes, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nuclear Medicine Department, University Hospital, Nantes, France", 
                "Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Universit\u00e9 de Nantes, Nantes, France", 
                "Nuclear Medicine Department, ICO-Ren\u00e9 Gauducheau, Nantes, France", 
                "Nuclear Medicine Department, H\u00f4tel Dieu University Hospital, 1 place Ricordeau, 44093, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kraeber-Bod\u00e9r\u00e9", 
            "givenName": "Fran\u00e7oise", 
            "id": "sg:person.0653324404.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653324404.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/sj.bjc.6601453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025587905", 
              "https://doi.org/10.1038/sj.bjc.6601453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2011.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015794593", 
              "https://doi.org/10.1038/nrclinonc.2011.160"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05-08", 
        "datePublishedReg": "2014-05-08", 
        "description": "PurposePET is a powerful tool for assessing targeted therapy. Since 18F-FDG shows a potential prognostic value in medullary thyroid carcinoma (MTC), this study evaluated 18F-FDG PET alone and combined with morphological and biomarker evaluations as a surrogate marker of overall survival (OS) in patients with progressive metastatic MTC treated with pretargeted anti-CEA radioimmunotherapy (pRAIT) in a phase II clinical trial.MethodsPatients underwent PET associated with morphological imaging (CT and MRI) and biomarker evaluations, before and 3 and 6\u00a0months, and then every 6\u00a0months, after pRAIT for 36\u00a0months. A combined evaluation was performed using anatomic, metabolic and biomarker methods. The prognostic value of the PET response was compared with demographic parameters at inclusion including age, sex, RET mutation, time from initial diagnosis, calcitonin and CEA concentrations and doubling times (DT), SUVmax, location of disease and bone marrow involvement, and with response using RECIST, biomarker concentration variation, impact on DT, and combined methods.ResultsEnrolled in the study were 25 men and 17 women with disease progression. The median OS from pRAIT was 3.7\u00a0years (0.2 to 6.5\u00a0years) and from MTC diagnosis 10.9\u00a0years (1.7 to 31.5\u00a0years). After pRAIT, PET/CT showed 1 patient with a complete response, 4 with a partial response and 24 with disease stabilization. The combined evaluation showed 20 responses. For OS from pRAIT, univariate analysis showed the prognostic value of biomarker DT (P\u2009=\u20090.011) and SUVmax (P\u2009=\u20090.038) calculated before pRAIT and impact on DT (P\u2009=\u20090.034), RECIST (P\u2009=\u20090.009), PET (P\u2009=\u20090.009), and combined response (P\u2009=\u20090.004) measured after pRAIT. PET had the highest predictive value with the lowest Akaike information criterion (AIC 74.26) as compared to RECIST (AIC 78.06), biomarker variation (AIC 81.94) and impact on DT (AIC 79.22). No benefit was obtained by combining the methods (AIC 78.75). This result was confirmed by the analysis of OS from MTC diagnosis.Conclusion18F-FDG PET appeared as the most potent and simplest prognostic method to predict survival in patients with progressive MTC treated with pRAIT. Biomarker DT before pRAIT also appeared as an independent prognostic factor, but no benefit was found by adding morphological and biomarker evaluation to PET assessment.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00259-014-2772-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "keywords": [
          "medullary thyroid carcinoma", 
          "progressive metastatic medullary thyroid carcinoma", 
          "metastatic medullary thyroid carcinoma", 
          "overall survival", 
          "prognostic value", 
          "biomarker evaluation", 
          "thyroid carcinoma", 
          "analysis of OS", 
          "progressive medullary thyroid carcinoma", 
          "phase II clinical trial", 
          "Conclusion18F-FDG PET", 
          "median overall survival", 
          "bone marrow involvement", 
          "independent prognostic factor", 
          "potential prognostic value", 
          "location of disease", 
          "PET/CT", 
          "high predictive value", 
          "combined evaluation", 
          "disease stabilization", 
          "marrow involvement", 
          "partial response", 
          "complete response", 
          "prognostic factors", 
          "initial diagnosis", 
          "PET response", 
          "PET assessment", 
          "surrogate marker", 
          "univariate analysis", 
          "clinical trials", 
          "disease progression", 
          "RET mutations", 
          "pretargeted radioimmunotherapy", 
          "MTC diagnosis", 
          "predictive value", 
          "patients", 
          "RECIST", 
          "morphological imaging", 
          "months", 
          "SUVmax", 
          "carcinoma", 
          "survival", 
          "radioimmunotherapy", 
          "CEA concentration", 
          "diagnosis", 
          "biomarker variation", 
          "PET", 
          "biomarker methods", 
          "response", 
          "combined response", 
          "MethodsPatients", 
          "therapy", 
          "evaluation", 
          "calcitonin", 
          "years", 
          "disease", 
          "trials", 
          "progression", 
          "CT", 
          "women", 
          "age", 
          "PurposePET", 
          "sex", 
          "dt", 
          "men", 
          "demographic parameters", 
          "markers", 
          "study", 
          "involvement", 
          "benefits", 
          "imaging", 
          "mutations", 
          "assessment", 
          "impact", 
          "factors", 
          "criteria", 
          "time", 
          "prognostic method", 
          "analysis", 
          "values", 
          "concentration", 
          "method", 
          "inclusion", 
          "information criterion", 
          "results", 
          "powerful tool", 
          "stabilization", 
          "tool", 
          "location", 
          "variation", 
          "parameters", 
          "concentration variations"
        ], 
        "name": "18F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma", 
        "pagination": "1501-1510", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031925914"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-014-2772-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24806110"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-014-2772-0", 
          "https://app.dimensions.ai/details/publication/pub.1031925914"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_644.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00259-014-2772-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2772-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2772-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2772-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2772-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    382 TRIPLES      21 PREDICATES      137 URIs      127 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-014-2772-0 schema:about N1a4959c454e24f048df0f39901f1d305
    2 N1a7bdc97616841f0af9c29810a73eb18
    3 N1f3b261163e24dceaacd0f6404810ac4
    4 N209091c0a52b483c8d9a2cfc21127403
    5 N265cb9067ccd463b802d61736d27a668
    6 N4427b8069d48466b87b98c7d1d498b23
    7 N4c672a7e64764bf2a904177e1ae5dd1c
    8 N563a72d4e5f4496e9bfe3eea3a6b5a2d
    9 N64b1faa204b942fcb1bf4374c7da04c1
    10 N66f845ec868543a2b7b75c8146791dcc
    11 N6a2ed3e243844b02924faa863c7e9d83
    12 N894e573558b94e4196a451ea5d49d0a4
    13 N8b2b36b05cd6498b9c6e85666ef9971c
    14 N8d51842d0e98430eabcd47382edeb831
    15 Na34e3facd0844cd5b54b0d5103a17e94
    16 Naa006b04612848cbb5ed3dce3e68405a
    17 Nf2e84bfba19e4737975a2e6713880cae
    18 Nf97b64dd991b4cc1a28c084041a4bb0b
    19 anzsrc-for:11
    20 anzsrc-for:1103
    21 schema:author Ndd7beed27a3e43579dc00ec83823a503
    22 schema:citation sg:pub.10.1038/nrclinonc.2011.160
    23 sg:pub.10.1038/sj.bjc.6601453
    24 schema:datePublished 2014-05-08
    25 schema:datePublishedReg 2014-05-08
    26 schema:description PurposePET is a powerful tool for assessing targeted therapy. Since 18F-FDG shows a potential prognostic value in medullary thyroid carcinoma (MTC), this study evaluated 18F-FDG PET alone and combined with morphological and biomarker evaluations as a surrogate marker of overall survival (OS) in patients with progressive metastatic MTC treated with pretargeted anti-CEA radioimmunotherapy (pRAIT) in a phase II clinical trial.MethodsPatients underwent PET associated with morphological imaging (CT and MRI) and biomarker evaluations, before and 3 and 6 months, and then every 6 months, after pRAIT for 36 months. A combined evaluation was performed using anatomic, metabolic and biomarker methods. The prognostic value of the PET response was compared with demographic parameters at inclusion including age, sex, RET mutation, time from initial diagnosis, calcitonin and CEA concentrations and doubling times (DT), SUVmax, location of disease and bone marrow involvement, and with response using RECIST, biomarker concentration variation, impact on DT, and combined methods.ResultsEnrolled in the study were 25 men and 17 women with disease progression. The median OS from pRAIT was 3.7 years (0.2 to 6.5 years) and from MTC diagnosis 10.9 years (1.7 to 31.5 years). After pRAIT, PET/CT showed 1 patient with a complete response, 4 with a partial response and 24 with disease stabilization. The combined evaluation showed 20 responses. For OS from pRAIT, univariate analysis showed the prognostic value of biomarker DT (P = 0.011) and SUVmax (P = 0.038) calculated before pRAIT and impact on DT (P = 0.034), RECIST (P = 0.009), PET (P = 0.009), and combined response (P = 0.004) measured after pRAIT. PET had the highest predictive value with the lowest Akaike information criterion (AIC 74.26) as compared to RECIST (AIC 78.06), biomarker variation (AIC 81.94) and impact on DT (AIC 79.22). No benefit was obtained by combining the methods (AIC 78.75). This result was confirmed by the analysis of OS from MTC diagnosis.Conclusion18F-FDG PET appeared as the most potent and simplest prognostic method to predict survival in patients with progressive MTC treated with pRAIT. Biomarker DT before pRAIT also appeared as an independent prognostic factor, but no benefit was found by adding morphological and biomarker evaluation to PET assessment.
    27 schema:genre article
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N07d9acd359314b9c94dd6e44d32235f1
    30 Na195f4083721485dae71aac28408b18d
    31 sg:journal.1297401
    32 schema:keywords CEA concentration
    33 CT
    34 Conclusion18F-FDG PET
    35 MTC diagnosis
    36 MethodsPatients
    37 PET
    38 PET assessment
    39 PET response
    40 PET/CT
    41 PurposePET
    42 RECIST
    43 RET mutations
    44 SUVmax
    45 age
    46 analysis
    47 analysis of OS
    48 assessment
    49 benefits
    50 biomarker evaluation
    51 biomarker methods
    52 biomarker variation
    53 bone marrow involvement
    54 calcitonin
    55 carcinoma
    56 clinical trials
    57 combined evaluation
    58 combined response
    59 complete response
    60 concentration
    61 concentration variations
    62 criteria
    63 demographic parameters
    64 diagnosis
    65 disease
    66 disease progression
    67 disease stabilization
    68 dt
    69 evaluation
    70 factors
    71 high predictive value
    72 imaging
    73 impact
    74 inclusion
    75 independent prognostic factor
    76 information criterion
    77 initial diagnosis
    78 involvement
    79 location
    80 location of disease
    81 markers
    82 marrow involvement
    83 median overall survival
    84 medullary thyroid carcinoma
    85 men
    86 metastatic medullary thyroid carcinoma
    87 method
    88 months
    89 morphological imaging
    90 mutations
    91 overall survival
    92 parameters
    93 partial response
    94 patients
    95 phase II clinical trial
    96 potential prognostic value
    97 powerful tool
    98 predictive value
    99 pretargeted radioimmunotherapy
    100 prognostic factors
    101 prognostic method
    102 prognostic value
    103 progression
    104 progressive medullary thyroid carcinoma
    105 progressive metastatic medullary thyroid carcinoma
    106 radioimmunotherapy
    107 response
    108 results
    109 sex
    110 stabilization
    111 study
    112 surrogate marker
    113 survival
    114 therapy
    115 thyroid carcinoma
    116 time
    117 tool
    118 trials
    119 univariate analysis
    120 values
    121 variation
    122 women
    123 years
    124 schema:name 18F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma
    125 schema:pagination 1501-1510
    126 schema:productId N5a7382232b854c3f8c07b18041109c45
    127 N6fdaee31bf254254b01633810ffa6b60
    128 Nf54c44cc4a23411c922ab373346d4993
    129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031925914
    130 https://doi.org/10.1007/s00259-014-2772-0
    131 schema:sdDatePublished 2022-08-04T17:02
    132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    133 schema:sdPublisher Nd869d3d2bad04f898027b8b1d8f6759c
    134 schema:url https://doi.org/10.1007/s00259-014-2772-0
    135 sgo:license sg:explorer/license/
    136 sgo:sdDataset articles
    137 rdf:type schema:ScholarlyArticle
    138 N07d9acd359314b9c94dd6e44d32235f1 schema:volumeNumber 41
    139 rdf:type schema:PublicationVolume
    140 N1a4959c454e24f048df0f39901f1d305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Carcinoma, Medullary
    142 rdf:type schema:DefinedTerm
    143 N1a7bdc97616841f0af9c29810a73eb18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Humans
    145 rdf:type schema:DefinedTerm
    146 N1f3b261163e24dceaacd0f6404810ac4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Radiopharmaceuticals
    148 rdf:type schema:DefinedTerm
    149 N209091c0a52b483c8d9a2cfc21127403 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Adult
    151 rdf:type schema:DefinedTerm
    152 N265cb9067ccd463b802d61736d27a668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Male
    154 rdf:type schema:DefinedTerm
    155 N2da11ae252054e6185c2a6d07580822a rdf:first sg:person.01050273323.41
    156 rdf:rest N5d5326bb4e114bed86203426e92fef3d
    157 N32f7edb8b2da46f29169e35b5c677e19 rdf:first sg:person.0623457423.87
    158 rdf:rest N7d3bef6661254c2eb60dc02d3f65d6a4
    159 N4124a23926c84caba81259ba58def609 rdf:first sg:person.01171243155.07
    160 rdf:rest N5f3ca694e7454d629315307a4af0368c
    161 N4427b8069d48466b87b98c7d1d498b23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Fluorodeoxyglucose F18
    163 rdf:type schema:DefinedTerm
    164 N4c672a7e64764bf2a904177e1ae5dd1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Tomography, X-Ray Computed
    166 rdf:type schema:DefinedTerm
    167 N54db01507b6e4b94be5044e0ef2053fa rdf:first sg:person.01240530667.47
    168 rdf:rest N8ea6a8242d0847fa8789cede17dec6a0
    169 N563a72d4e5f4496e9bfe3eea3a6b5a2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Treatment Outcome
    171 rdf:type schema:DefinedTerm
    172 N5a7382232b854c3f8c07b18041109c45 schema:name doi
    173 schema:value 10.1007/s00259-014-2772-0
    174 rdf:type schema:PropertyValue
    175 N5d5326bb4e114bed86203426e92fef3d rdf:first sg:person.0720415666.19
    176 rdf:rest N83e2de569c4a4d128dc05f8a28a78447
    177 N5f3ca694e7454d629315307a4af0368c rdf:first sg:person.0712575061.71
    178 rdf:rest N54db01507b6e4b94be5044e0ef2053fa
    179 N64b1faa204b942fcb1bf4374c7da04c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Multimodal Imaging
    181 rdf:type schema:DefinedTerm
    182 N66f845ec868543a2b7b75c8146791dcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Middle Aged
    184 rdf:type schema:DefinedTerm
    185 N6a2ed3e243844b02924faa863c7e9d83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Predictive Value of Tests
    187 rdf:type schema:DefinedTerm
    188 N6fdaee31bf254254b01633810ffa6b60 schema:name pubmed_id
    189 schema:value 24806110
    190 rdf:type schema:PropertyValue
    191 N72642ac087dd41fe95c873a76b27d3f3 rdf:first sg:person.01123460061.71
    192 rdf:rest N92f0a8df238c482eb998deca02449540
    193 N797dee5780c749d0a9c33c42de6d9456 rdf:first sg:person.01307140060.86
    194 rdf:rest Nd31e16cd298b4251b3e0cc18dffc472c
    195 N7d3bef6661254c2eb60dc02d3f65d6a4 rdf:first sg:person.01001654663.28
    196 rdf:rest Nfb984bec1d5444d6a4bc2879813ab6af
    197 N83e2de569c4a4d128dc05f8a28a78447 rdf:first sg:person.01300720363.95
    198 rdf:rest N797dee5780c749d0a9c33c42de6d9456
    199 N894e573558b94e4196a451ea5d49d0a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Female
    201 rdf:type schema:DefinedTerm
    202 N8b2b36b05cd6498b9c6e85666ef9971c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Positron-Emission Tomography
    204 rdf:type schema:DefinedTerm
    205 N8d51842d0e98430eabcd47382edeb831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Aged
    207 rdf:type schema:DefinedTerm
    208 N8ea6a8242d0847fa8789cede17dec6a0 rdf:first sg:person.01116406523.45
    209 rdf:rest N72642ac087dd41fe95c873a76b27d3f3
    210 N92f0a8df238c482eb998deca02449540 rdf:first sg:person.01016420620.30
    211 rdf:rest Na0c8044b278240b592bb85775cd024e4
    212 Na0c8044b278240b592bb85775cd024e4 rdf:first sg:person.0744776153.57
    213 rdf:rest N32f7edb8b2da46f29169e35b5c677e19
    214 Na195f4083721485dae71aac28408b18d schema:issueNumber 8
    215 rdf:type schema:PublicationIssue
    216 Na34e3facd0844cd5b54b0d5103a17e94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Carcinoma, Neuroendocrine
    218 rdf:type schema:DefinedTerm
    219 Naa006b04612848cbb5ed3dce3e68405a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Radioimmunotherapy
    221 rdf:type schema:DefinedTerm
    222 Nd31e16cd298b4251b3e0cc18dffc472c rdf:first sg:person.01060766754.34
    223 rdf:rest N4124a23926c84caba81259ba58def609
    224 Nd869d3d2bad04f898027b8b1d8f6759c schema:name Springer Nature - SN SciGraph project
    225 rdf:type schema:Organization
    226 Ndd7beed27a3e43579dc00ec83823a503 rdf:first sg:person.01021766527.49
    227 rdf:rest Ne4abb051448f402094fdc9b51226ff02
    228 Ne4abb051448f402094fdc9b51226ff02 rdf:first sg:person.01100327307.34
    229 rdf:rest N2da11ae252054e6185c2a6d07580822a
    230 Nf2e84bfba19e4737975a2e6713880cae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name Thyroid Neoplasms
    232 rdf:type schema:DefinedTerm
    233 Nf54c44cc4a23411c922ab373346d4993 schema:name dimensions_id
    234 schema:value pub.1031925914
    235 rdf:type schema:PropertyValue
    236 Nf97b64dd991b4cc1a28c084041a4bb0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    237 schema:name Aged, 80 and over
    238 rdf:type schema:DefinedTerm
    239 Nfb984bec1d5444d6a4bc2879813ab6af rdf:first sg:person.0653324404.03
    240 rdf:rest rdf:nil
    241 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    242 schema:name Medical and Health Sciences
    243 rdf:type schema:DefinedTerm
    244 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    245 schema:name Clinical Sciences
    246 rdf:type schema:DefinedTerm
    247 sg:journal.1297401 schema:issn 1619-7070
    248 1619-7089
    249 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    250 schema:publisher Springer Nature
    251 rdf:type schema:Periodical
    252 sg:person.01001654663.28 schema:affiliation grid-institutes:None
    253 schema:familyName Barbet
    254 schema:givenName Jacques
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001654663.28
    256 rdf:type schema:Person
    257 sg:person.01016420620.30 schema:affiliation grid-institutes:grid.413852.9
    258 schema:familyName Borson-Chazot
    259 schema:givenName Françoise
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016420620.30
    261 rdf:type schema:Person
    262 sg:person.01021766527.49 schema:affiliation grid-institutes:grid.411766.3
    263 schema:familyName Salaun
    264 schema:givenName Pierre-Yves
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49
    266 rdf:type schema:Person
    267 sg:person.01050273323.41 schema:affiliation grid-institutes:grid.277151.7
    268 schema:familyName Ansquer
    269 schema:givenName Catherine
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050273323.41
    271 rdf:type schema:Person
    272 sg:person.01060766754.34 schema:affiliation grid-institutes:grid.413852.9
    273 schema:familyName Bournaud
    274 schema:givenName Claire
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060766754.34
    276 rdf:type schema:Person
    277 sg:person.01100327307.34 schema:affiliation grid-institutes:None
    278 schema:familyName Campion
    279 schema:givenName Loïc
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100327307.34
    281 rdf:type schema:Person
    282 sg:person.01116406523.45 schema:affiliation grid-institutes:grid.277151.7
    283 schema:familyName Drui
    284 schema:givenName Delphine
    285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116406523.45
    286 rdf:type schema:Person
    287 sg:person.01123460061.71 schema:affiliation grid-institutes:grid.277151.7
    288 schema:familyName Mirallié
    289 schema:givenName Eric
    290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123460061.71
    291 rdf:type schema:Person
    292 sg:person.01171243155.07 schema:affiliation grid-institutes:grid.410529.b
    293 schema:familyName Vuillez
    294 schema:givenName Jean-Philippe
    295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171243155.07
    296 rdf:type schema:Person
    297 sg:person.01240530667.47 schema:affiliation grid-institutes:None
    298 schema:familyName Rousseau
    299 schema:givenName Caroline
    300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47
    301 rdf:type schema:Person
    302 sg:person.01300720363.95 schema:affiliation grid-institutes:grid.277151.7
    303 schema:familyName Mathieu
    304 schema:givenName Cédric
    305 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300720363.95
    306 rdf:type schema:Person
    307 sg:person.01307140060.86 schema:affiliation grid-institutes:grid.411766.3
    308 schema:familyName Robin
    309 schema:givenName Philippe
    310 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86
    311 rdf:type schema:Person
    312 sg:person.0623457423.87 schema:affiliation grid-institutes:None
    313 schema:familyName Chatal
    314 schema:givenName Jean-François
    315 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623457423.87
    316 rdf:type schema:Person
    317 sg:person.0653324404.03 schema:affiliation grid-institutes:None
    318 schema:familyName Kraeber-Bodéré
    319 schema:givenName Françoise
    320 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653324404.03
    321 rdf:type schema:Person
    322 sg:person.0712575061.71 schema:affiliation grid-institutes:grid.414336.7
    323 schema:familyName Taieb
    324 schema:givenName David
    325 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712575061.71
    326 rdf:type schema:Person
    327 sg:person.0720415666.19 schema:affiliation grid-institutes:grid.4817.a
    328 schema:familyName Frampas
    329 schema:givenName Eric
    330 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720415666.19
    331 rdf:type schema:Person
    332 sg:person.0744776153.57 schema:affiliation grid-institutes:grid.280985.e
    333 schema:familyName Goldenberg
    334 schema:givenName David M.
    335 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744776153.57
    336 rdf:type schema:Person
    337 sg:pub.10.1038/nrclinonc.2011.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015794593
    338 https://doi.org/10.1038/nrclinonc.2011.160
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/sj.bjc.6601453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025587905
    341 https://doi.org/10.1038/sj.bjc.6601453
    342 rdf:type schema:CreativeWork
    343 grid-institutes:None schema:alternateName GIP ARRONAX, Saint-Herblain, France
    344 Nuclear Medicine Department, Hôtel Dieu University Hospital, 1 place Ricordeau, 44093, Nantes, France
    345 Nuclear Medicine Department, ICO-René Gauducheau, Nantes, France
    346 Statistical Department, ICO-Gauducheau Cancer Institute, Nantes, France
    347 schema:name GIP ARRONAX, Saint-Herblain, France
    348 Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Université de Nantes, Nantes, France
    349 Nuclear Medicine Department, Hôtel Dieu University Hospital, 1 place Ricordeau, 44093, Nantes, France
    350 Nuclear Medicine Department, ICO-René Gauducheau, Nantes, France
    351 Nuclear Medicine Department, University Hospital, Nantes, France
    352 Statistical Department, ICO-Gauducheau Cancer Institute, Nantes, France
    353 rdf:type schema:Organization
    354 grid-institutes:grid.277151.7 schema:alternateName Endocrinology Department, University Hospital, Nantes, France
    355 Nuclear Medicine Department, University Hospital, Nantes, France
    356 Surgery Department, University Hospital, Nantes, France
    357 schema:name Endocrinology Department, University Hospital, Nantes, France
    358 Nuclear Medicine Department, University Hospital, Nantes, France
    359 Surgery Department, University Hospital, Nantes, France
    360 rdf:type schema:Organization
    361 grid-institutes:grid.280985.e schema:alternateName Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, NJ, USA
    362 schema:name Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, NJ, USA
    363 IBC Pharmaceuticals, Inc., and Immunomedics, Inc., Morris Plains, NJ, USA
    364 rdf:type schema:Organization
    365 grid-institutes:grid.410529.b schema:alternateName Nuclear Medicine Department, University Hospital, Grenoble, France
    366 schema:name Nuclear Medicine Department, University Hospital, Grenoble, France
    367 rdf:type schema:Organization
    368 grid-institutes:grid.411766.3 schema:alternateName Nuclear Medicine Department, University Hospital, Brest, France
    369 schema:name Nuclear Medicine Department, University Hospital, Brest, France
    370 rdf:type schema:Organization
    371 grid-institutes:grid.413852.9 schema:alternateName Endocrinology Department, University Hospital, Lyon, France
    372 Nuclear Medicine Department, University Hospital, Lyon, France
    373 schema:name Endocrinology Department, University Hospital, Lyon, France
    374 Nuclear Medicine Department, University Hospital, Lyon, France
    375 rdf:type schema:Organization
    376 grid-institutes:grid.414336.7 schema:alternateName Nuclear Medicine Department, University Hospital, Marseille, France
    377 schema:name Nuclear Medicine Department, University Hospital, Marseille, France
    378 rdf:type schema:Organization
    379 grid-institutes:grid.4817.a schema:alternateName Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Université de Nantes, Nantes, France
    380 schema:name Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Université de Nantes, Nantes, France
    381 Radiology Department, University Hospital, Nantes, France
    382 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...