Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02-22

AUTHORS

Dimitri Bellevre, Cécile Blanc Fournier, Odile Switsers, Audrey Emmanuelle Dugué, Christelle Levy, Djelila Allouache, Cédric Desmonts, Hubert Crouet, Jean-Marc Guilloit, Jean-Michel Grellard, Nicolas Aide

ABSTRACT

PurposePoint spread function (PSF) reconstruction improves spatial resolution throughout the entire field of view of a PET system and can detect smaller metastatic deposits than conventional algorithms such as OSEM. We assessed the impact of PSF reconstruction on quantitative values and diagnostic accuracy for axillary staging of breast cancer patients, compared with an OSEM reconstruction, with emphasis on the size of nodal metastases.MethodsThis was a prospective study in a single referral centre in which 50 patients underwent an 18F-FDG PET examination before axillary lymph node dissection. PET data were reconstructed with an OSEM algorithm and PSF reconstruction, analysed blindly and validated by a pathologist who measured the largest nodal metastasis per axilla. This size was used to evaluate PET diagnostic performance.ResultsOn pathology, 34 patients (68 %) had nodal involvement. Overall, the median size of the largest nodal metastasis per axilla was 7 mm (range 0.5 – 40 mm). PSF reconstruction detected more involved nodes than OSEM reconstruction (p = 0.003). The mean PSF to OSEM SUVmax ratio was 1.66 (95 % CI 1.01 – 2.32). The sensitivities of PSF and OSEM reconstructions were, respectively, 96 % and 92 % in patients with a largest nodal metastasis of >7 mm, 60 % and 40 % in patients with a largest nodal metastasis of ≤7 mm, and 92 % and 69 % in patients with a primary tumour ≤30 mm. Biggerstaff graphical comparison showed that globally PSF reconstruction was superior to OSEM reconstruction. The median sizes of the largest nodal metastasis in patients with nodal involvement not detected by either PSF or OSEM reconstruction, detected by PSF but not by OSEM reconstruction and detected by both reconstructions were 3, 6 and 16 mm (p = 0.0064) respectively. In patients with nodal involvement detected by PSF reconstruction but not by OSEM reconstruction, the smallest detectable metastasis was 1.8 mm.ConclusionAs a result of better activity recovery, PET with PSF reconstruction performed better than PET with OSEM reconstruction in detecting nodal metastases ≤7 mm. However, its sensitivity is still insufficient for it to replace surgical approaches for axillary staging. PET with PSF reconstruction could be used to perform sentinel node biopsy more safely in patients with a primary tumour ≤30 mm and with unremarkable PET results in the axilla. More... »

PAGES

1103-1112

References to SciGraph publications

  • 2013-05-15. Optimisation and harmonisation: two sides of the same coin? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2012-07-10. Diagnostic and prognostic correlates of preoperative FDG PET for breast cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-08-18. SUVref: reducing reconstruction-dependent variation in PET SUV in EJNMMI RESEARCH
  • 2010-02-04. Feasibility of FDG PET/CT to monitor the response of axillary lymph node metastases to neoadjuvant chemotherapy in breast cancer patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2012-09-20. Pretreatment PET in breast cancer: is there a role? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2012-09-14. Preoperative FDG PET/CT in breast cancer patients: where are we going? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-05-16. Should FDG PET/CT be used for the initial staging of breast cancer? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-12-30. Prognostic Value of Number of Removed Lymph Nodes, Number of Involved Lymph Nodes, and Lymph Node Ratio in 7502 Breast Cancer Patients Enrolled onto Trials of the Austrian Breast and Colorectal Cancer Study Group (ABCSG) in ANNALS OF SURGICAL ONCOLOGY
  • 2009-11-14. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-05-05. Diagnostic value of full-dose FDG PET/CT for axillary lymph node staging in breast cancer patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-01-27. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-06-11. Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-07-25. A different role for FDG PET/CT in axillary lymph node staging in breast cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-04-06. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-08-09. Sequential 18F-FDG PET/CT for early prediction of complete pathological response in breast and axilla during neoadjuvant chemotherapy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-014-2689-7

    DOI

    http://dx.doi.org/10.1007/s00259-014-2689-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024627703

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24562642


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Axilla", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Ductal, Breast", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Limit of Detection", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphatic Metastasis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multimodal Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Avenue G\u00e9n\u00e9ral Harris, 14076, Cedex 5, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Avenue G\u00e9n\u00e9ral Harris, 14076, Cedex 5, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bellevre", 
            "givenName": "Dimitri", 
            "id": "sg:person.01332540600.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332540600.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pathology Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Pathology Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blanc Fournier", 
            "givenName": "C\u00e9cile", 
            "id": "sg:person.01316272307.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316272307.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Breast Cancer Unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Avenue G\u00e9n\u00e9ral Harris, 14076, Cedex 5, Caen, France", 
                "Breast Cancer Unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Switsers", 
            "givenName": "Odile", 
            "id": "sg:person.01055271505.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055271505.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biostatistics and Clinical Research unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Biostatistics and Clinical Research unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dugu\u00e9", 
            "givenName": "Audrey Emmanuelle", 
            "id": "sg:person.0744145733.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744145733.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radiation Oncology Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Breast Cancer Unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
                "Radiation Oncology Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levy", 
            "givenName": "Christelle", 
            "id": "sg:person.01117111471.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117111471.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Breast Cancer Unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Breast Cancer Unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allouache", 
            "givenName": "Djelila", 
            "id": "sg:person.01321533125.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321533125.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical Physics Department, University Hospital, Caen, France", 
              "id": "http://www.grid.ac/institutes/grid.411149.8", 
              "name": [
                "Medical Physics Department, University Hospital, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Desmonts", 
            "givenName": "C\u00e9dric", 
            "id": "sg:person.0715336115.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715336115.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Surgical Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Surgical Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crouet", 
            "givenName": "Hubert", 
            "id": "sg:person.01167733127.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167733127.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Surgical Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Surgical Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guilloit", 
            "givenName": "Jean-Marc", 
            "id": "sg:person.01312640760.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312640760.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biostatistics and Clinical Research unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Biostatistics and Clinical Research unit, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grellard", 
            "givenName": "Jean-Michel", 
            "id": "sg:person.01270266500.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270266500.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Normandie Universit\u00e9, Caen, France", 
              "id": "http://www.grid.ac/institutes/grid.460771.3", 
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Avenue G\u00e9n\u00e9ral Harris, 14076, Cedex 5, Caen, France", 
                "Normandie Universit\u00e9, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aide", 
            "givenName": "Nicolas", 
            "id": "sg:person.01152406451.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152406451.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-012-2245-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028562458", 
              "https://doi.org/10.1007/s00259-012-2245-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2181-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025496974", 
              "https://doi.org/10.1007/s00259-012-2181-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1297-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021250910", 
              "https://doi.org/10.1007/s00259-009-1297-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1145-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042070845", 
              "https://doi.org/10.1007/s00259-009-1145-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2216-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026357947", 
              "https://doi.org/10.1007/s00259-012-2216-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2515-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038009196", 
              "https://doi.org/10.1007/s00259-013-2515-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2440-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044598631", 
              "https://doi.org/10.1007/s00259-013-2440-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-011-2189-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006528530", 
              "https://doi.org/10.1245/s10434-011-2189-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1159-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011927699", 
              "https://doi.org/10.1007/s00259-009-1159-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2465-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016939976", 
              "https://doi.org/10.1007/s00259-013-2465-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2391-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016046039", 
              "https://doi.org/10.1007/s00259-013-2391-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1211-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014803456", 
              "https://doi.org/10.1007/s00259-009-1211-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1343-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015152995", 
              "https://doi.org/10.1007/s00259-009-1343-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1352-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053655973", 
              "https://doi.org/10.1007/s00259-009-1352-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2191-219x-1-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025107920", 
              "https://doi.org/10.1186/2191-219x-1-16"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-02-22", 
        "datePublishedReg": "2014-02-22", 
        "description": "PurposePoint spread function (PSF) reconstruction improves spatial resolution throughout the entire field of view of a PET system and can detect smaller metastatic deposits than conventional algorithms such as OSEM. We assessed the impact of PSF reconstruction on quantitative values and diagnostic accuracy for axillary staging of breast cancer patients, compared with an OSEM reconstruction, with emphasis on the size of nodal metastases.MethodsThis was a prospective study in a single referral centre in which 50 patients underwent an 18F-FDG PET examination before axillary lymph node dissection. PET data were reconstructed with an OSEM algorithm and PSF reconstruction, analysed blindly and validated by a pathologist who measured the largest nodal metastasis per axilla. This size was used to evaluate PET diagnostic performance.ResultsOn pathology, 34 patients (68\u00a0%) had nodal involvement. Overall, the median size of the largest nodal metastasis per axilla was 7\u00a0mm (range 0.5\u00a0\u2013\u00a040\u00a0mm). PSF reconstruction detected more involved nodes than OSEM reconstruction (p\u2009=\u20090.003). The mean PSF to OSEM SUVmax ratio was 1.66 (95\u00a0% CI 1.01\u00a0\u2013\u00a02.32). The sensitivities of PSF and OSEM reconstructions were, respectively, 96\u00a0% and 92\u00a0% in patients with a largest nodal metastasis of >7\u00a0mm, 60\u00a0% and 40\u00a0% in patients with a largest nodal metastasis of \u22647\u00a0mm, and 92\u00a0% and 69\u00a0% in patients with a primary tumour \u226430\u00a0mm. Biggerstaff graphical comparison showed that globally PSF reconstruction was superior to OSEM reconstruction. The median sizes of the largest nodal metastasis in patients with nodal involvement not detected by either PSF or OSEM reconstruction, detected by PSF but not by OSEM reconstruction and detected by both reconstructions were 3, 6 and 16\u00a0mm (p\u2009=\u20090.0064) respectively. In patients with nodal involvement detected by PSF reconstruction but not by OSEM reconstruction, the smallest detectable metastasis was 1.8\u00a0mm.ConclusionAs a result of better activity recovery, PET with PSF reconstruction performed better than PET with OSEM reconstruction in detecting nodal metastases \u22647\u00a0mm. However, its sensitivity is still insufficient for it to replace surgical approaches for axillary staging. PET with PSF reconstruction could be used to perform sentinel node biopsy more safely in patients with a primary tumour \u226430\u00a0mm and with unremarkable PET results in the axilla.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00259-014-2689-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "keywords": [
          "largest nodal metastasis", 
          "nodal metastasis", 
          "breast cancer patients", 
          "nodal involvement", 
          "axillary staging", 
          "cancer patients", 
          "primary tumor", 
          "axillary lymph node dissection", 
          "single referral center", 
          "lymph node dissection", 
          "sentinel node biopsy", 
          "small metastatic deposits", 
          "node dissection", 
          "median size", 
          "SUVmax ratio", 
          "referral center", 
          "node biopsy", 
          "metastatic deposits", 
          "prospective study", 
          "detectable metastases", 
          "surgical approach", 
          "PET results", 
          "PET examinations", 
          "patients", 
          "metastasis", 
          "axilla", 
          "involved nodes", 
          "diagnostic accuracy", 
          "diagnostic performance", 
          "tumors", 
          "staging", 
          "involvement", 
          "PET", 
          "PSF reconstruction", 
          "PET data", 
          "MethodsThis", 
          "biopsy", 
          "OSEM reconstruction", 
          "pathology", 
          "dissection", 
          "pathologists", 
          "PurposePoint", 
          "ConclusionAs", 
          "better activity recovery", 
          "examination", 
          "reconstruction", 
          "sensitivity", 
          "recovery", 
          "center", 
          "study", 
          "quantitative values", 
          "results", 
          "OSEM algorithm", 
          "size", 
          "data", 
          "clinical PET systems", 
          "ratio", 
          "impact", 
          "nodes", 
          "comparison", 
          "OSEM", 
          "function reconstruction", 
          "PET system", 
          "PSF", 
          "emphasis", 
          "values", 
          "system", 
          "approach", 
          "entire field", 
          "view", 
          "resolution", 
          "deposits", 
          "activity recovery", 
          "accuracy", 
          "spatial resolution", 
          "performance", 
          "graphical comparison", 
          "field", 
          "algorithm", 
          "conventional algorithms"
        ], 
        "name": "Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems?", 
        "pagination": "1103-1112", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024627703"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-014-2689-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24562642"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-014-2689-7", 
          "https://app.dimensions.ai/details/publication/pub.1024627703"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_627.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00259-014-2689-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2689-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2689-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2689-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-014-2689-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    348 TRIPLES      21 PREDICATES      135 URIs      112 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-014-2689-7 schema:about N1343b775c2c94aff959b4b7e27d894aa
    2 N22d95d44b30f4709a8f04a9cc7e0959d
    3 N2fd431b116294a288fa36888ad26f566
    4 N41e6805dbbe240e68ac3e4b4736e4031
    5 N4b941baf3ff54873b0c291e4cb5e0026
    6 N4cd09e266551488094b22939ffa74f19
    7 N5a4823645fe3405c9e5b312c51b2d832
    8 N75fadab3251946798025f210a43f62b7
    9 N7ab511e4599c43c9b23e4badf8ae2fac
    10 N821853f13066493c82a5abedeb24b248
    11 N8565728fd01349eb8110fcfb05d63845
    12 N93ba59a921e84b608ec36915ff83f2fa
    13 Nbfe0ceaeda5948a191b5c7890608cd74
    14 Nc893c4604a59418ead92b09047ada320
    15 Nff2ae372d65a4b6086e954cdbb0691e4
    16 anzsrc-for:11
    17 anzsrc-for:1112
    18 schema:author Nc553a60c23754a76aafc3b0f512a5fdd
    19 schema:citation sg:pub.10.1007/s00259-009-1145-6
    20 sg:pub.10.1007/s00259-009-1159-0
    21 sg:pub.10.1007/s00259-009-1211-0
    22 sg:pub.10.1007/s00259-009-1297-4
    23 sg:pub.10.1007/s00259-009-1343-2
    24 sg:pub.10.1007/s00259-009-1352-1
    25 sg:pub.10.1007/s00259-012-2181-1
    26 sg:pub.10.1007/s00259-012-2216-7
    27 sg:pub.10.1007/s00259-012-2245-2
    28 sg:pub.10.1007/s00259-013-2391-1
    29 sg:pub.10.1007/s00259-013-2440-9
    30 sg:pub.10.1007/s00259-013-2465-0
    31 sg:pub.10.1007/s00259-013-2515-7
    32 sg:pub.10.1186/2191-219x-1-16
    33 sg:pub.10.1245/s10434-011-2189-y
    34 schema:datePublished 2014-02-22
    35 schema:datePublishedReg 2014-02-22
    36 schema:description PurposePoint spread function (PSF) reconstruction improves spatial resolution throughout the entire field of view of a PET system and can detect smaller metastatic deposits than conventional algorithms such as OSEM. We assessed the impact of PSF reconstruction on quantitative values and diagnostic accuracy for axillary staging of breast cancer patients, compared with an OSEM reconstruction, with emphasis on the size of nodal metastases.MethodsThis was a prospective study in a single referral centre in which 50 patients underwent an 18F-FDG PET examination before axillary lymph node dissection. PET data were reconstructed with an OSEM algorithm and PSF reconstruction, analysed blindly and validated by a pathologist who measured the largest nodal metastasis per axilla. This size was used to evaluate PET diagnostic performance.ResultsOn pathology, 34 patients (68 %) had nodal involvement. Overall, the median size of the largest nodal metastasis per axilla was 7 mm (range 0.5 – 40 mm). PSF reconstruction detected more involved nodes than OSEM reconstruction (p = 0.003). The mean PSF to OSEM SUVmax ratio was 1.66 (95 % CI 1.01 – 2.32). The sensitivities of PSF and OSEM reconstructions were, respectively, 96 % and 92 % in patients with a largest nodal metastasis of >7 mm, 60 % and 40 % in patients with a largest nodal metastasis of ≤7 mm, and 92 % and 69 % in patients with a primary tumour ≤30 mm. Biggerstaff graphical comparison showed that globally PSF reconstruction was superior to OSEM reconstruction. The median sizes of the largest nodal metastasis in patients with nodal involvement not detected by either PSF or OSEM reconstruction, detected by PSF but not by OSEM reconstruction and detected by both reconstructions were 3, 6 and 16 mm (p = 0.0064) respectively. In patients with nodal involvement detected by PSF reconstruction but not by OSEM reconstruction, the smallest detectable metastasis was 1.8 mm.ConclusionAs a result of better activity recovery, PET with PSF reconstruction performed better than PET with OSEM reconstruction in detecting nodal metastases ≤7 mm. However, its sensitivity is still insufficient for it to replace surgical approaches for axillary staging. PET with PSF reconstruction could be used to perform sentinel node biopsy more safely in patients with a primary tumour ≤30 mm and with unremarkable PET results in the axilla.
    37 schema:genre article
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N08bc690710024b7ba8126052a51898bd
    40 N9ea021371808443b9c5ca7b4b3c31150
    41 sg:journal.1297401
    42 schema:keywords ConclusionAs
    43 MethodsThis
    44 OSEM
    45 OSEM algorithm
    46 OSEM reconstruction
    47 PET
    48 PET data
    49 PET examinations
    50 PET results
    51 PET system
    52 PSF
    53 PSF reconstruction
    54 PurposePoint
    55 SUVmax ratio
    56 accuracy
    57 activity recovery
    58 algorithm
    59 approach
    60 axilla
    61 axillary lymph node dissection
    62 axillary staging
    63 better activity recovery
    64 biopsy
    65 breast cancer patients
    66 cancer patients
    67 center
    68 clinical PET systems
    69 comparison
    70 conventional algorithms
    71 data
    72 deposits
    73 detectable metastases
    74 diagnostic accuracy
    75 diagnostic performance
    76 dissection
    77 emphasis
    78 entire field
    79 examination
    80 field
    81 function reconstruction
    82 graphical comparison
    83 impact
    84 involved nodes
    85 involvement
    86 largest nodal metastasis
    87 lymph node dissection
    88 median size
    89 metastasis
    90 metastatic deposits
    91 nodal involvement
    92 nodal metastasis
    93 node biopsy
    94 node dissection
    95 nodes
    96 pathologists
    97 pathology
    98 patients
    99 performance
    100 primary tumor
    101 prospective study
    102 quantitative values
    103 ratio
    104 reconstruction
    105 recovery
    106 referral center
    107 resolution
    108 results
    109 sensitivity
    110 sentinel node biopsy
    111 single referral center
    112 size
    113 small metastatic deposits
    114 spatial resolution
    115 staging
    116 study
    117 surgical approach
    118 system
    119 tumors
    120 values
    121 view
    122 schema:name Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems?
    123 schema:pagination 1103-1112
    124 schema:productId N26feede48c6d453c9343bdb8b6541c55
    125 N7302ca20f930460a952d754fc0fbc9f5
    126 N8fb6a84e5935418e80cfc726204f6bb8
    127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024627703
    128 https://doi.org/10.1007/s00259-014-2689-7
    129 schema:sdDatePublished 2022-09-02T15:56
    130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    131 schema:sdPublisher Nd5bae41749414d0fb9d439a77af1240c
    132 schema:url https://doi.org/10.1007/s00259-014-2689-7
    133 sgo:license sg:explorer/license/
    134 sgo:sdDataset articles
    135 rdf:type schema:ScholarlyArticle
    136 N037caf8cf76f4083aed2e1a10287a588 rdf:first sg:person.01312640760.23
    137 rdf:rest N508ea2e6000149d084ee525865538306
    138 N08bc690710024b7ba8126052a51898bd schema:volumeNumber 41
    139 rdf:type schema:PublicationVolume
    140 N1343b775c2c94aff959b4b7e27d894aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Carcinoma, Ductal, Breast
    142 rdf:type schema:DefinedTerm
    143 N20988c1255b04d90ac28562ef735f854 rdf:first sg:person.01316272307.22
    144 rdf:rest Nc150ea6a02324bccaea4af278949c617
    145 N22d95d44b30f4709a8f04a9cc7e0959d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Breast Neoplasms
    147 rdf:type schema:DefinedTerm
    148 N26feede48c6d453c9343bdb8b6541c55 schema:name doi
    149 schema:value 10.1007/s00259-014-2689-7
    150 rdf:type schema:PropertyValue
    151 N2fd431b116294a288fa36888ad26f566 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Axilla
    153 rdf:type schema:DefinedTerm
    154 N3f99506552f9426fbacbef43e6a76f71 rdf:first sg:person.0715336115.22
    155 rdf:rest Ne7adeda0e6d44139818c78e3a6992dba
    156 N41e6805dbbe240e68ac3e4b4736e4031 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Humans
    158 rdf:type schema:DefinedTerm
    159 N4b941baf3ff54873b0c291e4cb5e0026 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Female
    161 rdf:type schema:DefinedTerm
    162 N4cd09e266551488094b22939ffa74f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Limit of Detection
    164 rdf:type schema:DefinedTerm
    165 N508ea2e6000149d084ee525865538306 rdf:first sg:person.01270266500.90
    166 rdf:rest N5a299ddfcae0408a829c34111dbf4dfd
    167 N5a299ddfcae0408a829c34111dbf4dfd rdf:first sg:person.01152406451.51
    168 rdf:rest rdf:nil
    169 N5a4823645fe3405c9e5b312c51b2d832 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Image Processing, Computer-Assisted
    171 rdf:type schema:DefinedTerm
    172 N7302ca20f930460a952d754fc0fbc9f5 schema:name pubmed_id
    173 schema:value 24562642
    174 rdf:type schema:PropertyValue
    175 N75fadab3251946798025f210a43f62b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Algorithms
    177 rdf:type schema:DefinedTerm
    178 N7ab511e4599c43c9b23e4badf8ae2fac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Lymphatic Metastasis
    180 rdf:type schema:DefinedTerm
    181 N821853f13066493c82a5abedeb24b248 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Tomography, X-Ray Computed
    183 rdf:type schema:DefinedTerm
    184 N8565728fd01349eb8110fcfb05d63845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Middle Aged
    186 rdf:type schema:DefinedTerm
    187 N8fb6a84e5935418e80cfc726204f6bb8 schema:name dimensions_id
    188 schema:value pub.1024627703
    189 rdf:type schema:PropertyValue
    190 N93ba59a921e84b608ec36915ff83f2fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Positron-Emission Tomography
    192 rdf:type schema:DefinedTerm
    193 N9df72f52755f418292dba91c10b6b500 rdf:first sg:person.01321533125.93
    194 rdf:rest N3f99506552f9426fbacbef43e6a76f71
    195 N9ea021371808443b9c5ca7b4b3c31150 schema:issueNumber 6
    196 rdf:type schema:PublicationIssue
    197 Naa5de4a3a675427caf06375d012d21d2 rdf:first sg:person.01117111471.08
    198 rdf:rest N9df72f52755f418292dba91c10b6b500
    199 Nbfe0ceaeda5948a191b5c7890608cd74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Radiopharmaceuticals
    201 rdf:type schema:DefinedTerm
    202 Nc150ea6a02324bccaea4af278949c617 rdf:first sg:person.01055271505.47
    203 rdf:rest Nfc11075387804ef4832d6107dce8730f
    204 Nc553a60c23754a76aafc3b0f512a5fdd rdf:first sg:person.01332540600.34
    205 rdf:rest N20988c1255b04d90ac28562ef735f854
    206 Nc893c4604a59418ead92b09047ada320 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Fluorodeoxyglucose F18
    208 rdf:type schema:DefinedTerm
    209 Nd5bae41749414d0fb9d439a77af1240c schema:name Springer Nature - SN SciGraph project
    210 rdf:type schema:Organization
    211 Ne7adeda0e6d44139818c78e3a6992dba rdf:first sg:person.01167733127.48
    212 rdf:rest N037caf8cf76f4083aed2e1a10287a588
    213 Nfc11075387804ef4832d6107dce8730f rdf:first sg:person.0744145733.83
    214 rdf:rest Naa5de4a3a675427caf06375d012d21d2
    215 Nff2ae372d65a4b6086e954cdbb0691e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Multimodal Imaging
    217 rdf:type schema:DefinedTerm
    218 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Medical and Health Sciences
    220 rdf:type schema:DefinedTerm
    221 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    222 schema:name Oncology and Carcinogenesis
    223 rdf:type schema:DefinedTerm
    224 sg:journal.1297401 schema:issn 1619-7070
    225 1619-7089
    226 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    227 schema:publisher Springer Nature
    228 rdf:type schema:Periodical
    229 sg:person.01055271505.47 schema:affiliation grid-institutes:None
    230 schema:familyName Switsers
    231 schema:givenName Odile
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055271505.47
    233 rdf:type schema:Person
    234 sg:person.01117111471.08 schema:affiliation grid-institutes:None
    235 schema:familyName Levy
    236 schema:givenName Christelle
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117111471.08
    238 rdf:type schema:Person
    239 sg:person.01152406451.51 schema:affiliation grid-institutes:grid.460771.3
    240 schema:familyName Aide
    241 schema:givenName Nicolas
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152406451.51
    243 rdf:type schema:Person
    244 sg:person.01167733127.48 schema:affiliation grid-institutes:None
    245 schema:familyName Crouet
    246 schema:givenName Hubert
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167733127.48
    248 rdf:type schema:Person
    249 sg:person.01270266500.90 schema:affiliation grid-institutes:None
    250 schema:familyName Grellard
    251 schema:givenName Jean-Michel
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270266500.90
    253 rdf:type schema:Person
    254 sg:person.01312640760.23 schema:affiliation grid-institutes:None
    255 schema:familyName Guilloit
    256 schema:givenName Jean-Marc
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312640760.23
    258 rdf:type schema:Person
    259 sg:person.01316272307.22 schema:affiliation grid-institutes:None
    260 schema:familyName Blanc Fournier
    261 schema:givenName Cécile
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316272307.22
    263 rdf:type schema:Person
    264 sg:person.01321533125.93 schema:affiliation grid-institutes:None
    265 schema:familyName Allouache
    266 schema:givenName Djelila
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321533125.93
    268 rdf:type schema:Person
    269 sg:person.01332540600.34 schema:affiliation grid-institutes:None
    270 schema:familyName Bellevre
    271 schema:givenName Dimitri
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332540600.34
    273 rdf:type schema:Person
    274 sg:person.0715336115.22 schema:affiliation grid-institutes:grid.411149.8
    275 schema:familyName Desmonts
    276 schema:givenName Cédric
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715336115.22
    278 rdf:type schema:Person
    279 sg:person.0744145733.83 schema:affiliation grid-institutes:None
    280 schema:familyName Dugué
    281 schema:givenName Audrey Emmanuelle
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744145733.83
    283 rdf:type schema:Person
    284 sg:pub.10.1007/s00259-009-1145-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042070845
    285 https://doi.org/10.1007/s00259-009-1145-6
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s00259-009-1159-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011927699
    288 https://doi.org/10.1007/s00259-009-1159-0
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s00259-009-1211-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014803456
    291 https://doi.org/10.1007/s00259-009-1211-0
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
    294 https://doi.org/10.1007/s00259-009-1297-4
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s00259-009-1343-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015152995
    297 https://doi.org/10.1007/s00259-009-1343-2
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s00259-009-1352-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053655973
    300 https://doi.org/10.1007/s00259-009-1352-1
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/s00259-012-2181-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025496974
    303 https://doi.org/10.1007/s00259-012-2181-1
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/s00259-012-2216-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026357947
    306 https://doi.org/10.1007/s00259-012-2216-7
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/s00259-012-2245-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028562458
    309 https://doi.org/10.1007/s00259-012-2245-2
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/s00259-013-2391-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016046039
    312 https://doi.org/10.1007/s00259-013-2391-1
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s00259-013-2440-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044598631
    315 https://doi.org/10.1007/s00259-013-2440-9
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1007/s00259-013-2465-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016939976
    318 https://doi.org/10.1007/s00259-013-2465-0
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1007/s00259-013-2515-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038009196
    321 https://doi.org/10.1007/s00259-013-2515-7
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/2191-219x-1-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107920
    324 https://doi.org/10.1186/2191-219x-1-16
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1245/s10434-011-2189-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006528530
    327 https://doi.org/10.1245/s10434-011-2189-y
    328 rdf:type schema:CreativeWork
    329 grid-institutes:None schema:alternateName Biostatistics and Clinical Research unit, François Baclesse Cancer Centre, Caen, France
    330 Breast Cancer Unit, François Baclesse Cancer Centre, Caen, France
    331 Nuclear Medicine Department, François Baclesse Cancer Centre, Avenue Général Harris, 14076, Cedex 5, Caen, France
    332 Pathology Department, François Baclesse Cancer Centre, Caen, France
    333 Radiation Oncology Department, François Baclesse Cancer Centre, Caen, France
    334 Surgical Oncology, François Baclesse Cancer Centre, Caen, France
    335 schema:name Biostatistics and Clinical Research unit, François Baclesse Cancer Centre, Caen, France
    336 Breast Cancer Unit, François Baclesse Cancer Centre, Caen, France
    337 Nuclear Medicine Department, François Baclesse Cancer Centre, Avenue Général Harris, 14076, Cedex 5, Caen, France
    338 Pathology Department, François Baclesse Cancer Centre, Caen, France
    339 Radiation Oncology Department, François Baclesse Cancer Centre, Caen, France
    340 Surgical Oncology, François Baclesse Cancer Centre, Caen, France
    341 rdf:type schema:Organization
    342 grid-institutes:grid.411149.8 schema:alternateName Medical Physics Department, University Hospital, Caen, France
    343 schema:name Medical Physics Department, University Hospital, Caen, France
    344 rdf:type schema:Organization
    345 grid-institutes:grid.460771.3 schema:alternateName Normandie Université, Caen, France
    346 schema:name Normandie Université, Caen, France
    347 Nuclear Medicine Department, François Baclesse Cancer Centre, Avenue Général Harris, 14076, Cedex 5, Caen, France
    348 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...