Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06-11

AUTHORS

Nikolaos E. Makris, Marc C. Huisman, Paul E. Kinahan, Adriaan A. Lammertsma, Ronald Boellaard

ABSTRACT

PurposePET quantification based on standardized uptake values (SUV) is hampered by several factors, in particular by variability in PET acquisition settings and data analysis methods. Quantitative PET/CT studies acquired during a multicentre trial require harmonization of imaging procedures to maximize study power. The aims of this study were to determine which phantoms are most suitable for detecting differences in image quality and quantification, and which methods for defining volumes of interest (VOI) are least sensitive to these differences.MethodsThe most common accreditation phantoms used in oncology FDG PET/CT trials were scanned on the same scanner. These phantoms were those used by the Society of Nuclear Medicine Clinical Trials Network (SNM-CTN), the European Association of Nuclear Medicine/National Electrical Manufacturers Association (EANM/NEMA) and the American College of Radiology (ACR). In addition, tumour SUVs were derived from ten oncology whole-body examinations performed on the same PET/CT system. Both phantom and clinical data were reconstructed using different numbers of iterations, subsets and time-of-flight kernel widths. Subsequently, different VOI methods (VOIA50%, VOImax, VOI3Dpeak, VOI2Dpeak) were applied to assess the impact of changes in image reconstruction settings on SUV and recovery coefficients (RC).ResultsAll phantoms demonstrated sensitivity for detecting changes in SUV and RC measures in response to changes in image reconstruction settings and VOI analysis methods. The SNM-CTN and EANM/NEMA phantoms showed almost equal sensitivity in detecting RC differences with changes in image characteristics. Phantom and clinical data demonstrated that the VOI analysis methods VOIA50% and VOImax gave SUV and RC values with large variability in relation to image characteristics, whereas VOI3Dpeak and VOI2Dpeak were less sensitive to these differences.ConclusionAll three phantoms may be used to harmonize parameters for data acquisition, processing and analysis. However, the SNM-CTN and EANM/NEMA phantoms are the most sensitive to parameter changes and are suitable for harmonizing SUV quantification based on 3D VOIs, such as VOIA50% and VOI3Dpeak, and VOImax. Variability in SUV quantification after harmonization could be further minimized using VOI3Dpeak analysis, which was least sensitive to residual variability in image quality and quantification. More... »

PAGES

1507-1515

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0

DOI

http://dx.doi.org/10.1007/s00259-013-2465-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016939976

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23754762


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Esophageal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multicenter Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography Scanners, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makris", 
        "givenName": "Nikolaos E.", 
        "id": "sg:person.0666077251.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666077251.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huisman", 
        "givenName": "Marc C.", 
        "id": "sg:person.01006327107.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kinahan", 
        "givenName": "Paul E.", 
        "id": "sg:person.01013321471.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013321471.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A.", 
        "id": "sg:person.01352511753.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "Ronald", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015986971", 
          "https://doi.org/10.1038/nrd1130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1893-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009088314", 
          "https://doi.org/10.1007/s00259-011-1893-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1899-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028602483", 
          "https://doi.org/10.1007/s00259-011-1899-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-1-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107920", 
          "https://doi.org/10.1186/2191-219x-1-16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06-11", 
    "datePublishedReg": "2013-06-11", 
    "description": "PurposePET quantification based on standardized uptake values (SUV) is hampered by several factors, in particular by variability in PET acquisition settings and data analysis methods. Quantitative PET/CT studies acquired during a multicentre trial require harmonization of imaging procedures to maximize study power. The aims of this study were to determine which phantoms are most suitable for detecting differences in image quality and quantification, and which methods for defining volumes of interest (VOI) are least sensitive to these differences.MethodsThe most common accreditation phantoms used in oncology FDG PET/CT trials were scanned on the same scanner. These phantoms were those used by the Society of Nuclear Medicine Clinical Trials Network (SNM-CTN), the European Association of Nuclear Medicine/National Electrical Manufacturers Association (EANM/NEMA) and the American College of Radiology (ACR). In addition, tumour SUVs were derived from ten oncology whole-body examinations performed on the same PET/CT system. Both phantom and clinical data were reconstructed using different numbers of iterations, subsets and time-of-flight kernel widths. Subsequently, different VOI methods (VOIA50%, VOImax, VOI3Dpeak, VOI2Dpeak) were applied to assess the impact of changes in image reconstruction settings on SUV and recovery coefficients (RC).ResultsAll phantoms demonstrated sensitivity for detecting changes in SUV and RC measures in response to changes in image reconstruction settings and VOI analysis methods. The SNM-CTN and EANM/NEMA phantoms showed almost equal sensitivity in detecting RC differences with changes in image characteristics. Phantom and clinical data demonstrated that the VOI analysis methods VOIA50% and VOImax gave SUV and RC values with large variability in relation to image characteristics, whereas VOI3Dpeak and VOI2Dpeak were less sensitive to these differences.ConclusionAll three phantoms may be used to harmonize parameters for data acquisition, processing and analysis. However, the SNM-CTN and EANM/NEMA phantoms are the most sensitive to parameter changes and are suitable for harmonizing SUV quantification based on 3D VOIs, such as VOIA50% and VOI3Dpeak, and VOImax. Variability in SUV quantification after harmonization could be further minimized using VOI3Dpeak analysis, which was least sensitive to residual variability in image quality and quantification.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-013-2465-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2689156", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "standardized uptake value", 
      "PET/CT studies", 
      "multicentre trial", 
      "clinical data", 
      "CT studies", 
      "image reconstruction settings", 
      "tumor standardized uptake value", 
      "FDG PET/CT studies", 
      "volume of interest", 
      "Clinical Trials Network", 
      "whole-body examination", 
      "SUV quantification", 
      "American College", 
      "uptake value", 
      "Trials Network", 
      "European Association", 
      "CT trials", 
      "study power", 
      "trials", 
      "same scanner", 
      "equal sensitivity", 
      "VOI methods", 
      "evaluation of strategies", 
      "association", 
      "reconstruction settings", 
      "residual variability", 
      "PET/CT system", 
      "setting", 
      "differences", 
      "study", 
      "image quality", 
      "RC measures", 
      "radiology", 
      "validation phantom", 
      "changes", 
      "examination", 
      "sensitivity", 
      "procedure", 
      "aim", 
      "NEMA phantom", 
      "large variability", 
      "CT system", 
      "quantification", 
      "subset", 
      "response", 
      "factors", 
      "variability", 
      "data", 
      "acquisition settings", 
      "quality", 
      "evaluation", 
      "College", 
      "Manufacturers Association", 
      "impact of changes", 
      "measures", 
      "phantom", 
      "analysis", 
      "volume", 
      "image characteristics", 
      "characteristics", 
      "scanner", 
      "method", 
      "values", 
      "addition", 
      "strategies", 
      "number", 
      "time", 
      "impact", 
      "harmonization", 
      "comparison", 
      "acquisition", 
      "recovery coefficient", 
      "relation", 
      "society", 
      "parameter changes", 
      "interest", 
      "parameters", 
      "system", 
      "processing", 
      "analysis method", 
      "data analysis procedures", 
      "data analysis methods", 
      "different numbers", 
      "National Electrical Manufacturers Association", 
      "data acquisition", 
      "width", 
      "RC values", 
      "coefficient", 
      "analysis procedure", 
      "network", 
      "power", 
      "iteration", 
      "kernel width"
    ], 
    "name": "Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures", 
    "pagination": "1507-1515", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016939976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-013-2465-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23754762"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-013-2465-0", 
      "https://app.dimensions.ai/details/publication/pub.1016939976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_613.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-013-2465-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      136 URIs      123 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-013-2465-0 schema:about N066e4d33acd64021bd1b64fb6a3970d6
2 N0a6c791a0958405d969aa8f2797c162c
3 N16331d8b08544e80bafcf251fc8abbcd
4 N567fd5239f3a4d3ab1c7fe94ad8702ca
5 N58332e00349b4d7295d79222b672becd
6 N61f7453008f547d98c998515f4566d63
7 N6cb6b72bf42d46e8bf28a9c7258b2b2d
8 N93a71c8386514b659156e4778439b172
9 Ncabb0994194d4ee4b5d30023571bb7ea
10 Nd7e929eb39af4d14b43de21f6d2a9ea1
11 Necfe875a97d94fdfa46496165aac4761
12 Nf1e781ed199e491ca9a04a47c9a2ad35
13 Nf7c6944d50a0474db1e1fe2a572d6307
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author N02ca16d9cd814261bb49aba504558238
17 schema:citation sg:pub.10.1007/s00259-009-1297-4
18 sg:pub.10.1007/s00259-011-1893-y
19 sg:pub.10.1007/s00259-011-1899-5
20 sg:pub.10.1038/nrd1130
21 sg:pub.10.1186/2191-219x-1-16
22 schema:datePublished 2013-06-11
23 schema:datePublishedReg 2013-06-11
24 schema:description PurposePET quantification based on standardized uptake values (SUV) is hampered by several factors, in particular by variability in PET acquisition settings and data analysis methods. Quantitative PET/CT studies acquired during a multicentre trial require harmonization of imaging procedures to maximize study power. The aims of this study were to determine which phantoms are most suitable for detecting differences in image quality and quantification, and which methods for defining volumes of interest (VOI) are least sensitive to these differences.MethodsThe most common accreditation phantoms used in oncology FDG PET/CT trials were scanned on the same scanner. These phantoms were those used by the Society of Nuclear Medicine Clinical Trials Network (SNM-CTN), the European Association of Nuclear Medicine/National Electrical Manufacturers Association (EANM/NEMA) and the American College of Radiology (ACR). In addition, tumour SUVs were derived from ten oncology whole-body examinations performed on the same PET/CT system. Both phantom and clinical data were reconstructed using different numbers of iterations, subsets and time-of-flight kernel widths. Subsequently, different VOI methods (VOIA50%, VOImax, VOI3Dpeak, VOI2Dpeak) were applied to assess the impact of changes in image reconstruction settings on SUV and recovery coefficients (RC).ResultsAll phantoms demonstrated sensitivity for detecting changes in SUV and RC measures in response to changes in image reconstruction settings and VOI analysis methods. The SNM-CTN and EANM/NEMA phantoms showed almost equal sensitivity in detecting RC differences with changes in image characteristics. Phantom and clinical data demonstrated that the VOI analysis methods VOIA50% and VOImax gave SUV and RC values with large variability in relation to image characteristics, whereas VOI3Dpeak and VOI2Dpeak were less sensitive to these differences.ConclusionAll three phantoms may be used to harmonize parameters for data acquisition, processing and analysis. However, the SNM-CTN and EANM/NEMA phantoms are the most sensitive to parameter changes and are suitable for harmonizing SUV quantification based on 3D VOIs, such as VOIA50% and VOI3Dpeak, and VOImax. Variability in SUV quantification after harmonization could be further minimized using VOI3Dpeak analysis, which was least sensitive to residual variability in image quality and quantification.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N4e1ef751c45a43798bf34f2a4c7881ec
28 Ne8cc2bfb4de141c88e44003238650c7e
29 sg:journal.1297401
30 schema:keywords American College
31 CT studies
32 CT system
33 CT trials
34 Clinical Trials Network
35 College
36 European Association
37 FDG PET/CT studies
38 Manufacturers Association
39 NEMA phantom
40 National Electrical Manufacturers Association
41 PET/CT studies
42 PET/CT system
43 RC measures
44 RC values
45 SUV quantification
46 Trials Network
47 VOI methods
48 acquisition
49 acquisition settings
50 addition
51 aim
52 analysis
53 analysis method
54 analysis procedure
55 association
56 changes
57 characteristics
58 clinical data
59 coefficient
60 comparison
61 data
62 data acquisition
63 data analysis methods
64 data analysis procedures
65 differences
66 different numbers
67 equal sensitivity
68 evaluation
69 evaluation of strategies
70 examination
71 factors
72 harmonization
73 image characteristics
74 image quality
75 image reconstruction settings
76 impact
77 impact of changes
78 interest
79 iteration
80 kernel width
81 large variability
82 measures
83 method
84 multicentre trial
85 network
86 number
87 parameter changes
88 parameters
89 phantom
90 power
91 procedure
92 processing
93 quality
94 quantification
95 radiology
96 reconstruction settings
97 recovery coefficient
98 relation
99 residual variability
100 response
101 same scanner
102 scanner
103 sensitivity
104 setting
105 society
106 standardized uptake value
107 strategies
108 study
109 study power
110 subset
111 system
112 time
113 trials
114 tumor standardized uptake value
115 uptake value
116 validation phantom
117 values
118 variability
119 volume
120 volume of interest
121 whole-body examination
122 width
123 schema:name Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures
124 schema:pagination 1507-1515
125 schema:productId Na951bc35abe34e18990997d9a39ed77c
126 Nea81a6ab96d5472fa35a73df48393b7f
127 Nfbd17176768c4041a120495f4e1db8f4
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016939976
129 https://doi.org/10.1007/s00259-013-2465-0
130 schema:sdDatePublished 2022-09-02T15:56
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher Ne84b95507fed47c59cf32269020dca6b
133 schema:url https://doi.org/10.1007/s00259-013-2465-0
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N02ca16d9cd814261bb49aba504558238 rdf:first sg:person.0666077251.07
138 rdf:rest N730a4901bb8c4a13ac21cde0678af2cb
139 N066e4d33acd64021bd1b64fb6a3970d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Data Interpretation, Statistical
141 rdf:type schema:DefinedTerm
142 N08144951ef184fb39c1b5019fff42e11 rdf:first sg:person.01352511753.53
143 rdf:rest N7528979217a544b0b52e2c76d21aba9d
144 N0a6c791a0958405d969aa8f2797c162c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Multimodal Imaging
146 rdf:type schema:DefinedTerm
147 N16331d8b08544e80bafcf251fc8abbcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Esophageal Neoplasms
149 rdf:type schema:DefinedTerm
150 N4e1ef751c45a43798bf34f2a4c7881ec schema:issueNumber 10
151 rdf:type schema:PublicationIssue
152 N567fd5239f3a4d3ab1c7fe94ad8702ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Tomography Scanners, X-Ray Computed
154 rdf:type schema:DefinedTerm
155 N58332e00349b4d7295d79222b672becd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Colorectal Neoplasms
157 rdf:type schema:DefinedTerm
158 N61f7453008f547d98c998515f4566d63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Fluorodeoxyglucose F18
160 rdf:type schema:DefinedTerm
161 N6cb6b72bf42d46e8bf28a9c7258b2b2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Lung Neoplasms
163 rdf:type schema:DefinedTerm
164 N730a4901bb8c4a13ac21cde0678af2cb rdf:first sg:person.01006327107.21
165 rdf:rest Nbb0e8353394b423eb8f142d96f039c8b
166 N7528979217a544b0b52e2c76d21aba9d rdf:first sg:person.01361420011.63
167 rdf:rest rdf:nil
168 N93a71c8386514b659156e4778439b172 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Humans
170 rdf:type schema:DefinedTerm
171 Na951bc35abe34e18990997d9a39ed77c schema:name doi
172 schema:value 10.1007/s00259-013-2465-0
173 rdf:type schema:PropertyValue
174 Nbb0e8353394b423eb8f142d96f039c8b rdf:first sg:person.01013321471.79
175 rdf:rest N08144951ef184fb39c1b5019fff42e11
176 Ncabb0994194d4ee4b5d30023571bb7ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Tomography, X-Ray Computed
178 rdf:type schema:DefinedTerm
179 Nd7e929eb39af4d14b43de21f6d2a9ea1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Phantoms, Imaging
181 rdf:type schema:DefinedTerm
182 Ne84b95507fed47c59cf32269020dca6b schema:name Springer Nature - SN SciGraph project
183 rdf:type schema:Organization
184 Ne8cc2bfb4de141c88e44003238650c7e schema:volumeNumber 40
185 rdf:type schema:PublicationVolume
186 Nea81a6ab96d5472fa35a73df48393b7f schema:name pubmed_id
187 schema:value 23754762
188 rdf:type schema:PropertyValue
189 Necfe875a97d94fdfa46496165aac4761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Positron-Emission Tomography
191 rdf:type schema:DefinedTerm
192 Nf1e781ed199e491ca9a04a47c9a2ad35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Radiopharmaceuticals
194 rdf:type schema:DefinedTerm
195 Nf7c6944d50a0474db1e1fe2a572d6307 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Multicenter Studies as Topic
197 rdf:type schema:DefinedTerm
198 Nfbd17176768c4041a120495f4e1db8f4 schema:name dimensions_id
199 schema:value pub.1016939976
200 rdf:type schema:PropertyValue
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
205 schema:name Clinical Sciences
206 rdf:type schema:DefinedTerm
207 sg:grant.2689156 http://pending.schema.org/fundedItem sg:pub.10.1007/s00259-013-2465-0
208 rdf:type schema:MonetaryGrant
209 sg:journal.1297401 schema:issn 1619-7070
210 1619-7089
211 schema:name European Journal of Nuclear Medicine and Molecular Imaging
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.01006327107.21 schema:affiliation grid-institutes:grid.16872.3a
215 schema:familyName Huisman
216 schema:givenName Marc C.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21
218 rdf:type schema:Person
219 sg:person.01013321471.79 schema:affiliation grid-institutes:grid.34477.33
220 schema:familyName Kinahan
221 schema:givenName Paul E.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013321471.79
223 rdf:type schema:Person
224 sg:person.01352511753.53 schema:affiliation grid-institutes:grid.16872.3a
225 schema:familyName Lammertsma
226 schema:givenName Adriaan A.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53
228 rdf:type schema:Person
229 sg:person.01361420011.63 schema:affiliation grid-institutes:grid.16872.3a
230 schema:familyName Boellaard
231 schema:givenName Ronald
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
233 rdf:type schema:Person
234 sg:person.0666077251.07 schema:affiliation grid-institutes:grid.16872.3a
235 schema:familyName Makris
236 schema:givenName Nikolaos E.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666077251.07
238 rdf:type schema:Person
239 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
240 https://doi.org/10.1007/s00259-009-1297-4
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/s00259-011-1893-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009088314
243 https://doi.org/10.1007/s00259-011-1893-y
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/s00259-011-1899-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028602483
246 https://doi.org/10.1007/s00259-011-1899-5
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nrd1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015986971
249 https://doi.org/10.1038/nrd1130
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/2191-219x-1-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107920
252 https://doi.org/10.1186/2191-219x-1-16
253 rdf:type schema:CreativeWork
254 grid-institutes:grid.16872.3a schema:alternateName Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
255 schema:name Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
256 rdf:type schema:Organization
257 grid-institutes:grid.34477.33 schema:alternateName Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA
258 schema:name Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...