Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06-11

AUTHORS

Nikolaos E. Makris, Marc C. Huisman, Paul E. Kinahan, Adriaan A. Lammertsma, Ronald Boellaard

ABSTRACT

PurposePET quantification based on standardized uptake values (SUV) is hampered by several factors, in particular by variability in PET acquisition settings and data analysis methods. Quantitative PET/CT studies acquired during a multicentre trial require harmonization of imaging procedures to maximize study power. The aims of this study were to determine which phantoms are most suitable for detecting differences in image quality and quantification, and which methods for defining volumes of interest (VOI) are least sensitive to these differences.MethodsThe most common accreditation phantoms used in oncology FDG PET/CT trials were scanned on the same scanner. These phantoms were those used by the Society of Nuclear Medicine Clinical Trials Network (SNM-CTN), the European Association of Nuclear Medicine/National Electrical Manufacturers Association (EANM/NEMA) and the American College of Radiology (ACR). In addition, tumour SUVs were derived from ten oncology whole-body examinations performed on the same PET/CT system. Both phantom and clinical data were reconstructed using different numbers of iterations, subsets and time-of-flight kernel widths. Subsequently, different VOI methods (VOIA50%, VOImax, VOI3Dpeak, VOI2Dpeak) were applied to assess the impact of changes in image reconstruction settings on SUV and recovery coefficients (RC).ResultsAll phantoms demonstrated sensitivity for detecting changes in SUV and RC measures in response to changes in image reconstruction settings and VOI analysis methods. The SNM-CTN and EANM/NEMA phantoms showed almost equal sensitivity in detecting RC differences with changes in image characteristics. Phantom and clinical data demonstrated that the VOI analysis methods VOIA50% and VOImax gave SUV and RC values with large variability in relation to image characteristics, whereas VOI3Dpeak and VOI2Dpeak were less sensitive to these differences.ConclusionAll three phantoms may be used to harmonize parameters for data acquisition, processing and analysis. However, the SNM-CTN and EANM/NEMA phantoms are the most sensitive to parameter changes and are suitable for harmonizing SUV quantification based on 3D VOIs, such as VOIA50% and VOI3Dpeak, and VOImax. Variability in SUV quantification after harmonization could be further minimized using VOI3Dpeak analysis, which was least sensitive to residual variability in image quality and quantification. More... »

PAGES

1507-1515

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0

DOI

http://dx.doi.org/10.1007/s00259-013-2465-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016939976

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23754762


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Esophageal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multicenter Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography Scanners, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makris", 
        "givenName": "Nikolaos E.", 
        "id": "sg:person.0666077251.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666077251.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huisman", 
        "givenName": "Marc C.", 
        "id": "sg:person.01006327107.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kinahan", 
        "givenName": "Paul E.", 
        "id": "sg:person.01013321471.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013321471.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A.", 
        "id": "sg:person.01352511753.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "Ronald", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015986971", 
          "https://doi.org/10.1038/nrd1130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1893-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009088314", 
          "https://doi.org/10.1007/s00259-011-1893-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1899-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028602483", 
          "https://doi.org/10.1007/s00259-011-1899-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-1-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107920", 
          "https://doi.org/10.1186/2191-219x-1-16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06-11", 
    "datePublishedReg": "2013-06-11", 
    "description": "PurposePET quantification based on standardized uptake values (SUV) is hampered by several factors, in particular by variability in PET acquisition settings and data analysis methods. Quantitative PET/CT studies acquired during a multicentre trial require harmonization of imaging procedures to maximize study power. The aims of this study were to determine which phantoms are most suitable for detecting differences in image quality and quantification, and which methods for defining volumes of interest (VOI) are least sensitive to these differences.MethodsThe most common accreditation phantoms used in oncology FDG PET/CT trials were scanned on the same scanner. These phantoms were those used by the Society of Nuclear Medicine Clinical Trials Network (SNM-CTN), the European Association of Nuclear Medicine/National Electrical Manufacturers Association (EANM/NEMA) and the American College of Radiology (ACR). In addition, tumour SUVs were derived from ten oncology whole-body examinations performed on the same PET/CT system. Both phantom and clinical data were reconstructed using different numbers of iterations, subsets and time-of-flight kernel widths. Subsequently, different VOI methods (VOIA50%, VOImax, VOI3Dpeak, VOI2Dpeak) were applied to assess the impact of changes in image reconstruction settings on SUV and recovery coefficients (RC).ResultsAll phantoms demonstrated sensitivity for detecting changes in SUV and RC measures in response to changes in image reconstruction settings and VOI analysis methods. The SNM-CTN and EANM/NEMA phantoms showed almost equal sensitivity in detecting RC differences with changes in image characteristics. Phantom and clinical data demonstrated that the VOI analysis methods VOIA50% and VOImax gave SUV and RC values with large variability in relation to image characteristics, whereas VOI3Dpeak and VOI2Dpeak were less sensitive to these differences.ConclusionAll three phantoms may be used to harmonize parameters for data acquisition, processing and analysis. However, the SNM-CTN and EANM/NEMA phantoms are the most sensitive to parameter changes and are suitable for harmonizing SUV quantification based on 3D VOIs, such as VOIA50% and VOI3Dpeak, and VOImax. Variability in SUV quantification after harmonization could be further minimized using VOI3Dpeak analysis, which was least sensitive to residual variability in image quality and quantification.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-013-2465-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2689156", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "standardized uptake value", 
      "PET/CT studies", 
      "multicentre trial", 
      "clinical data", 
      "CT studies", 
      "image reconstruction settings", 
      "tumor standardized uptake value", 
      "FDG PET/CT studies", 
      "volume of interest", 
      "Clinical Trials Network", 
      "whole-body examination", 
      "SUV quantification", 
      "American College", 
      "uptake value", 
      "Trials Network", 
      "European Association", 
      "CT trials", 
      "study power", 
      "trials", 
      "same scanner", 
      "equal sensitivity", 
      "VOI methods", 
      "evaluation of strategies", 
      "association", 
      "reconstruction settings", 
      "residual variability", 
      "PET/CT system", 
      "setting", 
      "differences", 
      "study", 
      "image quality", 
      "RC measures", 
      "radiology", 
      "validation phantom", 
      "changes", 
      "examination", 
      "sensitivity", 
      "procedure", 
      "aim", 
      "NEMA phantom", 
      "large variability", 
      "CT system", 
      "quantification", 
      "subset", 
      "response", 
      "factors", 
      "variability", 
      "data", 
      "acquisition settings", 
      "quality", 
      "evaluation", 
      "College", 
      "Manufacturers Association", 
      "impact of changes", 
      "measures", 
      "phantom", 
      "analysis", 
      "volume", 
      "image characteristics", 
      "characteristics", 
      "scanner", 
      "method", 
      "values", 
      "addition", 
      "strategies", 
      "number", 
      "time", 
      "impact", 
      "harmonization", 
      "comparison", 
      "acquisition", 
      "recovery coefficient", 
      "relation", 
      "society", 
      "parameter changes", 
      "interest", 
      "parameters", 
      "system", 
      "processing", 
      "analysis method", 
      "data analysis procedures", 
      "data analysis methods", 
      "different numbers", 
      "National Electrical Manufacturers Association", 
      "data acquisition", 
      "width", 
      "RC values", 
      "coefficient", 
      "analysis procedure", 
      "network", 
      "power", 
      "iteration", 
      "kernel width"
    ], 
    "name": "Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures", 
    "pagination": "1507-1515", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016939976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-013-2465-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23754762"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-013-2465-0", 
      "https://app.dimensions.ai/details/publication/pub.1016939976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_613.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-013-2465-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2465-0'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      136 URIs      123 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-013-2465-0 schema:about N05dd14caa53c450ca67ca03f5d8c2844
2 N273efb0c6b03403eb8bac86f7dc2b09e
3 N29902f51ebe340e5805101b5bfa5e598
4 N3328ba10115f40ad8f5630f85c959e7e
5 N3346ef0fcf184d7db0c727678e3bdc92
6 N3ba7a6a5e9254dd7a0bf6b7f4dc20825
7 N45945bcda142421a8a062f40187731f0
8 N55abb66bb45a4638a4f7a8e0fc2c8a24
9 N59ae2a75855f4c98a9656346953e8d99
10 N83ddf3d5f14d4ef0a1f9a6d81e49d897
11 Nbab601f41d64401d94705933caafb20f
12 Nc6c984b629534fc3a042a54f7d4915ad
13 Nda9e118c3dff4ac888cc8da265a4d214
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author N96b0b1c258da4f70ae1bd0b387cb2b7b
17 schema:citation sg:pub.10.1007/s00259-009-1297-4
18 sg:pub.10.1007/s00259-011-1893-y
19 sg:pub.10.1007/s00259-011-1899-5
20 sg:pub.10.1038/nrd1130
21 sg:pub.10.1186/2191-219x-1-16
22 schema:datePublished 2013-06-11
23 schema:datePublishedReg 2013-06-11
24 schema:description PurposePET quantification based on standardized uptake values (SUV) is hampered by several factors, in particular by variability in PET acquisition settings and data analysis methods. Quantitative PET/CT studies acquired during a multicentre trial require harmonization of imaging procedures to maximize study power. The aims of this study were to determine which phantoms are most suitable for detecting differences in image quality and quantification, and which methods for defining volumes of interest (VOI) are least sensitive to these differences.MethodsThe most common accreditation phantoms used in oncology FDG PET/CT trials were scanned on the same scanner. These phantoms were those used by the Society of Nuclear Medicine Clinical Trials Network (SNM-CTN), the European Association of Nuclear Medicine/National Electrical Manufacturers Association (EANM/NEMA) and the American College of Radiology (ACR). In addition, tumour SUVs were derived from ten oncology whole-body examinations performed on the same PET/CT system. Both phantom and clinical data were reconstructed using different numbers of iterations, subsets and time-of-flight kernel widths. Subsequently, different VOI methods (VOIA50%, VOImax, VOI3Dpeak, VOI2Dpeak) were applied to assess the impact of changes in image reconstruction settings on SUV and recovery coefficients (RC).ResultsAll phantoms demonstrated sensitivity for detecting changes in SUV and RC measures in response to changes in image reconstruction settings and VOI analysis methods. The SNM-CTN and EANM/NEMA phantoms showed almost equal sensitivity in detecting RC differences with changes in image characteristics. Phantom and clinical data demonstrated that the VOI analysis methods VOIA50% and VOImax gave SUV and RC values with large variability in relation to image characteristics, whereas VOI3Dpeak and VOI2Dpeak were less sensitive to these differences.ConclusionAll three phantoms may be used to harmonize parameters for data acquisition, processing and analysis. However, the SNM-CTN and EANM/NEMA phantoms are the most sensitive to parameter changes and are suitable for harmonizing SUV quantification based on 3D VOIs, such as VOIA50% and VOI3Dpeak, and VOImax. Variability in SUV quantification after harmonization could be further minimized using VOI3Dpeak analysis, which was least sensitive to residual variability in image quality and quantification.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N3bd59f3b70874f69bb6fe5052f1d475f
28 N5fbcd2c9111b4e6d89d219e19d9f1b11
29 sg:journal.1297401
30 schema:keywords American College
31 CT studies
32 CT system
33 CT trials
34 Clinical Trials Network
35 College
36 European Association
37 FDG PET/CT studies
38 Manufacturers Association
39 NEMA phantom
40 National Electrical Manufacturers Association
41 PET/CT studies
42 PET/CT system
43 RC measures
44 RC values
45 SUV quantification
46 Trials Network
47 VOI methods
48 acquisition
49 acquisition settings
50 addition
51 aim
52 analysis
53 analysis method
54 analysis procedure
55 association
56 changes
57 characteristics
58 clinical data
59 coefficient
60 comparison
61 data
62 data acquisition
63 data analysis methods
64 data analysis procedures
65 differences
66 different numbers
67 equal sensitivity
68 evaluation
69 evaluation of strategies
70 examination
71 factors
72 harmonization
73 image characteristics
74 image quality
75 image reconstruction settings
76 impact
77 impact of changes
78 interest
79 iteration
80 kernel width
81 large variability
82 measures
83 method
84 multicentre trial
85 network
86 number
87 parameter changes
88 parameters
89 phantom
90 power
91 procedure
92 processing
93 quality
94 quantification
95 radiology
96 reconstruction settings
97 recovery coefficient
98 relation
99 residual variability
100 response
101 same scanner
102 scanner
103 sensitivity
104 setting
105 society
106 standardized uptake value
107 strategies
108 study
109 study power
110 subset
111 system
112 time
113 trials
114 tumor standardized uptake value
115 uptake value
116 validation phantom
117 values
118 variability
119 volume
120 volume of interest
121 whole-body examination
122 width
123 schema:name Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures
124 schema:pagination 1507-1515
125 schema:productId N03d5a04e184e4df0825d386f811af6b2
126 N39eb772b423844fdb13ae37cc9298e12
127 N43d1c35ff0af4b8ca059a742749f5628
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016939976
129 https://doi.org/10.1007/s00259-013-2465-0
130 schema:sdDatePublished 2022-09-02T15:56
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher N962b292625b7426da511e27438596cce
133 schema:url https://doi.org/10.1007/s00259-013-2465-0
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N03d5a04e184e4df0825d386f811af6b2 schema:name doi
138 schema:value 10.1007/s00259-013-2465-0
139 rdf:type schema:PropertyValue
140 N05dd14caa53c450ca67ca03f5d8c2844 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Esophageal Neoplasms
142 rdf:type schema:DefinedTerm
143 N10e677a4fa13451db977b485738fa645 rdf:first sg:person.01361420011.63
144 rdf:rest rdf:nil
145 N156cba909e374c1286f5c4b75af5dd82 rdf:first sg:person.01006327107.21
146 rdf:rest N7e072d540612446b860073566ea25a25
147 N273efb0c6b03403eb8bac86f7dc2b09e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Phantoms, Imaging
149 rdf:type schema:DefinedTerm
150 N29902f51ebe340e5805101b5bfa5e598 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Colorectal Neoplasms
152 rdf:type schema:DefinedTerm
153 N3328ba10115f40ad8f5630f85c959e7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Multimodal Imaging
155 rdf:type schema:DefinedTerm
156 N3346ef0fcf184d7db0c727678e3bdc92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Tomography Scanners, X-Ray Computed
158 rdf:type schema:DefinedTerm
159 N39eb772b423844fdb13ae37cc9298e12 schema:name dimensions_id
160 schema:value pub.1016939976
161 rdf:type schema:PropertyValue
162 N3ba7a6a5e9254dd7a0bf6b7f4dc20825 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Data Interpretation, Statistical
164 rdf:type schema:DefinedTerm
165 N3bd59f3b70874f69bb6fe5052f1d475f schema:issueNumber 10
166 rdf:type schema:PublicationIssue
167 N43d1c35ff0af4b8ca059a742749f5628 schema:name pubmed_id
168 schema:value 23754762
169 rdf:type schema:PropertyValue
170 N45945bcda142421a8a062f40187731f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Fluorodeoxyglucose F18
172 rdf:type schema:DefinedTerm
173 N55abb66bb45a4638a4f7a8e0fc2c8a24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Radiopharmaceuticals
175 rdf:type schema:DefinedTerm
176 N59ae2a75855f4c98a9656346953e8d99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Tomography, X-Ray Computed
178 rdf:type schema:DefinedTerm
179 N5fbcd2c9111b4e6d89d219e19d9f1b11 schema:volumeNumber 40
180 rdf:type schema:PublicationVolume
181 N7e072d540612446b860073566ea25a25 rdf:first sg:person.01013321471.79
182 rdf:rest Ndc96aa1cdd064bdb87cdaddbed9f16cd
183 N83ddf3d5f14d4ef0a1f9a6d81e49d897 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Multicenter Studies as Topic
185 rdf:type schema:DefinedTerm
186 N962b292625b7426da511e27438596cce schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 N96b0b1c258da4f70ae1bd0b387cb2b7b rdf:first sg:person.0666077251.07
189 rdf:rest N156cba909e374c1286f5c4b75af5dd82
190 Nbab601f41d64401d94705933caafb20f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Humans
192 rdf:type schema:DefinedTerm
193 Nc6c984b629534fc3a042a54f7d4915ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Positron-Emission Tomography
195 rdf:type schema:DefinedTerm
196 Nda9e118c3dff4ac888cc8da265a4d214 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Lung Neoplasms
198 rdf:type schema:DefinedTerm
199 Ndc96aa1cdd064bdb87cdaddbed9f16cd rdf:first sg:person.01352511753.53
200 rdf:rest N10e677a4fa13451db977b485738fa645
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
205 schema:name Clinical Sciences
206 rdf:type schema:DefinedTerm
207 sg:grant.2689156 http://pending.schema.org/fundedItem sg:pub.10.1007/s00259-013-2465-0
208 rdf:type schema:MonetaryGrant
209 sg:journal.1297401 schema:issn 1619-7070
210 1619-7089
211 schema:name European Journal of Nuclear Medicine and Molecular Imaging
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.01006327107.21 schema:affiliation grid-institutes:grid.16872.3a
215 schema:familyName Huisman
216 schema:givenName Marc C.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21
218 rdf:type schema:Person
219 sg:person.01013321471.79 schema:affiliation grid-institutes:grid.34477.33
220 schema:familyName Kinahan
221 schema:givenName Paul E.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013321471.79
223 rdf:type schema:Person
224 sg:person.01352511753.53 schema:affiliation grid-institutes:grid.16872.3a
225 schema:familyName Lammertsma
226 schema:givenName Adriaan A.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53
228 rdf:type schema:Person
229 sg:person.01361420011.63 schema:affiliation grid-institutes:grid.16872.3a
230 schema:familyName Boellaard
231 schema:givenName Ronald
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
233 rdf:type schema:Person
234 sg:person.0666077251.07 schema:affiliation grid-institutes:grid.16872.3a
235 schema:familyName Makris
236 schema:givenName Nikolaos E.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666077251.07
238 rdf:type schema:Person
239 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
240 https://doi.org/10.1007/s00259-009-1297-4
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/s00259-011-1893-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009088314
243 https://doi.org/10.1007/s00259-011-1893-y
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/s00259-011-1899-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028602483
246 https://doi.org/10.1007/s00259-011-1899-5
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nrd1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015986971
249 https://doi.org/10.1038/nrd1130
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/2191-219x-1-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107920
252 https://doi.org/10.1186/2191-219x-1-16
253 rdf:type schema:CreativeWork
254 grid-institutes:grid.16872.3a schema:alternateName Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
255 schema:name Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
256 rdf:type schema:Organization
257 grid-institutes:grid.34477.33 schema:alternateName Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA
258 schema:name Imaging Research Laboratory, Department of Radiology, University of Washington, Seattle, WA, USA
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...