Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

Michiel A. de Graaf, Heba M. El-Naggar, Mark J. Boogers, Caroline E. Veltman, Alexander Broersen, Pieter H. Kitslaar, Jouke Dijkstra, Lucia J. Kroft, Imad Al Younis, Johan H. Reiber, Jeroen J. Bax, Victoria Delgado, Arthur J. Scholte

ABSTRACT

PURPOSE: Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). METHODS: Included in the study were 40 patients (mean age 58.2 ± 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS ≥2) on gated myocardial perfusion SPECT. RESULTS: Myocardial ischaemia was seen in 25 patients (62.5%) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95% CI 2.41-24.7, p < 0.001, and OR 1.07, 95% CI 1.00-1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis (χ(2) = 20.7) and lesion length (χ(2) = 26.0) to the clinical variables and the visual assessment (χ(2) = 5.9) had incremental value in the association with myocardial ischaemia. CONCLUSION: Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have incremental value over baseline variables and visually assessed significant stenosis. Potentially, QCT can refine assessment of CAD, which may be of potential use for identification of patients with myocardial ischaemia. More... »

PAGES

1171-1180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-013-2437-4

DOI

http://dx.doi.org/10.1007/s00259-013-2437-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014117115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23715901


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac-Gated Single-Photon Emission Computer-Assisted Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Netherlands Heart Institute", 
          "id": "https://www.grid.ac/institutes/grid.411737.7", 
          "name": [
            "Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands", 
            "The Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Graaf", 
        "givenName": "Michiel A.", 
        "id": "sg:person.01266624430.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266624430.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Naggar", 
        "givenName": "Heba M.", 
        "id": "sg:person.01061735603.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061735603.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Heart Institute", 
          "id": "https://www.grid.ac/institutes/grid.411737.7", 
          "name": [
            "Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands", 
            "The Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boogers", 
        "givenName": "Mark J.", 
        "id": "sg:person.011623055127.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011623055127.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Heart Institute", 
          "id": "https://www.grid.ac/institutes/grid.411737.7", 
          "name": [
            "Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands", 
            "The Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veltman", 
        "givenName": "Caroline E.", 
        "id": "sg:person.01302313127.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302313127.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broersen", 
        "givenName": "Alexander", 
        "id": "sg:person.01127065671.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127065671.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitslaar", 
        "givenName": "Pieter H.", 
        "id": "sg:person.01357542671.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357542671.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijkstra", 
        "givenName": "Jouke", 
        "id": "sg:person.0634136571.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634136571.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kroft", 
        "givenName": "Lucia J.", 
        "id": "sg:person.0653667354.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653667354.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al Younis", 
        "givenName": "Imad", 
        "id": "sg:person.010557624777.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010557624777.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands", 
            "Medis medical imaging systems B.V., Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reiber", 
        "givenName": "Johan H.", 
        "id": "sg:person.013621043713.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621043713.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bax", 
        "givenName": "Jeroen J.", 
        "id": "sg:person.01340245251.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340245251.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delgado", 
        "givenName": "Victoria", 
        "id": "sg:person.01011617064.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011617064.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands", 
            "Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scholte", 
        "givenName": "Arthur J.", 
        "id": "sg:person.015717337617.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717337617.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/eurheartj/ehr465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001471613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002160027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/2012.jama.11274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002836133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(97)00390-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1205361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008862821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(01)01175-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010840215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0033-0620(88)90010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018326484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(98)00501-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019888124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.05.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021438565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc4501.099316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022977594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023898868", 
          "https://doi.org/10.1007/s002590050146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2011.06.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024188751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2008.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025793367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2010.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027569540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.eurheartj.a014919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031523461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0806576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032035217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.109.913541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036363780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.109.913541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036363780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2007.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037597383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.08.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038460495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0402.102975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039853393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0807611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.03.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048922604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(90)90282-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049504833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050686451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2010.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051975533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(99)90079-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052360625", 
          "https://doi.org/10.1016/s1071-3581(99)90079-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.293.20.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052755736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0207-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053550469", 
          "https://doi.org/10.1007/s00259-006-0207-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-154-6-201103150-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073712123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074624304", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074829809", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "PURPOSE: Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT).\nMETHODS: Included in the study were 40 patients (mean age 58.2 \u00b1 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS \u22652) on gated myocardial perfusion SPECT.\nRESULTS: Myocardial ischaemia was seen in 25 patients (62.5%) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95% CI 2.41-24.7, p < 0.001, and OR 1.07, 95% CI 1.00-1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis (\u03c7(2)\u2009=\u200920.7) and lesion length (\u03c7(2)\u2009=\u200926.0) to the clinical variables and the visual assessment (\u03c7(2)\u2009=\u20095.9) had incremental value in the association with myocardial ischaemia.\nCONCLUSION: Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have incremental value over baseline variables and visually assessed significant stenosis. Potentially, QCT can refine assessment of CAD, which may be of potential use for identification of patients with myocardial ischaemia.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-013-2437-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT", 
    "pagination": "1171-1180", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4340b8822828c344b9f47056a829bd2a8bb61cfeac6982f7b11e4fcfcfcbc493"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23715901"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-013-2437-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014117115"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-013-2437-4", 
      "https://app.dimensions.ai/details/publication/pub.1014117115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-013-2437-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2437-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2437-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2437-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2437-4'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      69 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-013-2437-4 schema:about N1f27002c6d5b4cae9a26d304b4430913
2 N297b59552487469b8a680ecdcc3d75a9
3 N3bb3a7adaf5d4197ba904e40120ccc8c
4 N6125ef3db6db408b91910ee1b5cb3d27
5 N7d280458a84949c394e82a5c53695cf9
6 N83099e6a91f44a058f063c60ccc891bc
7 Nbb975772d9714499b246e9e53826a15d
8 Ne293ce89342e423da3c44800c633bc26
9 Nfc074d6b88c54a43928eae8b206cdffa
10 anzsrc-for:11
11 anzsrc-for:1102
12 schema:author Nd78dec5070c54566b76fc0031446190d
13 schema:citation sg:pub.10.1007/s00259-006-0207-2
14 sg:pub.10.1007/s002590050146
15 sg:pub.10.1016/s1071-3581(99)90079-x
16 https://app.dimensions.ai/details/publication/pub.1074624304
17 https://app.dimensions.ai/details/publication/pub.1074829809
18 https://doi.org/10.1001/2012.jama.11274
19 https://doi.org/10.1001/jama.293.20.2471
20 https://doi.org/10.1016/0033-0620(88)90010-2
21 https://doi.org/10.1016/0735-1097(90)90282-t
22 https://doi.org/10.1016/j.atherosclerosis.2007.07.002
23 https://doi.org/10.1016/j.echo.2010.12.007
24 https://doi.org/10.1016/j.jacc.2005.03.071
25 https://doi.org/10.1016/j.jacc.2005.05.056
26 https://doi.org/10.1016/j.jacc.2006.05.080
27 https://doi.org/10.1016/j.jacc.2006.08.028
28 https://doi.org/10.1016/j.jacc.2008.08.058
29 https://doi.org/10.1016/j.jacc.2011.06.051
30 https://doi.org/10.1016/j.jcmg.2008.05.006
31 https://doi.org/10.1016/j.jcmg.2010.01.010
32 https://doi.org/10.1016/s0002-9149(97)00390-1
33 https://doi.org/10.1016/s0735-1097(01)01175-5
34 https://doi.org/10.1016/s0735-1097(98)00501-4
35 https://doi.org/10.1056/nejmoa0806576
36 https://doi.org/10.1056/nejmoa0807611
37 https://doi.org/10.1056/nejmoa1205361
38 https://doi.org/10.1093/eurheartj/ehr465
39 https://doi.org/10.1093/oxfordjournals.eurheartj.a014919
40 https://doi.org/10.1161/circimaging.109.913541
41 https://doi.org/10.1161/hc0402.102975
42 https://doi.org/10.1161/hc4501.099316
43 https://doi.org/10.7326/0003-4819-154-6-201103150-00007
44 schema:datePublished 2013-08
45 schema:datePublishedReg 2013-08-01
46 schema:description PURPOSE: Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). METHODS: Included in the study were 40 patients (mean age 58.2 ± 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS ≥2) on gated myocardial perfusion SPECT. RESULTS: Myocardial ischaemia was seen in 25 patients (62.5%) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95% CI 2.41-24.7, p < 0.001, and OR 1.07, 95% CI 1.00-1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis (χ(2) = 20.7) and lesion length (χ(2) = 26.0) to the clinical variables and the visual assessment (χ(2) = 5.9) had incremental value in the association with myocardial ischaemia. CONCLUSION: Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have incremental value over baseline variables and visually assessed significant stenosis. Potentially, QCT can refine assessment of CAD, which may be of potential use for identification of patients with myocardial ischaemia.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N3e2187a61d214854a83dc51ba0685edb
51 Nc04278b4b9eb4a3fb86adda85d7b8dc4
52 sg:journal.1297401
53 schema:name Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT
54 schema:pagination 1171-1180
55 schema:productId N3ec8d9483b604e9ba9a34141a54c0002
56 N6eb6291ffeb649bcbba46ed99abb1efd
57 Na66ec657a307400ab1f57330476edf2c
58 Ncdd642d6b6344b158b979a103da4bd14
59 Nfa18c219309b45c988a392e9e7041759
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117115
61 https://doi.org/10.1007/s00259-013-2437-4
62 schema:sdDatePublished 2019-04-10T16:42
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nf868b05b4b4f400691a3a7a5be49200f
65 schema:url http://link.springer.com/10.1007%2Fs00259-013-2437-4
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0a5402367fe4409db8f0d2daeabad1a9 rdf:first sg:person.013621043713.61
70 rdf:rest Na1a659eaa0d94c7d98ab018cc9d2d541
71 N1f27002c6d5b4cae9a26d304b4430913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Coronary Vessels
73 rdf:type schema:DefinedTerm
74 N297b59552487469b8a680ecdcc3d75a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Female
76 rdf:type schema:DefinedTerm
77 N2ff85a4a7be24a039520dc469f88d829 rdf:first sg:person.01061735603.92
78 rdf:rest N5f4b9284000a473b81683779c85e9b75
79 N3bb3a7adaf5d4197ba904e40120ccc8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Humans
81 rdf:type schema:DefinedTerm
82 N3e2187a61d214854a83dc51ba0685edb schema:issueNumber 8
83 rdf:type schema:PublicationIssue
84 N3e7dec5f9dd24f78a27c716c3e8c5873 rdf:first sg:person.015717337617.19
85 rdf:rest rdf:nil
86 N3ec8d9483b604e9ba9a34141a54c0002 schema:name nlm_unique_id
87 schema:value 101140988
88 rdf:type schema:PropertyValue
89 N44c60136aaa649f59a7507637c645db9 rdf:first sg:person.0653667354.66
90 rdf:rest N7b598534eda045c6b12822a6928f6cca
91 N5f4b9284000a473b81683779c85e9b75 rdf:first sg:person.011623055127.31
92 rdf:rest Ne937328303ca448f8383341bca593e35
93 N6125ef3db6db408b91910ee1b5cb3d27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Myocardial Perfusion Imaging
95 rdf:type schema:DefinedTerm
96 N6d774af6d5764697b4c0fcdccd0bb9cb rdf:first sg:person.01357542671.72
97 rdf:rest Nb07a256df0b04846a55920c93db9a5a3
98 N6eb6291ffeb649bcbba46ed99abb1efd schema:name doi
99 schema:value 10.1007/s00259-013-2437-4
100 rdf:type schema:PropertyValue
101 N7b598534eda045c6b12822a6928f6cca rdf:first sg:person.010557624777.55
102 rdf:rest N0a5402367fe4409db8f0d2daeabad1a9
103 N7d280458a84949c394e82a5c53695cf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Middle Aged
105 rdf:type schema:DefinedTerm
106 N83099e6a91f44a058f063c60ccc891bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Aged
108 rdf:type schema:DefinedTerm
109 Na1a659eaa0d94c7d98ab018cc9d2d541 rdf:first sg:person.01340245251.83
110 rdf:rest Nb0952dca3fbc43efa0a35c5b790447df
111 Na66ec657a307400ab1f57330476edf2c schema:name dimensions_id
112 schema:value pub.1014117115
113 rdf:type schema:PropertyValue
114 Nb07a256df0b04846a55920c93db9a5a3 rdf:first sg:person.0634136571.94
115 rdf:rest N44c60136aaa649f59a7507637c645db9
116 Nb0952dca3fbc43efa0a35c5b790447df rdf:first sg:person.01011617064.26
117 rdf:rest N3e7dec5f9dd24f78a27c716c3e8c5873
118 Nbb975772d9714499b246e9e53826a15d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Cardiac-Gated Single-Photon Emission Computer-Assisted Tomography
120 rdf:type schema:DefinedTerm
121 Nc04278b4b9eb4a3fb86adda85d7b8dc4 schema:volumeNumber 40
122 rdf:type schema:PublicationVolume
123 Nc4f4144674f546c4b2cbcac612bb19b5 rdf:first sg:person.01127065671.56
124 rdf:rest N6d774af6d5764697b4c0fcdccd0bb9cb
125 Ncdd642d6b6344b158b979a103da4bd14 schema:name pubmed_id
126 schema:value 23715901
127 rdf:type schema:PropertyValue
128 Nd78dec5070c54566b76fc0031446190d rdf:first sg:person.01266624430.49
129 rdf:rest N2ff85a4a7be24a039520dc469f88d829
130 Ne293ce89342e423da3c44800c633bc26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Coronary Artery Disease
132 rdf:type schema:DefinedTerm
133 Ne937328303ca448f8383341bca593e35 rdf:first sg:person.01302313127.42
134 rdf:rest Nc4f4144674f546c4b2cbcac612bb19b5
135 Nf868b05b4b4f400691a3a7a5be49200f schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nfa18c219309b45c988a392e9e7041759 schema:name readcube_id
138 schema:value 4340b8822828c344b9f47056a829bd2a8bb61cfeac6982f7b11e4fcfcfcbc493
139 rdf:type schema:PropertyValue
140 Nfc074d6b88c54a43928eae8b206cdffa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Male
142 rdf:type schema:DefinedTerm
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
147 schema:name Cardiorespiratory Medicine and Haematology
148 rdf:type schema:DefinedTerm
149 sg:journal.1297401 schema:issn 1619-7070
150 1619-7089
151 schema:name European Journal of Nuclear Medicine and Molecular Imaging
152 rdf:type schema:Periodical
153 sg:person.01011617064.26 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
154 schema:familyName Delgado
155 schema:givenName Victoria
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011617064.26
157 rdf:type schema:Person
158 sg:person.010557624777.55 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
159 schema:familyName Al Younis
160 schema:givenName Imad
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010557624777.55
162 rdf:type schema:Person
163 sg:person.01061735603.92 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
164 schema:familyName El-Naggar
165 schema:givenName Heba M.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061735603.92
167 rdf:type schema:Person
168 sg:person.01127065671.56 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
169 schema:familyName Broersen
170 schema:givenName Alexander
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127065671.56
172 rdf:type schema:Person
173 sg:person.011623055127.31 schema:affiliation https://www.grid.ac/institutes/grid.411737.7
174 schema:familyName Boogers
175 schema:givenName Mark J.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011623055127.31
177 rdf:type schema:Person
178 sg:person.01266624430.49 schema:affiliation https://www.grid.ac/institutes/grid.411737.7
179 schema:familyName de Graaf
180 schema:givenName Michiel A.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266624430.49
182 rdf:type schema:Person
183 sg:person.01302313127.42 schema:affiliation https://www.grid.ac/institutes/grid.411737.7
184 schema:familyName Veltman
185 schema:givenName Caroline E.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302313127.42
187 rdf:type schema:Person
188 sg:person.01340245251.83 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
189 schema:familyName Bax
190 schema:givenName Jeroen J.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340245251.83
192 rdf:type schema:Person
193 sg:person.01357542671.72 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
194 schema:familyName Kitslaar
195 schema:givenName Pieter H.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357542671.72
197 rdf:type schema:Person
198 sg:person.013621043713.61 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
199 schema:familyName Reiber
200 schema:givenName Johan H.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621043713.61
202 rdf:type schema:Person
203 sg:person.015717337617.19 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
204 schema:familyName Scholte
205 schema:givenName Arthur J.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717337617.19
207 rdf:type schema:Person
208 sg:person.0634136571.94 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
209 schema:familyName Dijkstra
210 schema:givenName Jouke
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634136571.94
212 rdf:type schema:Person
213 sg:person.0653667354.66 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
214 schema:familyName Kroft
215 schema:givenName Lucia J.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653667354.66
217 rdf:type schema:Person
218 sg:pub.10.1007/s00259-006-0207-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053550469
219 https://doi.org/10.1007/s00259-006-0207-2
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s002590050146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023898868
222 https://doi.org/10.1007/s002590050146
223 rdf:type schema:CreativeWork
224 sg:pub.10.1016/s1071-3581(99)90079-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052360625
225 https://doi.org/10.1016/s1071-3581(99)90079-x
226 rdf:type schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1074624304 schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1074829809 schema:CreativeWork
229 https://doi.org/10.1001/2012.jama.11274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002836133
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1001/jama.293.20.2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052755736
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/0033-0620(88)90010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018326484
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/0735-1097(90)90282-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1049504833
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.atherosclerosis.2007.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037597383
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.echo.2010.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027569540
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.jacc.2005.03.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048922604
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.jacc.2005.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160027
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.jacc.2006.05.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021438565
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.jacc.2006.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050686451
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.jacc.2008.08.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038460495
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jacc.2011.06.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024188751
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jcmg.2008.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025793367
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jcmg.2010.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051975533
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/s0002-9149(97)00390-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890799
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/s0735-1097(01)01175-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010840215
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/s0735-1097(98)00501-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888124
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1056/nejmoa0806576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032035217
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1056/nejmoa0807611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990023
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1056/nejmoa1205361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008862821
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/eurheartj/ehr465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001471613
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/oxfordjournals.eurheartj.a014919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031523461
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1161/circimaging.109.913541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036363780
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1161/hc0402.102975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039853393
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1161/hc4501.099316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022977594
278 rdf:type schema:CreativeWork
279 https://doi.org/10.7326/0003-4819-154-6-201103150-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073712123
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.10419.3d schema:alternateName Leiden University Medical Center
282 schema:name Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
283 Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
284 Department of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
285 Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
286 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
287 Medis medical imaging systems B.V., Leiden, The Netherlands
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.411737.7 schema:alternateName Netherlands Heart Institute
290 schema:name Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
291 The Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...