Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04-06

AUTHORS

Charline Lasnon, Cédric Desmonts, Elske Quak, Radj Gervais, Pascal Do, Catherine Dubos-Arvis, Nicolas Aide

ABSTRACT

PurposeWe prospectively evaluated whether a strategy using point spread function (PSF) reconstruction for both diagnostic and quantitative analysis in non-small cell lung cancer (NSCLC) patients meets the European Association of Nuclear Medicine (EANM) guidelines for harmonization of quantitative values.MethodsThe NEMA NU-2 phantom was used to determine the optimal filter to apply to PSF-reconstructed images in order to obtain recovery coefficients (RCs) fulfilling the EANM guidelines for tumour positron emission tomography (PET) imaging (PSFEANM). PET data of 52 consecutive NSCLC patients were reconstructed with unfiltered PSF reconstruction (PSFallpass), PSFEANM and with a conventional ordered subset expectation maximization (OSEM) algorithm known to meet EANM guidelines. To mimic a situation in which a patient would undergo pre- and post-therapy PET scans on different generation PET systems, standardized uptake values (SUVs) for OSEM reconstruction were compared to SUVs for PSFEANM and PSFallpass reconstruction.ResultsOverall, in 195 lesions, Bland-Altman analysis demonstrated that the mean ratio between PSFEANM and OSEM data was 1.03 [95 % confidence interval (CI) 0.94–1.12] and 1.02 (95 % CI 0.90–1.14) for SUVmax and SUVmean, respectively. No difference was noticed when analysing lesions based on their size and location or on patient body habitus and image noise. Ten patients (84 lesions) underwent two PET scans for response monitoring. Using the European Organization for Research and Treatment of Cancer (EORTC) criteria, there was an almost perfect agreement between OSEMPET1/OSEMPET2 (current standard) and OSEMPET1/PSFEANM-PET2 or PSFEANM-PET1/OSEMPET2 with kappa values of 0.95 (95 % CI 0.91–1.00) and 0.99 (95 % CI 0.96–1.00), respectively. The use of PSFallpass either for pre- or post-treatment (i.e. OSEMPET1/PSFallpass-PET2 or PSFallpass-PET1/OSEMPET2) showed considerably less agreement with kappa values of 0.75 (95 % CI 0.67–0.83) and 0.86 (95 % CI 0.78–0.94), respectively.ConclusionProtocol-optimized images and compliance with EANM guidelines allowed for a reliable pre- and post-therapy evaluation when using different generation PET systems. These data obtained in NSCLC patients could be extrapolated to other solid tumours. More... »

PAGES

985-996

References to SciGraph publications

  • 2006-10-11. Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-09-23. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-12-20. Assessment of response to endocrine therapy using FDG PET/CT in metastatic breast cancer: a pilot study in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-08-18. SUVref: reducing reconstruction-dependent variation in PET SUV in EJNMMI RESEARCH
  • 2009-02-18. Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2006-11-14. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-06-10. The role of 18F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-11-20. Methodological considerations in quantification of oncological FDG PET studies in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-05-27. Standard uptake value and metabolic tumor volume of 18F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2008-08-15. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-11-14. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-01-27. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-11-14. Revisiting the prognostic value of preoperative 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC) in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-013-2391-1

    DOI

    http://dx.doi.org/10.1007/s00259-013-2391-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016046039

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23564036


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Non-Small-Cell Lung", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phantoms, Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reference Standards", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lasnon", 
            "givenName": "Charline", 
            "id": "sg:person.01151563267.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151563267.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, Caen University Hospital, Caen, France", 
              "id": "http://www.grid.ac/institutes/grid.411149.8", 
              "name": [
                "Nuclear Medicine Department, Caen University Hospital, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Desmonts", 
            "givenName": "C\u00e9dric", 
            "id": "sg:person.0715336115.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715336115.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quak", 
            "givenName": "Elske", 
            "id": "sg:person.01233564514.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233564514.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Thoracic Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Thoracic Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gervais", 
            "givenName": "Radj", 
            "id": "sg:person.01145056250.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145056250.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Thoracic Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Thoracic Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Do", 
            "givenName": "Pascal", 
            "id": "sg:person.0701161556.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701161556.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Thoracic Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Thoracic Oncology, Fran\u00e7ois Baclesse Cancer Centre, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dubos-Arvis", 
            "givenName": "Catherine", 
            "id": "sg:person.01201461173.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201461173.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service de M\u00e9decine Nucl\u00e9aire, Centre Fran\u00e7ois Baclesse, Avenue G\u00e9n\u00e9ral Harris, 14076, Caen cedex 5, France", 
              "id": "http://www.grid.ac/institutes/grid.418189.d", 
              "name": [
                "Nuclear Medicine Department, Fran\u00e7ois Baclesse Cancer Centre, Caen, France", 
                "Service de M\u00e9decine Nucl\u00e9aire, Centre Fran\u00e7ois Baclesse, Avenue G\u00e9n\u00e9ral Harris, 14076, Caen cedex 5, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aide", 
            "givenName": "Nicolas", 
            "id": "sg:person.01152406451.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152406451.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-011-1934-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026699189", 
              "https://doi.org/10.1007/s00259-011-1934-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0273-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034366114", 
              "https://doi.org/10.1007/s00259-006-0273-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1352-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053655973", 
              "https://doi.org/10.1007/s00259-009-1352-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-0874-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043591786", 
              "https://doi.org/10.1007/s00259-008-0874-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1297-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021250910", 
              "https://doi.org/10.1007/s00259-009-1297-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0224-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015743919", 
              "https://doi.org/10.1007/s00259-006-0224-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1291-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013207893", 
              "https://doi.org/10.1007/s00259-009-1291-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-011-1838-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001884653", 
              "https://doi.org/10.1007/s00259-011-1838-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2191-219x-1-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025107920", 
              "https://doi.org/10.1186/2191-219x-1-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-010-1505-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015412326", 
              "https://doi.org/10.1007/s00259-010-1505-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1306-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036981948", 
              "https://doi.org/10.1007/s00259-009-1306-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-011-1981-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018277638", 
              "https://doi.org/10.1007/s00259-011-1981-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1065-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052639217", 
              "https://doi.org/10.1007/s00259-009-1065-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-04-06", 
        "datePublishedReg": "2013-04-06", 
        "description": "PurposeWe prospectively evaluated whether a strategy using point spread function (PSF) reconstruction for both diagnostic and quantitative analysis in non-small cell lung cancer (NSCLC) patients meets the European Association of Nuclear Medicine (EANM) guidelines for harmonization of quantitative values.MethodsThe NEMA NU-2 phantom was used to determine the optimal filter to apply to PSF-reconstructed images in order to obtain recovery coefficients (RCs) fulfilling the EANM guidelines for tumour positron emission tomography (PET) imaging (PSFEANM). PET data of 52 consecutive NSCLC patients were reconstructed with unfiltered PSF reconstruction (PSFallpass), PSFEANM and with a conventional ordered subset expectation maximization (OSEM) algorithm known to meet EANM guidelines. To mimic a situation in which a patient would undergo pre- and post-therapy PET scans on different generation PET systems, standardized uptake values (SUVs) for OSEM reconstruction were compared to SUVs for PSFEANM and PSFallpass reconstruction.ResultsOverall, in 195 lesions, Bland-Altman analysis demonstrated that the mean ratio between PSFEANM and OSEM data was 1.03 [95\u00a0% confidence interval (CI) 0.94\u20131.12] and 1.02 (95\u00a0% CI 0.90\u20131.14) for SUVmax and SUVmean, respectively. No difference was noticed when analysing lesions based on their size and location or on patient body habitus and image noise. Ten patients (84 lesions) underwent two PET scans for response monitoring. Using the European Organization for Research and Treatment of Cancer (EORTC) criteria, there was an almost perfect agreement between OSEMPET1/OSEMPET2 (current standard) and OSEMPET1/PSFEANM-PET2 or PSFEANM-PET1/OSEMPET2 with kappa values of 0.95 (95\u00a0% CI 0.91\u20131.00) and 0.99 (95\u00a0% CI 0.96\u20131.00), respectively. The use of PSFallpass either for pre- or post-treatment (i.e. OSEMPET1/PSFallpass-PET2 or PSFallpass-PET1/OSEMPET2) showed considerably less agreement with kappa values of 0.75 (95\u00a0% CI 0.67\u20130.83) and 0.86 (95\u00a0% CI 0.78\u20130.94), respectively.ConclusionProtocol-optimized images and compliance with EANM guidelines allowed for a reliable pre- and post-therapy evaluation when using different generation PET systems. These data obtained in NSCLC patients could be extrapolated to other solid tumours.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00259-013-2391-1", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "standardized uptake value", 
          "non-small cell lung cancer patients", 
          "cell lung cancer patients", 
          "lung cancer patients", 
          "EANM guidelines", 
          "NSCLC patients", 
          "cancer patients", 
          "PET scans", 
          "post-therapy PET scans", 
          "consecutive NSCLC patients", 
          "patient body habitus", 
          "post-therapy evaluation", 
          "tumour positron emission tomography (PET) imaging", 
          "Nuclear Medicine (EANM) guidelines", 
          "kappa values", 
          "positron emission tomography (PET) imaging", 
          "Emission Tomography Imaging", 
          "Cancer criteria", 
          "multicentre trial", 
          "Medicine guidelines", 
          "Bland-Altman analysis", 
          "body habitus", 
          "prospective validation", 
          "patients", 
          "uptake value", 
          "solid tumors", 
          "European Organization", 
          "European Association", 
          "tomography imaging", 
          "response monitoring", 
          "mean ratio", 
          "lesions", 
          "point-spread function reconstruction", 
          "reliable pre", 
          "guidelines", 
          "scans", 
          "PET data", 
          "pre", 
          "SUVmax", 
          "ResultsOverall", 
          "PurposeWe", 
          "SUVmean", 
          "tumors", 
          "trials", 
          "treatment", 
          "association", 
          "less agreement", 
          "reconstruction", 
          "imaging", 
          "compliance", 
          "PSF reconstruction", 
          "data", 
          "image noise", 
          "perfect agreement", 
          "subsets expectation maximization (OSEM) algorithm", 
          "differences", 
          "criteria", 
          "evaluation", 
          "OSEM reconstruction", 
          "quantitative analysis", 
          "analysis", 
          "values", 
          "quantitative values", 
          "monitoring", 
          "use", 
          "strategies", 
          "PET system", 
          "ratio", 
          "validation", 
          "function reconstruction", 
          "habitus", 
          "recovery coefficient", 
          "system", 
          "phantom", 
          "location", 
          "research", 
          "images", 
          "size", 
          "situation", 
          "organization", 
          "harmonization", 
          "PSF", 
          "agreement", 
          "order", 
          "coefficient", 
          "noise", 
          "filter", 
          "expectation-maximization algorithm", 
          "maximization algorithm", 
          "algorithm", 
          "optimal filter"
        ], 
        "name": "Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients", 
        "pagination": "985-996", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016046039"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-013-2391-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23564036"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-013-2391-1", 
          "https://app.dimensions.ai/details/publication/pub.1016046039"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_610.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00259-013-2391-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2391-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2391-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2391-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2391-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    319 TRIPLES      21 PREDICATES      145 URIs      124 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-013-2391-1 schema:about N185007de83e04fafa04f0b5735967d86
    2 N1c401dedcb964356b9eedc70f23176d9
    3 N21e683454dc945769d21656e97aec965
    4 N2809e9f0e54a4f39ba38a5b9c352ab4c
    5 N34ba2b8792dd4a65b9ecc18d6b73e367
    6 N3746ec539dd340709de756a6676a521b
    7 N497b9d6decf2472d9b167141abb572e3
    8 N54ed69be3ff649bf8da39c681e000109
    9 N835739704e1d400ca10909d33338242d
    10 N8eb6c7324a0a45c989995f3cd01454ce
    11 Na168fd22989441f7bf81ee6f265d5b52
    12 Naa7792d23bdf49cab2150ae25764bf50
    13 Nb44309cd73da44bcb4011fee9705804f
    14 Ndec5819ec48949489549cc171a969664
    15 Ne916f651835c4995bbf49418159f2250
    16 Nf41759377ad74bf281c6e6974d7bf2b5
    17 anzsrc-for:11
    18 anzsrc-for:1112
    19 schema:author N77878bee7ce94b998bdf2da0a2fb7208
    20 schema:citation sg:pub.10.1007/s00259-006-0224-1
    21 sg:pub.10.1007/s00259-006-0273-5
    22 sg:pub.10.1007/s00259-008-0874-2
    23 sg:pub.10.1007/s00259-009-1065-5
    24 sg:pub.10.1007/s00259-009-1291-x
    25 sg:pub.10.1007/s00259-009-1297-4
    26 sg:pub.10.1007/s00259-009-1306-7
    27 sg:pub.10.1007/s00259-009-1352-1
    28 sg:pub.10.1007/s00259-010-1505-2
    29 sg:pub.10.1007/s00259-011-1838-5
    30 sg:pub.10.1007/s00259-011-1934-6
    31 sg:pub.10.1007/s00259-011-1981-z
    32 sg:pub.10.1186/2191-219x-1-16
    33 schema:datePublished 2013-04-06
    34 schema:datePublishedReg 2013-04-06
    35 schema:description PurposeWe prospectively evaluated whether a strategy using point spread function (PSF) reconstruction for both diagnostic and quantitative analysis in non-small cell lung cancer (NSCLC) patients meets the European Association of Nuclear Medicine (EANM) guidelines for harmonization of quantitative values.MethodsThe NEMA NU-2 phantom was used to determine the optimal filter to apply to PSF-reconstructed images in order to obtain recovery coefficients (RCs) fulfilling the EANM guidelines for tumour positron emission tomography (PET) imaging (PSFEANM). PET data of 52 consecutive NSCLC patients were reconstructed with unfiltered PSF reconstruction (PSFallpass), PSFEANM and with a conventional ordered subset expectation maximization (OSEM) algorithm known to meet EANM guidelines. To mimic a situation in which a patient would undergo pre- and post-therapy PET scans on different generation PET systems, standardized uptake values (SUVs) for OSEM reconstruction were compared to SUVs for PSFEANM and PSFallpass reconstruction.ResultsOverall, in 195 lesions, Bland-Altman analysis demonstrated that the mean ratio between PSFEANM and OSEM data was 1.03 [95 % confidence interval (CI) 0.94–1.12] and 1.02 (95 % CI 0.90–1.14) for SUVmax and SUVmean, respectively. No difference was noticed when analysing lesions based on their size and location or on patient body habitus and image noise. Ten patients (84 lesions) underwent two PET scans for response monitoring. Using the European Organization for Research and Treatment of Cancer (EORTC) criteria, there was an almost perfect agreement between OSEMPET1/OSEMPET2 (current standard) and OSEMPET1/PSFEANM-PET2 or PSFEANM-PET1/OSEMPET2 with kappa values of 0.95 (95 % CI 0.91–1.00) and 0.99 (95 % CI 0.96–1.00), respectively. The use of PSFallpass either for pre- or post-treatment (i.e. OSEMPET1/PSFallpass-PET2 or PSFallpass-PET1/OSEMPET2) showed considerably less agreement with kappa values of 0.75 (95 % CI 0.67–0.83) and 0.86 (95 % CI 0.78–0.94), respectively.ConclusionProtocol-optimized images and compliance with EANM guidelines allowed for a reliable pre- and post-therapy evaluation when using different generation PET systems. These data obtained in NSCLC patients could be extrapolated to other solid tumours.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf Na5299627e4ef4ea9ac77b36f41fb6ee8
    39 Nbfc7570fba274b62a1b4987a32d6f00d
    40 sg:journal.1297401
    41 schema:keywords Bland-Altman analysis
    42 Cancer criteria
    43 EANM guidelines
    44 Emission Tomography Imaging
    45 European Association
    46 European Organization
    47 Medicine guidelines
    48 NSCLC patients
    49 Nuclear Medicine (EANM) guidelines
    50 OSEM reconstruction
    51 PET data
    52 PET scans
    53 PET system
    54 PSF
    55 PSF reconstruction
    56 PurposeWe
    57 ResultsOverall
    58 SUVmax
    59 SUVmean
    60 agreement
    61 algorithm
    62 analysis
    63 association
    64 body habitus
    65 cancer patients
    66 cell lung cancer patients
    67 coefficient
    68 compliance
    69 consecutive NSCLC patients
    70 criteria
    71 data
    72 differences
    73 evaluation
    74 expectation-maximization algorithm
    75 filter
    76 function reconstruction
    77 guidelines
    78 habitus
    79 harmonization
    80 image noise
    81 images
    82 imaging
    83 kappa values
    84 lesions
    85 less agreement
    86 location
    87 lung cancer patients
    88 maximization algorithm
    89 mean ratio
    90 monitoring
    91 multicentre trial
    92 noise
    93 non-small cell lung cancer patients
    94 optimal filter
    95 order
    96 organization
    97 patient body habitus
    98 patients
    99 perfect agreement
    100 phantom
    101 point-spread function reconstruction
    102 positron emission tomography (PET) imaging
    103 post-therapy PET scans
    104 post-therapy evaluation
    105 pre
    106 prospective validation
    107 quantitative analysis
    108 quantitative values
    109 ratio
    110 reconstruction
    111 recovery coefficient
    112 reliable pre
    113 research
    114 response monitoring
    115 scans
    116 situation
    117 size
    118 solid tumors
    119 standardized uptake value
    120 strategies
    121 subsets expectation maximization (OSEM) algorithm
    122 system
    123 tomography imaging
    124 treatment
    125 trials
    126 tumors
    127 tumour positron emission tomography (PET) imaging
    128 uptake value
    129 use
    130 validation
    131 values
    132 schema:name Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients
    133 schema:pagination 985-996
    134 schema:productId N48a7a0bd436c4bd18f4ba8cba39a00c6
    135 N5d84738fd7ff44ee877d1ad7e6c10741
    136 N9c9ec92cb15f42a9b678e21b82465cb6
    137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016046039
    138 https://doi.org/10.1007/s00259-013-2391-1
    139 schema:sdDatePublished 2022-10-01T06:39
    140 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    141 schema:sdPublisher N5a94b90255f049e5832f4598cde67f08
    142 schema:url https://doi.org/10.1007/s00259-013-2391-1
    143 sgo:license sg:explorer/license/
    144 sgo:sdDataset articles
    145 rdf:type schema:ScholarlyArticle
    146 N185007de83e04fafa04f0b5735967d86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Female
    148 rdf:type schema:DefinedTerm
    149 N1c401dedcb964356b9eedc70f23176d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Middle Aged
    151 rdf:type schema:DefinedTerm
    152 N21e683454dc945769d21656e97aec965 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Image Processing, Computer-Assisted
    154 rdf:type schema:DefinedTerm
    155 N2809e9f0e54a4f39ba38a5b9c352ab4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Biological Transport
    157 rdf:type schema:DefinedTerm
    158 N34ba2b8792dd4a65b9ecc18d6b73e367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Reference Standards
    160 rdf:type schema:DefinedTerm
    161 N3746ec539dd340709de756a6676a521b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Humans
    163 rdf:type schema:DefinedTerm
    164 N48a7a0bd436c4bd18f4ba8cba39a00c6 schema:name doi
    165 schema:value 10.1007/s00259-013-2391-1
    166 rdf:type schema:PropertyValue
    167 N497b9d6decf2472d9b167141abb572e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Phantoms, Imaging
    169 rdf:type schema:DefinedTerm
    170 N4a7dbdc70de6440c854e3275bea27d46 rdf:first sg:person.0701161556.49
    171 rdf:rest Nc96a6094a4c64b3daf57bd454ce3d512
    172 N54ed69be3ff649bf8da39c681e000109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Reproducibility of Results
    174 rdf:type schema:DefinedTerm
    175 N5a94b90255f049e5832f4598cde67f08 schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 N5d84738fd7ff44ee877d1ad7e6c10741 schema:name dimensions_id
    178 schema:value pub.1016046039
    179 rdf:type schema:PropertyValue
    180 N6c44b443c91046a6875513c042a74f9e rdf:first sg:person.01233564514.37
    181 rdf:rest N8e13a3d7bbc14ba9b80ce84134661cfd
    182 N77878bee7ce94b998bdf2da0a2fb7208 rdf:first sg:person.01151563267.05
    183 rdf:rest N9d157cd7d8554fdf99ac666b1d9b1e65
    184 N835739704e1d400ca10909d33338242d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Carcinoma, Non-Small-Cell Lung
    186 rdf:type schema:DefinedTerm
    187 N8e13a3d7bbc14ba9b80ce84134661cfd rdf:first sg:person.01145056250.58
    188 rdf:rest N4a7dbdc70de6440c854e3275bea27d46
    189 N8eb6c7324a0a45c989995f3cd01454ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Aged, 80 and over
    191 rdf:type schema:DefinedTerm
    192 N9c9ec92cb15f42a9b678e21b82465cb6 schema:name pubmed_id
    193 schema:value 23564036
    194 rdf:type schema:PropertyValue
    195 N9d157cd7d8554fdf99ac666b1d9b1e65 rdf:first sg:person.0715336115.22
    196 rdf:rest N6c44b443c91046a6875513c042a74f9e
    197 Na168fd22989441f7bf81ee6f265d5b52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Positron-Emission Tomography
    199 rdf:type schema:DefinedTerm
    200 Na5299627e4ef4ea9ac77b36f41fb6ee8 schema:issueNumber 7
    201 rdf:type schema:PublicationIssue
    202 Naa7792d23bdf49cab2150ae25764bf50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Lung Neoplasms
    204 rdf:type schema:DefinedTerm
    205 Nb44309cd73da44bcb4011fee9705804f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Aged
    207 rdf:type schema:DefinedTerm
    208 Nbfc7570fba274b62a1b4987a32d6f00d schema:volumeNumber 40
    209 rdf:type schema:PublicationVolume
    210 Nc96a6094a4c64b3daf57bd454ce3d512 rdf:first sg:person.01201461173.18
    211 rdf:rest Nf67658ccfc164a8091b7d4f58aae8321
    212 Ndec5819ec48949489549cc171a969664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Treatment Outcome
    214 rdf:type schema:DefinedTerm
    215 Ne916f651835c4995bbf49418159f2250 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Prospective Studies
    217 rdf:type schema:DefinedTerm
    218 Nf41759377ad74bf281c6e6974d7bf2b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Male
    220 rdf:type schema:DefinedTerm
    221 Nf67658ccfc164a8091b7d4f58aae8321 rdf:first sg:person.01152406451.51
    222 rdf:rest rdf:nil
    223 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Medical and Health Sciences
    225 rdf:type schema:DefinedTerm
    226 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    227 schema:name Oncology and Carcinogenesis
    228 rdf:type schema:DefinedTerm
    229 sg:journal.1297401 schema:issn 1619-7070
    230 1619-7089
    231 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    232 schema:publisher Springer Nature
    233 rdf:type schema:Periodical
    234 sg:person.01145056250.58 schema:affiliation grid-institutes:None
    235 schema:familyName Gervais
    236 schema:givenName Radj
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145056250.58
    238 rdf:type schema:Person
    239 sg:person.01151563267.05 schema:affiliation grid-institutes:None
    240 schema:familyName Lasnon
    241 schema:givenName Charline
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151563267.05
    243 rdf:type schema:Person
    244 sg:person.01152406451.51 schema:affiliation grid-institutes:grid.418189.d
    245 schema:familyName Aide
    246 schema:givenName Nicolas
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152406451.51
    248 rdf:type schema:Person
    249 sg:person.01201461173.18 schema:affiliation grid-institutes:None
    250 schema:familyName Dubos-Arvis
    251 schema:givenName Catherine
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201461173.18
    253 rdf:type schema:Person
    254 sg:person.01233564514.37 schema:affiliation grid-institutes:None
    255 schema:familyName Quak
    256 schema:givenName Elske
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233564514.37
    258 rdf:type schema:Person
    259 sg:person.0701161556.49 schema:affiliation grid-institutes:None
    260 schema:familyName Do
    261 schema:givenName Pascal
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701161556.49
    263 rdf:type schema:Person
    264 sg:person.0715336115.22 schema:affiliation grid-institutes:grid.411149.8
    265 schema:familyName Desmonts
    266 schema:givenName Cédric
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715336115.22
    268 rdf:type schema:Person
    269 sg:pub.10.1007/s00259-006-0224-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743919
    270 https://doi.org/10.1007/s00259-006-0224-1
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s00259-006-0273-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034366114
    273 https://doi.org/10.1007/s00259-006-0273-5
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00259-008-0874-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043591786
    276 https://doi.org/10.1007/s00259-008-0874-2
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s00259-009-1065-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052639217
    279 https://doi.org/10.1007/s00259-009-1065-5
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s00259-009-1291-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013207893
    282 https://doi.org/10.1007/s00259-009-1291-x
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
    285 https://doi.org/10.1007/s00259-009-1297-4
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s00259-009-1306-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036981948
    288 https://doi.org/10.1007/s00259-009-1306-7
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s00259-009-1352-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053655973
    291 https://doi.org/10.1007/s00259-009-1352-1
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s00259-010-1505-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015412326
    294 https://doi.org/10.1007/s00259-010-1505-2
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s00259-011-1838-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001884653
    297 https://doi.org/10.1007/s00259-011-1838-5
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s00259-011-1934-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026699189
    300 https://doi.org/10.1007/s00259-011-1934-6
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/s00259-011-1981-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018277638
    303 https://doi.org/10.1007/s00259-011-1981-z
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1186/2191-219x-1-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107920
    306 https://doi.org/10.1186/2191-219x-1-16
    307 rdf:type schema:CreativeWork
    308 grid-institutes:None schema:alternateName Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
    309 Thoracic Oncology, François Baclesse Cancer Centre, Caen, France
    310 schema:name Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
    311 Thoracic Oncology, François Baclesse Cancer Centre, Caen, France
    312 rdf:type schema:Organization
    313 grid-institutes:grid.411149.8 schema:alternateName Nuclear Medicine Department, Caen University Hospital, Caen, France
    314 schema:name Nuclear Medicine Department, Caen University Hospital, Caen, France
    315 rdf:type schema:Organization
    316 grid-institutes:grid.418189.d schema:alternateName Service de Médecine Nucléaire, Centre François Baclesse, Avenue Général Harris, 14076, Caen cedex 5, France
    317 schema:name Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
    318 Service de Médecine Nucléaire, Centre François Baclesse, Avenue Général Harris, 14076, Caen cedex 5, France
    319 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...