Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

Ing-Tsung Hsiao, Chin-Chang Huang, Chia-Ju Hsieh, Shiaw-Pyng Wey, Mei-Ping Kung, Tzu-Chen Yen, Kun-Ju Lin

ABSTRACT

PURPOSE: Amyloid positron emission tomography (PET) is an important noninvasive method for detecting amyloid burden in Alzheimer's disease (AD) patients. As amyloid PET images have limited anatomical information, magnetic resonance (MR) imaging is usually acquired to perform reliable spatial normalization needed for large-scale analysis. This work proposed and evaluated the performance of new MR-free spatial normalization methods using a perfusion-like template for amyloid PET imaging. METHODS: Amyloid PET and MR images were collected in 35 subjects (cohort 1: 8 AD patients and 6 controls; cohort 2: 15 AD patients and 6 controls). Three ligand-related templates (AD, control, mixed group) and a perfusion-like template (pAV-45) from early time frames of amyloid PET images were constructed from cohort 1. The variations of (18)F-AV-45 standardized uptake value ratios (SUVRs) among AD patients, controls, and all subjects were tested with repeated two-way (template × brain region) analysis of variance (ANOVA) in cohort 2. (18)F-AV-45 SUVRs by region of interest analysis and voxelwise analysis between MR-based and MR-free approaches were compared and correlated to clinical and image parameters. Effect size (group mean SUVR difference between AD and control/standard deviation) was also evaluated for each template method. RESULTS: Significantly different (18)F-AV-45 SUVRs between MR-free spatial normalization and MR-based reference images were found among AD patients, controls, and all subjects by the effect of template and brain regions. The highest correlation (r=0.991) of (18)F-AV-45 SUVR to MR-based reference was found in the pAV-45 group. The SUVR percentage difference to MR-based reference showed the least variation and bias (control: -1.31±3.47 %; AD: -0.36±2.50 %) in the pAV-45 group as well. The voxelwise analysis showed the smallest t statistic value in pAV-45 followed by mixed, control, and AD groups when compared to MR-based reference images. Moreover, an overall larger effect size but compatible to that of MR-based reference result was observed in the pAV-45 group as compared to those of the other MR-free template. CONCLUSION: The novel MR-free template based on the early-phase perfusion images pAV-45 approach for amyloid imaging showed significantly better performance in quantitation accuracy, effect size, and stability when compared with other MR-free PET templates and thus has potential for large-scale clinical applications. More... »

PAGES

908-920

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-013-2350-x

DOI

http://dx.doi.org/10.1007/s00259-013-2350-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018460132

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23412134


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amyloid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aniline Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethylene Glycols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorine Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perfusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan", 
            "Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan", 
            "Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, 5. Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan", 
            "Department of Medical Imaging & Radiological Sciences, 259 Wen-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsiao", 
        "givenName": "Ing-Tsung", 
        "id": "sg:person.01314503622.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314503622.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Chin-Chang", 
        "id": "sg:person.01211542131.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211542131.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan", 
            "Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsieh", 
        "givenName": "Chia-Ju", 
        "id": "sg:person.01014021177.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014021177.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan", 
            "Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wey", 
        "givenName": "Shiaw-Pyng", 
        "id": "sg:person.0747600222.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747600222.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan", 
            "Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kung", 
        "givenName": "Mei-Ping", 
        "id": "sg:person.01145435671.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145435671.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, 5. Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yen", 
        "givenName": "Tzu-Chen", 
        "id": "sg:person.0635607240.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635607240.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan", 
            "Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan", 
            "Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, 5. Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Kun-Ju", 
        "id": "sg:person.0607210011.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607210011.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.109.065284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000224358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000355620", 
          "https://doi.org/10.1007/bf00308809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.12.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001945600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.22608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002043918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.090340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002048165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2008.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004465483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2001.0978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008623590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-2051-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008785510", 
          "https://doi.org/10.1007/s00259-011-2051-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(08)70001-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012432155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2010.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015450809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1999.0431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015941235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1995.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018670682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apradiso.2010.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021041809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0197-4580(00)00137-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022063415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(12)70142-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.34.7.939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024664401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-2021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028393977", 
          "https://doi.org/10.1007/s00259-011-2021-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-009-9067-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034039863", 
          "https://doi.org/10.1007/s11682-009-9067-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-009-9067-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034039863", 
          "https://doi.org/10.1007/s11682-009-9067-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0193(1999)7:4<254::aid-hbm4>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035757322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2005.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039625407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2005.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039625407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044788433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2010.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048279910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.060756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048886490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052204696", 
          "https://doi.org/10.1038/nm840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052204696", 
          "https://doi.org/10.1038/nm840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00687584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053385706", 
          "https://doi.org/10.1007/bf00687584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00687584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053385706", 
          "https://doi.org/10.1007/bf00687584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.110.083683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053443861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm030026b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055947862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm030026b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055947862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019442-200411000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060292746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000240117.55680.0a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000240117.55680.0a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000240117.55680.0a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181a2e896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064354302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181a2e896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064354302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181a2e896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064354302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181f11e35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181f11e35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181f11e35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2319-4170.106151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072248969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074654102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074869368", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "PURPOSE: Amyloid positron emission tomography (PET) is an important noninvasive method for detecting amyloid burden in Alzheimer's disease (AD) patients. As amyloid PET images have limited anatomical information, magnetic resonance (MR) imaging is usually acquired to perform reliable spatial normalization needed for large-scale analysis. This work proposed and evaluated the performance of new MR-free spatial normalization methods using a perfusion-like template for amyloid PET imaging.\nMETHODS: Amyloid PET and MR images were collected in 35 subjects (cohort 1: 8 AD patients and 6 controls; cohort 2: 15 AD patients and 6 controls). Three ligand-related templates (AD, control, mixed group) and a perfusion-like template (pAV-45) from early time frames of amyloid PET images were constructed from cohort 1. The variations of (18)F-AV-45 standardized uptake value ratios (SUVRs) among AD patients, controls, and all subjects were tested with repeated two-way (template \u00d7 brain region) analysis of variance (ANOVA) in cohort 2. (18)F-AV-45 SUVRs by region of interest analysis and voxelwise analysis between MR-based and MR-free approaches were compared and correlated to clinical and image parameters. Effect size (group mean SUVR difference between AD and control/standard deviation) was also evaluated for each template method.\nRESULTS: Significantly different (18)F-AV-45 SUVRs between MR-free spatial normalization and MR-based reference images were found among AD patients, controls, and all subjects by the effect of template and brain regions. The highest correlation (r=0.991) of (18)F-AV-45 SUVR to MR-based reference was found in the pAV-45 group. The SUVR percentage difference to MR-based reference showed the least variation and bias (control: -1.31\u00b13.47 %; AD: -0.36\u00b12.50 %) in the pAV-45 group as well. The voxelwise analysis showed the smallest t statistic value in pAV-45 followed by mixed, control, and AD groups when compared to MR-based reference images. Moreover, an overall larger effect size but compatible to that of MR-based reference result was observed in the pAV-45 group as compared to those of the other MR-free template.\nCONCLUSION: The novel MR-free template based on the early-phase perfusion images pAV-45 approach for amyloid imaging showed significantly better performance in quantitation accuracy, effect size, and stability when compared with other MR-free PET templates and thus has potential for large-scale clinical applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-013-2350-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET", 
    "pagination": "908-920", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "57f504f200492275ae394a154b5876ba88e303f2a4dbe65c47a0ba4e06fafe2a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23412134"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-013-2350-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018460132"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-013-2350-x", 
      "https://app.dimensions.ai/details/publication/pub.1018460132"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-013-2350-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2350-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2350-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2350-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-013-2350-x'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      81 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-013-2350-x schema:about N08aa4e65c07545a4b63d89f99e8d17f3
2 N0b1c305c3e0f4c9b8cf8d418cb5b841d
3 N222b59eed830480fbefdd692d5b8aefc
4 N306e70c0ec7f46b497027282b64fd519
5 N30e93671fe4b4c7c92bacff7b4be2329
6 N5039573d30484150bb59f65a359cd4b1
7 N5f9c129635bd418b8e42d4c3ccdc92f0
8 N61d6d81567d944a9b4e7d256b58d10f8
9 N70a922095cf145658c457147f06ff444
10 N7958ad68f7d84dfaa3cb723a7dbd327e
11 N84cd74a10428487db59f4941f2c987e2
12 Na935f03a701843f2ab942a3beff45f98
13 Naa4c7c1b8cd24214b552cb9ea3e8f5b5
14 Nd2fd3ec9bd904c6aad060e16f11430b7
15 Ndb655b026a2544ea8ce0cdae7a1c0649
16 Nf3c03113062043e6b445a3fbd4438993
17 Nf66943e3cd6a41869f6d58522e8cba13
18 Nf8d3b7922f594bc9a6102288dde002d2
19 anzsrc-for:08
20 anzsrc-for:0801
21 schema:author N45b191f5180c4451bb0f81678c0ad080
22 schema:citation sg:pub.10.1007/bf00308809
23 sg:pub.10.1007/bf00687584
24 sg:pub.10.1007/s00259-011-2021-8
25 sg:pub.10.1007/s00259-011-2051-2
26 sg:pub.10.1007/s11682-009-9067-2
27 sg:pub.10.1038/nm840
28 https://app.dimensions.ai/details/publication/pub.1074654102
29 https://app.dimensions.ai/details/publication/pub.1074869368
30 https://doi.org/10.1001/jama.2010.2008
31 https://doi.org/10.1002/(sici)1097-0193(1999)7:4<254::aid-hbm4>3.0.co;2-g
32 https://doi.org/10.1002/ana.22608
33 https://doi.org/10.1006/nimg.1995.1012
34 https://doi.org/10.1006/nimg.1999.0431
35 https://doi.org/10.1006/nimg.2001.0978
36 https://doi.org/10.1016/j.acra.2008.07.006
37 https://doi.org/10.1016/j.apradiso.2010.07.001
38 https://doi.org/10.1016/j.neuroimage.2009.01.057
39 https://doi.org/10.1016/j.neuroimage.2010.12.070
40 https://doi.org/10.1016/j.nucmedbio.2005.02.003
41 https://doi.org/10.1016/j.nucmedbio.2010.02.003
42 https://doi.org/10.1016/s0197-4580(00)00137-8
43 https://doi.org/10.1016/s1474-4422(08)70001-2
44 https://doi.org/10.1016/s1474-4422(12)70142-4
45 https://doi.org/10.1021/jm030026b
46 https://doi.org/10.1097/00019442-200411000-00004
47 https://doi.org/10.1212/01.wnl.0000240117.55680.0a
48 https://doi.org/10.1212/wnl.0b013e3181a2e896
49 https://doi.org/10.1212/wnl.0b013e3181f11e35
50 https://doi.org/10.1212/wnl.34.7.939
51 https://doi.org/10.2967/jnumed.108.060756
52 https://doi.org/10.2967/jnumed.109.065284
53 https://doi.org/10.2967/jnumed.110.083683
54 https://doi.org/10.2967/jnumed.111.090340
55 https://doi.org/10.4103/2319-4170.106151
56 schema:datePublished 2013-06
57 schema:datePublishedReg 2013-06-01
58 schema:description PURPOSE: Amyloid positron emission tomography (PET) is an important noninvasive method for detecting amyloid burden in Alzheimer's disease (AD) patients. As amyloid PET images have limited anatomical information, magnetic resonance (MR) imaging is usually acquired to perform reliable spatial normalization needed for large-scale analysis. This work proposed and evaluated the performance of new MR-free spatial normalization methods using a perfusion-like template for amyloid PET imaging. METHODS: Amyloid PET and MR images were collected in 35 subjects (cohort 1: 8 AD patients and 6 controls; cohort 2: 15 AD patients and 6 controls). Three ligand-related templates (AD, control, mixed group) and a perfusion-like template (pAV-45) from early time frames of amyloid PET images were constructed from cohort 1. The variations of (18)F-AV-45 standardized uptake value ratios (SUVRs) among AD patients, controls, and all subjects were tested with repeated two-way (template × brain region) analysis of variance (ANOVA) in cohort 2. (18)F-AV-45 SUVRs by region of interest analysis and voxelwise analysis between MR-based and MR-free approaches were compared and correlated to clinical and image parameters. Effect size (group mean SUVR difference between AD and control/standard deviation) was also evaluated for each template method. RESULTS: Significantly different (18)F-AV-45 SUVRs between MR-free spatial normalization and MR-based reference images were found among AD patients, controls, and all subjects by the effect of template and brain regions. The highest correlation (r=0.991) of (18)F-AV-45 SUVR to MR-based reference was found in the pAV-45 group. The SUVR percentage difference to MR-based reference showed the least variation and bias (control: -1.31±3.47 %; AD: -0.36±2.50 %) in the pAV-45 group as well. The voxelwise analysis showed the smallest t statistic value in pAV-45 followed by mixed, control, and AD groups when compared to MR-based reference images. Moreover, an overall larger effect size but compatible to that of MR-based reference result was observed in the pAV-45 group as compared to those of the other MR-free template. CONCLUSION: The novel MR-free template based on the early-phase perfusion images pAV-45 approach for amyloid imaging showed significantly better performance in quantitation accuracy, effect size, and stability when compared with other MR-free PET templates and thus has potential for large-scale clinical applications.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf N49ca904a6c1240df8d20f928cf36de23
63 N8d522b6e02334e56bd4dc1b137abcfb4
64 sg:journal.1297401
65 schema:name Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET
66 schema:pagination 908-920
67 schema:productId N574e421d7e4147eaafdba0f50520a591
68 N594becf5208c425c9f258a162d1b74c8
69 N64cbc8e154d84d6485974d28fb214ca8
70 N88722f772989423ab388be6cfe3b3e29
71 Nf4e2181e810c4cb7b7f262dce166178d
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018460132
73 https://doi.org/10.1007/s00259-013-2350-x
74 schema:sdDatePublished 2019-04-10T20:47
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nc3732dff95d142c59f483a8cd2d211be
77 schema:url http://link.springer.com/10.1007%2Fs00259-013-2350-x
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N08aa4e65c07545a4b63d89f99e8d17f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Positron-Emission Tomography
83 rdf:type schema:DefinedTerm
84 N0b1c305c3e0f4c9b8cf8d418cb5b841d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Magnetic Resonance Imaging
86 rdf:type schema:DefinedTerm
87 N222b59eed830480fbefdd692d5b8aefc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Reproducibility of Results
89 rdf:type schema:DefinedTerm
90 N25e26246bd354092b9f7dd6c8bc89e7a rdf:first sg:person.01014021177.14
91 rdf:rest N90e3f845c88747f9b4a946a06935a110
92 N2b8731b1672d49f5adcdee1e33512cdc rdf:first sg:person.0635607240.56
93 rdf:rest N3ce74d18a2bd498aab42376fe6f8ceb7
94 N306e70c0ec7f46b497027282b64fd519 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Brain
96 rdf:type schema:DefinedTerm
97 N30e93671fe4b4c7c92bacff7b4be2329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Aged, 80 and over
99 rdf:type schema:DefinedTerm
100 N3ce74d18a2bd498aab42376fe6f8ceb7 rdf:first sg:person.0607210011.91
101 rdf:rest rdf:nil
102 N45b191f5180c4451bb0f81678c0ad080 rdf:first sg:person.01314503622.00
103 rdf:rest N88289e65d4ef46dca9d834aab62bcb1c
104 N49ca904a6c1240df8d20f928cf36de23 schema:volumeNumber 40
105 rdf:type schema:PublicationVolume
106 N5039573d30484150bb59f65a359cd4b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Fluorine Radioisotopes
108 rdf:type schema:DefinedTerm
109 N574e421d7e4147eaafdba0f50520a591 schema:name dimensions_id
110 schema:value pub.1018460132
111 rdf:type schema:PropertyValue
112 N594becf5208c425c9f258a162d1b74c8 schema:name readcube_id
113 schema:value 57f504f200492275ae394a154b5876ba88e303f2a4dbe65c47a0ba4e06fafe2a
114 rdf:type schema:PropertyValue
115 N5f9c129635bd418b8e42d4c3ccdc92f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Aniline Compounds
117 rdf:type schema:DefinedTerm
118 N61d6d81567d944a9b4e7d256b58d10f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Alzheimer Disease
120 rdf:type schema:DefinedTerm
121 N64cbc8e154d84d6485974d28fb214ca8 schema:name pubmed_id
122 schema:value 23412134
123 rdf:type schema:PropertyValue
124 N70a922095cf145658c457147f06ff444 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Amyloid
126 rdf:type schema:DefinedTerm
127 N7958ad68f7d84dfaa3cb723a7dbd327e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Ethylene Glycols
129 rdf:type schema:DefinedTerm
130 N7a872dfb24bb4dcca7456a9782f73aa1 rdf:first sg:person.01145435671.41
131 rdf:rest N2b8731b1672d49f5adcdee1e33512cdc
132 N84cd74a10428487db59f4941f2c987e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Perfusion
134 rdf:type schema:DefinedTerm
135 N88289e65d4ef46dca9d834aab62bcb1c rdf:first sg:person.01211542131.17
136 rdf:rest N25e26246bd354092b9f7dd6c8bc89e7a
137 N88722f772989423ab388be6cfe3b3e29 schema:name doi
138 schema:value 10.1007/s00259-013-2350-x
139 rdf:type schema:PropertyValue
140 N8d522b6e02334e56bd4dc1b137abcfb4 schema:issueNumber 6
141 rdf:type schema:PublicationIssue
142 N90e3f845c88747f9b4a946a06935a110 rdf:first sg:person.0747600222.45
143 rdf:rest N7a872dfb24bb4dcca7456a9782f73aa1
144 Na935f03a701843f2ab942a3beff45f98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 Naa4c7c1b8cd24214b552cb9ea3e8f5b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Image Processing, Computer-Assisted
149 rdf:type schema:DefinedTerm
150 Nb01469a2ff294f8db80721e0d087ac97 schema:name Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, 5. Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
151 rdf:type schema:Organization
152 Nc3732dff95d142c59f483a8cd2d211be schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 Nd2fd3ec9bd904c6aad060e16f11430b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Middle Aged
156 rdf:type schema:DefinedTerm
157 Ndb655b026a2544ea8ce0cdae7a1c0649 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Aged
159 rdf:type schema:DefinedTerm
160 Nf3c03113062043e6b445a3fbd4438993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Male
162 rdf:type schema:DefinedTerm
163 Nf4e2181e810c4cb7b7f262dce166178d schema:name nlm_unique_id
164 schema:value 101140988
165 rdf:type schema:PropertyValue
166 Nf66943e3cd6a41869f6d58522e8cba13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Case-Control Studies
168 rdf:type schema:DefinedTerm
169 Nf8d3b7922f594bc9a6102288dde002d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Female
171 rdf:type schema:DefinedTerm
172 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
173 schema:name Information and Computing Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
176 schema:name Artificial Intelligence and Image Processing
177 rdf:type schema:DefinedTerm
178 sg:journal.1297401 schema:issn 1619-7070
179 1619-7089
180 schema:name European Journal of Nuclear Medicine and Molecular Imaging
181 rdf:type schema:Periodical
182 sg:person.01014021177.14 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
183 schema:familyName Hsieh
184 schema:givenName Chia-Ju
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014021177.14
186 rdf:type schema:Person
187 sg:person.01145435671.41 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
188 schema:familyName Kung
189 schema:givenName Mei-Ping
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145435671.41
191 rdf:type schema:Person
192 sg:person.01211542131.17 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
193 schema:familyName Huang
194 schema:givenName Chin-Chang
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211542131.17
196 rdf:type schema:Person
197 sg:person.01314503622.00 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
198 schema:familyName Hsiao
199 schema:givenName Ing-Tsung
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314503622.00
201 rdf:type schema:Person
202 sg:person.0607210011.91 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
203 schema:familyName Lin
204 schema:givenName Kun-Ju
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607210011.91
206 rdf:type schema:Person
207 sg:person.0635607240.56 schema:affiliation Nb01469a2ff294f8db80721e0d087ac97
208 schema:familyName Yen
209 schema:givenName Tzu-Chen
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635607240.56
211 rdf:type schema:Person
212 sg:person.0747600222.45 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
213 schema:familyName Wey
214 schema:givenName Shiaw-Pyng
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747600222.45
216 rdf:type schema:Person
217 sg:pub.10.1007/bf00308809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355620
218 https://doi.org/10.1007/bf00308809
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/bf00687584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385706
221 https://doi.org/10.1007/bf00687584
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00259-011-2021-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028393977
224 https://doi.org/10.1007/s00259-011-2021-8
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s00259-011-2051-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008785510
227 https://doi.org/10.1007/s00259-011-2051-2
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s11682-009-9067-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034039863
230 https://doi.org/10.1007/s11682-009-9067-2
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nm840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052204696
233 https://doi.org/10.1038/nm840
234 rdf:type schema:CreativeWork
235 https://app.dimensions.ai/details/publication/pub.1074654102 schema:CreativeWork
236 https://app.dimensions.ai/details/publication/pub.1074869368 schema:CreativeWork
237 https://doi.org/10.1001/jama.2010.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015450809
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1002/(sici)1097-0193(1999)7:4<254::aid-hbm4>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1035757322
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1002/ana.22608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002043918
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1006/nimg.1995.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018670682
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1006/nimg.1999.0431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015941235
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1006/nimg.2001.0978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008623590
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.acra.2008.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004465483
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.apradiso.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021041809
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.neuroimage.2009.01.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044788433
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.neuroimage.2010.12.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001945600
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.nucmedbio.2005.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039625407
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.nucmedbio.2010.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048279910
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/s0197-4580(00)00137-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022063415
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/s1474-4422(08)70001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012432155
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/s1474-4422(12)70142-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023875103
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1021/jm030026b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055947862
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1097/00019442-200411000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060292746
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1212/01.wnl.0000240117.55680.0a schema:sameAs https://app.dimensions.ai/details/publication/pub.1064348606
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1212/wnl.0b013e3181a2e896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064354302
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1212/wnl.0b013e3181f11e35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064355557
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1212/wnl.34.7.939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024664401
278 rdf:type schema:CreativeWork
279 https://doi.org/10.2967/jnumed.108.060756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048886490
280 rdf:type schema:CreativeWork
281 https://doi.org/10.2967/jnumed.109.065284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000224358
282 rdf:type schema:CreativeWork
283 https://doi.org/10.2967/jnumed.110.083683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053443861
284 rdf:type schema:CreativeWork
285 https://doi.org/10.2967/jnumed.111.090340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002048165
286 rdf:type schema:CreativeWork
287 https://doi.org/10.4103/2319-4170.106151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072248969
288 rdf:type schema:CreativeWork
289 https://www.grid.ac/institutes/grid.145695.a schema:alternateName Chang Gung University
290 schema:name Department of Medical Imaging & Radiological Sciences, 259 Wen-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan
291 Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
292 Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
293 Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, 5. Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
294 Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
297 schema:name Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
298 Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...