PET/MR imaging of the pelvis in the presence of endoprostheses: reducing image artifacts and increasing accuracy through inpainting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-04

AUTHORS

Claes Nøhr Ladefoged, Flemming Littrup Andersen, Sune Høgild Keller, Johan Löfgren, Adam Espe Hansen, Søren Holm, Liselotte Højgaard, Thomas Beyer

ABSTRACT

PURPOSE: In combined whole-body PET/MR, attenuation correction (AC) is performed indirectly using the available MR image information and subsequent segmentation. Implant-induced susceptibility artifacts and subsequent signal voids may challenge MR-based AC (MR-AC). We evaluated the accuracy of MR-AC in PET/MR in patients with metallic endoprostheses, and propose a clinically feasible correction method. METHODS: We selected patients with uni- or bilateral endoprostheses from 61 consecutive referrals for whole-body PET/MR imaging (mMR; Siemens Healthcare). Simultaneous whole-body PET/MR imaging was performed at 120 min after injection of about 300 MBq [(18)F]FDG. MR-AC was performed using (1) original MR images and subsequent Dixon water-fat segmentation, (2) as method 1 with implant-induced signal voids filled with soft tissue, (3) as method 2 with superimposed coregistered endoprostheses from the CT scan, and (4) as method 1 with implant-induced signal voids filled with metal. Following MR-AC (methods 1-4) PET emission images were reconstructed on 344 × 344 matrices using attenuation-weighted OSEM (three iterations, 21 subsets, 4 mm gaussian). Maximum body-weight normalized standardized uptake values (SUVmax) were obtained for both hips. Mean SUV (SUVmean) in homogeneous reference regions in the gluteal muscle and bladder following MR-AC (methods 1-4) are also reported. RESULTS: In total, four patients presented with endoprostheses, unilateral in two and bilateral in two. The fraction of voxels in MR images affected by the implant was at least twice that of the voxels representing the actual implants. MR-AC using methods 2 and 3 recovered the FDG distribution pattern compared to uncorrected PET images and method 1, while method 4 resulted in severe overestimation of FDG uptake (>460 % SUVmax). When compared to method 1, relative changes in SUVmean in the reference regions from method 2 and 3 were generally small albeit not correlated with the fraction of the attenuation image affected by implant-induced artifacts. CONCLUSIONS: Endoprostheses cause PET/MR artifacts that exceed the volume occupied by the implants, and bias PET quantification. Artifacts and bias can be corrected by semiautomated inpainting with soft tissue with a single composition prior to MR-AC, thus restoring quantitative activity distribution. More... »

PAGES

594-601

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-012-2316-4

DOI

http://dx.doi.org/10.1007/s00259-012-2316-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020497590

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23296642


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hip Prosthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pelvis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladefoged", 
        "givenName": "Claes N\u00f8hr", 
        "id": "sg:person.01316451111.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andersen", 
        "givenName": "Flemming Littrup", 
        "id": "sg:person.0717736532.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keller", 
        "givenName": "Sune H\u00f8gild", 
        "id": "sg:person.0705734737.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f6fgren", 
        "givenName": "Johan", 
        "id": "sg:person.01034165132.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034165132.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hansen", 
        "givenName": "Adam Espe", 
        "id": "sg:person.0742142346.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holm", 
        "givenName": "S\u00f8ren", 
        "id": "sg:person.0740340304.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740340304.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f8jgaard", 
        "givenName": "Liselotte", 
        "id": "sg:person.0715465121.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark", 
            "cmi-experts GmbH, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beyer", 
        "givenName": "Thomas", 
        "id": "sg:person.0657742114.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3679863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005428258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005790896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1565113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.054726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013636390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.109.061853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013780396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2002.29278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014843093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2004.01.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015495782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2003.127307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017377846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2003.127307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017377846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.092726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019167583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-010-0063-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023456340", 
          "https://doi.org/10.1007/s13244-010-0063-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-011-0085-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027564089", 
          "https://doi.org/10.1007/s13244-011-0085-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-011-0085-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027564089", 
          "https://doi.org/10.1007/s13244-011-0085-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-012-0330-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036616858", 
          "https://doi.org/10.1007/s10334-012-0330-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.14.5631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040428642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3691902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041594040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cid/cis193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043356235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-1007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043480777", 
          "https://doi.org/10.1007/s00259-008-1007-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-1007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043480777", 
          "https://doi.org/10.1007/s00259-008-1007-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mporth.2009.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050180868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-011-0069-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909902", 
          "https://doi.org/10.1007/s13244-011-0069-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00402-009-1000-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053068240", 
          "https://doi.org/10.1007/s00402-009-1000-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00402-009-1000-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053068240", 
          "https://doi.org/10.1007/s00402-009-1000-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00402-009-1000-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053068240", 
          "https://doi.org/10.1007/s00402-009-1000-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2003-42848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057425102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2005.857230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077033186", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1625223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077310019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082753194", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "PURPOSE: In combined whole-body PET/MR, attenuation correction (AC) is performed indirectly using the available MR image information and subsequent segmentation. Implant-induced susceptibility artifacts and subsequent signal voids may challenge MR-based AC (MR-AC). We evaluated the accuracy of MR-AC in PET/MR in patients with metallic endoprostheses, and propose a clinically feasible correction method.\nMETHODS: We selected patients with uni- or bilateral endoprostheses from 61 consecutive referrals for whole-body PET/MR imaging (mMR; Siemens Healthcare). Simultaneous whole-body PET/MR imaging was performed at 120\u00a0min after injection of about 300\u00a0MBq [(18)F]FDG. MR-AC was performed using (1) original MR images and subsequent Dixon water-fat segmentation, (2) as method 1 with implant-induced signal voids filled with soft tissue, (3) as method 2 with superimposed coregistered endoprostheses from the CT scan, and (4) as method 1 with implant-induced signal voids filled with metal. Following MR-AC (methods 1-4) PET emission images were reconstructed on 344\u2009\u00d7\u2009344 matrices using attenuation-weighted OSEM (three iterations, 21 subsets, 4\u00a0mm gaussian). Maximum body-weight normalized standardized uptake values (SUVmax) were obtained for both hips. Mean SUV (SUVmean) in homogeneous reference regions in the gluteal muscle and bladder following MR-AC (methods 1-4) are also reported.\nRESULTS: In total, four patients presented with endoprostheses, unilateral in two and bilateral in two. The fraction of voxels in MR images affected by the implant was at least twice that of the voxels representing the actual implants. MR-AC using methods 2 and 3 recovered the FDG distribution pattern compared to uncorrected PET images and method 1, while method 4 resulted in severe overestimation of FDG uptake (>460\u00a0% SUVmax). When compared to method 1, relative changes in SUVmean in the reference regions from method 2 and 3 were generally small albeit not correlated with the fraction of the attenuation image affected by implant-induced artifacts.\nCONCLUSIONS: Endoprostheses cause PET/MR artifacts that exceed the volume occupied by the implants, and bias PET quantification. Artifacts and bias can be corrected by semiautomated inpainting with soft tissue with a single composition prior to MR-AC, thus restoring quantitative activity distribution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-012-2316-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "PET/MR imaging of the pelvis in the presence of endoprostheses: reducing image artifacts and increasing accuracy through inpainting", 
    "pagination": "594-601", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61ab17e25c69044d9a579cbfccb41054b767913584e3ae993046cf6f56cfcee7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23296642"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-012-2316-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020497590"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-012-2316-4", 
      "https://app.dimensions.ai/details/publication/pub.1020497590"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-012-2316-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-012-2316-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-012-2316-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-012-2316-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-012-2316-4'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      63 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-012-2316-4 schema:about N2465baea126c4635a0557baf4ba1afcd
2 N2cfe851cc1b743d9bf1ae666065c5c7c
3 N3911a25c8ab84cdfbd1206963129d4a3
4 N4069e9b38fcf45548e52e1b8dbb6b2cf
5 N56295e8533864479abb55835a53758ad
6 N5ea6f1b31ee74a7cac2bcf040789f0b4
7 N5fb121d5da5540c99510962c76bf1948
8 N83db9e8fe2784c0c88b627d916224f66
9 Na652bbdc2dd649b887f6272f636fa04d
10 anzsrc-for:11
11 anzsrc-for:1103
12 schema:author Nbfccc69fd93840a58c5c92fd3f41dffd
13 schema:citation sg:pub.10.1007/s00259-008-1007-7
14 sg:pub.10.1007/s00259-009-1297-4
15 sg:pub.10.1007/s00402-009-1000-z
16 sg:pub.10.1007/s10334-012-0330-y
17 sg:pub.10.1007/s13244-010-0063-2
18 sg:pub.10.1007/s13244-011-0069-4
19 sg:pub.10.1007/s13244-011-0085-4
20 https://app.dimensions.ai/details/publication/pub.1077033186
21 https://app.dimensions.ai/details/publication/pub.1082753194
22 https://doi.org/10.1016/j.mporth.2009.03.003
23 https://doi.org/10.1016/j.mri.2004.01.061
24 https://doi.org/10.1053/snuc.2002.29278
25 https://doi.org/10.1053/snuc.2003.127307
26 https://doi.org/10.1055/s-0038-1625223
27 https://doi.org/10.1055/s-2003-42848
28 https://doi.org/10.1093/cid/cis193
29 https://doi.org/10.1109/tmi.2005.857230
30 https://doi.org/10.1118/1.1565113
31 https://doi.org/10.1118/1.3679863
32 https://doi.org/10.1118/1.3691902
33 https://doi.org/10.1118/1.598392
34 https://doi.org/10.1200/jco.2007.14.5631
35 https://doi.org/10.2967/jnumed.108.054726
36 https://doi.org/10.2967/jnumed.109.061853
37 https://doi.org/10.2967/jnumed.111.092726
38 schema:datePublished 2013-04
39 schema:datePublishedReg 2013-04-01
40 schema:description PURPOSE: In combined whole-body PET/MR, attenuation correction (AC) is performed indirectly using the available MR image information and subsequent segmentation. Implant-induced susceptibility artifacts and subsequent signal voids may challenge MR-based AC (MR-AC). We evaluated the accuracy of MR-AC in PET/MR in patients with metallic endoprostheses, and propose a clinically feasible correction method. METHODS: We selected patients with uni- or bilateral endoprostheses from 61 consecutive referrals for whole-body PET/MR imaging (mMR; Siemens Healthcare). Simultaneous whole-body PET/MR imaging was performed at 120 min after injection of about 300 MBq [(18)F]FDG. MR-AC was performed using (1) original MR images and subsequent Dixon water-fat segmentation, (2) as method 1 with implant-induced signal voids filled with soft tissue, (3) as method 2 with superimposed coregistered endoprostheses from the CT scan, and (4) as method 1 with implant-induced signal voids filled with metal. Following MR-AC (methods 1-4) PET emission images were reconstructed on 344 × 344 matrices using attenuation-weighted OSEM (three iterations, 21 subsets, 4 mm gaussian). Maximum body-weight normalized standardized uptake values (SUVmax) were obtained for both hips. Mean SUV (SUVmean) in homogeneous reference regions in the gluteal muscle and bladder following MR-AC (methods 1-4) are also reported. RESULTS: In total, four patients presented with endoprostheses, unilateral in two and bilateral in two. The fraction of voxels in MR images affected by the implant was at least twice that of the voxels representing the actual implants. MR-AC using methods 2 and 3 recovered the FDG distribution pattern compared to uncorrected PET images and method 1, while method 4 resulted in severe overestimation of FDG uptake (>460 % SUVmax). When compared to method 1, relative changes in SUVmean in the reference regions from method 2 and 3 were generally small albeit not correlated with the fraction of the attenuation image affected by implant-induced artifacts. CONCLUSIONS: Endoprostheses cause PET/MR artifacts that exceed the volume occupied by the implants, and bias PET quantification. Artifacts and bias can be corrected by semiautomated inpainting with soft tissue with a single composition prior to MR-AC, thus restoring quantitative activity distribution.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N277f9bf024ab405a87ba7cc2588957bf
45 N28217381460c430b9a582fda5f152a49
46 sg:journal.1297401
47 schema:name PET/MR imaging of the pelvis in the presence of endoprostheses: reducing image artifacts and increasing accuracy through inpainting
48 schema:pagination 594-601
49 schema:productId N0969252831e149bc9d7f30654b862ac1
50 N469eb6b70398410c882496db9658196b
51 N7efc5342876c4e7788b0da8cabc59d11
52 Na047c15dd2684a55a461fe7ba449157c
53 Nb226b68f1fe54ef486b8552d561b5836
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497590
55 https://doi.org/10.1007/s00259-012-2316-4
56 schema:sdDatePublished 2019-04-10T16:42
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N3b5e5ba9f4f84caeb22bfccd11be7e05
59 schema:url http://link.springer.com/10.1007%2Fs00259-012-2316-4
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0821d1436e124ce9a428e54fb314d5a0 rdf:first sg:person.0740340304.66
64 rdf:rest N0de74b79f5884dc6a37e212fed5c907a
65 N0969252831e149bc9d7f30654b862ac1 schema:name nlm_unique_id
66 schema:value 101140988
67 rdf:type schema:PropertyValue
68 N0de74b79f5884dc6a37e212fed5c907a rdf:first sg:person.0715465121.32
69 rdf:rest Nc74828ee95c244ca890ea18fefa71818
70 N1cc2335d9f64496899fc4a7404c9a13f rdf:first sg:person.01034165132.62
71 rdf:rest Nd81c3d31c26846878d4d20485ce0baee
72 N2465baea126c4635a0557baf4ba1afcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Image Interpretation, Computer-Assisted
74 rdf:type schema:DefinedTerm
75 N277f9bf024ab405a87ba7cc2588957bf schema:issueNumber 4
76 rdf:type schema:PublicationIssue
77 N28217381460c430b9a582fda5f152a49 schema:volumeNumber 40
78 rdf:type schema:PublicationVolume
79 N2cfe851cc1b743d9bf1ae666065c5c7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Hip Prosthesis
81 rdf:type schema:DefinedTerm
82 N3911a25c8ab84cdfbd1206963129d4a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Magnetic Resonance Imaging
84 rdf:type schema:DefinedTerm
85 N3b5e5ba9f4f84caeb22bfccd11be7e05 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N4069e9b38fcf45548e52e1b8dbb6b2cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Humans
89 rdf:type schema:DefinedTerm
90 N469eb6b70398410c882496db9658196b schema:name doi
91 schema:value 10.1007/s00259-012-2316-4
92 rdf:type schema:PropertyValue
93 N56295e8533864479abb55835a53758ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Artifacts
95 rdf:type schema:DefinedTerm
96 N5ea6f1b31ee74a7cac2bcf040789f0b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Positron-Emission Tomography
98 rdf:type schema:DefinedTerm
99 N5fb121d5da5540c99510962c76bf1948 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Pelvis
101 rdf:type schema:DefinedTerm
102 N6c5383f4a56e4dc19dc9c0ba8ae295b4 rdf:first sg:person.0705734737.91
103 rdf:rest N1cc2335d9f64496899fc4a7404c9a13f
104 N7efc5342876c4e7788b0da8cabc59d11 schema:name pubmed_id
105 schema:value 23296642
106 rdf:type schema:PropertyValue
107 N83db9e8fe2784c0c88b627d916224f66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Tomography, X-Ray Computed
109 rdf:type schema:DefinedTerm
110 Na047c15dd2684a55a461fe7ba449157c schema:name dimensions_id
111 schema:value pub.1020497590
112 rdf:type schema:PropertyValue
113 Na652bbdc2dd649b887f6272f636fa04d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Multimodal Imaging
115 rdf:type schema:DefinedTerm
116 Nb226b68f1fe54ef486b8552d561b5836 schema:name readcube_id
117 schema:value 61ab17e25c69044d9a579cbfccb41054b767913584e3ae993046cf6f56cfcee7
118 rdf:type schema:PropertyValue
119 Nbfccc69fd93840a58c5c92fd3f41dffd rdf:first sg:person.01316451111.03
120 rdf:rest Nd6faad17c1a04c2c8f5816de4a44b835
121 Nc74828ee95c244ca890ea18fefa71818 rdf:first sg:person.0657742114.07
122 rdf:rest rdf:nil
123 Nd6faad17c1a04c2c8f5816de4a44b835 rdf:first sg:person.0717736532.87
124 rdf:rest N6c5383f4a56e4dc19dc9c0ba8ae295b4
125 Nd81c3d31c26846878d4d20485ce0baee rdf:first sg:person.0742142346.96
126 rdf:rest N0821d1436e124ce9a428e54fb314d5a0
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
131 schema:name Clinical Sciences
132 rdf:type schema:DefinedTerm
133 sg:journal.1297401 schema:issn 1619-7070
134 1619-7089
135 schema:name European Journal of Nuclear Medicine and Molecular Imaging
136 rdf:type schema:Periodical
137 sg:person.01034165132.62 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
138 schema:familyName Löfgren
139 schema:givenName Johan
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034165132.62
141 rdf:type schema:Person
142 sg:person.01316451111.03 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
143 schema:familyName Ladefoged
144 schema:givenName Claes Nøhr
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03
146 rdf:type schema:Person
147 sg:person.0657742114.07 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
148 schema:familyName Beyer
149 schema:givenName Thomas
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07
151 rdf:type schema:Person
152 sg:person.0705734737.91 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
153 schema:familyName Keller
154 schema:givenName Sune Høgild
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91
156 rdf:type schema:Person
157 sg:person.0715465121.32 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
158 schema:familyName Højgaard
159 schema:givenName Liselotte
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32
161 rdf:type schema:Person
162 sg:person.0717736532.87 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
163 schema:familyName Andersen
164 schema:givenName Flemming Littrup
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87
166 rdf:type schema:Person
167 sg:person.0740340304.66 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
168 schema:familyName Holm
169 schema:givenName Søren
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740340304.66
171 rdf:type schema:Person
172 sg:person.0742142346.96 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
173 schema:familyName Hansen
174 schema:givenName Adam Espe
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96
176 rdf:type schema:Person
177 sg:pub.10.1007/s00259-008-1007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043480777
178 https://doi.org/10.1007/s00259-008-1007-7
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
181 https://doi.org/10.1007/s00259-009-1297-4
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00402-009-1000-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053068240
184 https://doi.org/10.1007/s00402-009-1000-z
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s10334-012-0330-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036616858
187 https://doi.org/10.1007/s10334-012-0330-y
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s13244-010-0063-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023456340
190 https://doi.org/10.1007/s13244-010-0063-2
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s13244-011-0069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909902
193 https://doi.org/10.1007/s13244-011-0069-4
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s13244-011-0085-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027564089
196 https://doi.org/10.1007/s13244-011-0085-4
197 rdf:type schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1077033186 schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1082753194 schema:CreativeWork
200 https://doi.org/10.1016/j.mporth.2009.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050180868
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.mri.2004.01.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015495782
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1053/snuc.2002.29278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014843093
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1053/snuc.2003.127307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017377846
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1055/s-0038-1625223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077310019
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1055/s-2003-42848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057425102
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/cid/cis193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043356235
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/tmi.2005.857230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694780
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1118/1.1565113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010883944
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1118/1.3679863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005428258
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1118/1.3691902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041594040
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1118/1.598392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005790896
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1200/jco.2007.14.5631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040428642
225 rdf:type schema:CreativeWork
226 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2967/jnumed.109.061853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013780396
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2967/jnumed.111.092726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019167583
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.475435.4 schema:alternateName Rigshospitalet
233 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
234 cmi-experts GmbH, Zurich, Switzerland
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...