Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

V. Schulz, I. Torres-Espallardo, S. Renisch, Z. Hu, N. Ojha, P. Börnert, M. Perkuhn, T. Niendorf, W. M. Schäfer, H. Brockmann, T. Krohn, A. Buhl, R. W. Günther, F. M. Mottaghy, G. A. Krombach

ABSTRACT

PURPOSE: The combination of positron emission tomography (PET) and magnetic resonance (MR) tomography in a single device is anticipated to be the next step following PET/CT for future molecular imaging application. Compared to CT, the main advantages of MR are versatile soft tissue contrast and its capability to acquire functional information without ionizing radiation. However, MR is not capable of measuring a physical quantity that would allow a direct derivation of the attenuation values for high-energy photons. METHODS: To overcome this problem, we propose a fully automated approach that uses a dedicated T1-weighted MR sequence in combination with a customized image processing technique to derive attenuation maps for whole-body PET. The algorithm automatically identifies the outer contour of the body and the lungs using region-growing techniques in combination with an intensity analysis for automatic threshold estimation. No user interaction is required to generate the attenuation map. RESULTS: The accuracy of the proposed MR-based attenuation correction (AC) approach was evaluated in a clinical study using whole-body PET/CT and MR images of the same patients (n = 15). The segmentation of the body and lung contour (L-R directions) was evaluated via a four-point scale in comparison to the original MR image (mean values >3.8). PET images were reconstructed using elastically registered MR-based and CT-based (segmented and non-segmented) attenuation maps. The MR-based AC showed similar behaviour as CT-based AC and similar accuracy as offered by segmented CT-based AC. Standardized uptake value (SUV) comparisons with reference to CT-based AC using predefined attenuation coefficients showed the largest difference for bone lesions (mean value ± standard variation of SUV(max): -3.0% ± 3.9% for MR; -6.5% ± 4.1% for segmented CT). A blind comparison of PET images corrected with segmented MR-based, CT-based and segmented CT-based AC afforded identical lesion detectability, but slight differences in image quality were found. CONCLUSION: Our MR-based attenuation correction method offers similar correction accuracy as offered by segmented CT. According to the specialists involved in the blind study, these differences do not affect the diagnostic value of the PET images. More... »

PAGES

138-152

References to SciGraph publications

  • 2004-01. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2005-10. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2007-06. Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-03. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2008-06. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2008. Magnetic Resonance Imaging of the Lung: Automated Segmentation Methods in GENERAL METHODS AND OVERVIEWS, LUNG CARCINOMA AND PROSTATE CARCINOMA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-010-1603-1

    DOI

    http://dx.doi.org/10.1007/s00259-010-1603-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032254809

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20922522


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Automation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Whole Body Imaging", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Molecular Imaging Systems, Philips Research Europe, Weishausstrasse 2, 52066, Aachen, Germany", 
                "Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schulz", 
            "givenName": "V.", 
            "id": "sg:person.01155061521.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155061521.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Philips Research Europe, Aachen, Germany", 
                "Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany", 
                "Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torres-Espallardo", 
            "givenName": "I.", 
            "id": "sg:person.0703450021.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703450021.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Philips (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.418621.8", 
              "name": [
                "Philips Research Europe, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Renisch", 
            "givenName": "S.", 
            "id": "sg:person.012151422173.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012151422173.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Philips Healthcare, Cleveland, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Z.", 
            "id": "sg:person.014772360063.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772360063.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Philips Healthcare, Cleveland, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ojha", 
            "givenName": "N.", 
            "id": "sg:person.01060517660.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060517660.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Philips (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.418621.8", 
              "name": [
                "Philips Research Europe, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "B\u00f6rnert", 
            "givenName": "P.", 
            "id": "sg:person.01330360624.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330360624.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Philips Research Europe, Aachen, Germany", 
                "Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perkuhn", 
            "givenName": "M.", 
            "id": "sg:person.01267335540.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267335540.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Delbr\u00fcck Center for Molecular Medicine", 
              "id": "https://www.grid.ac/institutes/grid.419491.0", 
              "name": [
                "Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany", 
                "Max-Delbrueck Center for Molecular Medicine, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niendorf", 
            "givenName": "T.", 
            "id": "sg:person.01222065412.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222065412.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00e4fer", 
            "givenName": "W. M.", 
            "id": "sg:person.01030351352.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030351352.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brockmann", 
            "givenName": "H.", 
            "id": "sg:person.01153126411.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153126411.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krohn", 
            "givenName": "T.", 
            "id": "sg:person.01356051204.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356051204.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buhl", 
            "givenName": "A.", 
            "id": "sg:person.0603112452.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603112452.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "G\u00fcnther", 
            "givenName": "R. W.", 
            "id": "sg:person.011455252222.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455252222.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mottaghy", 
            "givenName": "F. M.", 
            "id": "sg:person.01315346441.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315346441.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krombach", 
            "givenName": "G. A.", 
            "id": "sg:person.01107537576.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107537576.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1152/japplphysiol.00324.2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000473642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-003-1327-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003736595", 
              "https://doi.org/10.1007/s00259-003-1327-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.107.049353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008631016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.054726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013636390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0337-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014114082", 
              "https://doi.org/10.1007/s00259-006-0337-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0337-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014114082", 
              "https://doi.org/10.1007/s00259-006-0337-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2443070092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020878676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.21746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023587921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.21746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023587921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.1569270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024753364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0531-5131(01)00088-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024795062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0531-5131(01)00088-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024795062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2262012141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036887411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nbm.1100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037970336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-005-1784-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040692090", 
              "https://doi.org/10.1007/s00259-005-1784-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-005-1784-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040692090", 
              "https://doi.org/10.1007/s00259-005-1784-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-005-1784-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040692090", 
              "https://doi.org/10.1007/s00259-005-1784-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-0734-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040920766", 
              "https://doi.org/10.1007/s00259-008-0734-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-0734-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040920766", 
              "https://doi.org/10.1007/s00259-008-0734-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-1007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043480777", 
              "https://doi.org/10.1007/s00259-008-1007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-1007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043480777", 
              "https://doi.org/10.1007/s00259-008-1007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8442-3_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044546618", 
              "https://doi.org/10.1007/978-1-4020-8442-3_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8442-3_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044546618", 
              "https://doi.org/10.1007/978-1-4020-8442-3_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/23.819300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061132239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/42.796284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061170839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tns.2003.817281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061731977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.161.4.8372744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069318151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077169841", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nssmic.2007.4437073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094255225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nssmic.2009.5401802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094453680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nssmic.2006.354229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094877317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106890943", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781118165881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106890943"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01", 
        "datePublishedReg": "2011-01-01", 
        "description": "PURPOSE: The combination of positron emission tomography (PET) and magnetic resonance (MR) tomography in a single device is anticipated to be the next step following PET/CT for future molecular imaging application. Compared to CT, the main advantages of MR are versatile soft tissue contrast and its capability to acquire functional information without ionizing radiation. However, MR is not capable of measuring a physical quantity that would allow a direct derivation of the attenuation values for high-energy photons.\nMETHODS: To overcome this problem, we propose a fully automated approach that uses a dedicated T1-weighted MR sequence in combination with a customized image processing technique to derive attenuation maps for whole-body PET. The algorithm automatically identifies the outer contour of the body and the lungs using region-growing techniques in combination with an intensity analysis for automatic threshold estimation. No user interaction is required to generate the attenuation map.\nRESULTS: The accuracy of the proposed MR-based attenuation correction (AC) approach was evaluated in a clinical study using whole-body PET/CT and MR images of the same patients (n = 15). The segmentation of the body and lung contour (L-R directions) was evaluated via a four-point scale in comparison to the original MR image (mean values >3.8). PET images were reconstructed using elastically registered MR-based and CT-based (segmented and non-segmented) attenuation maps. The MR-based AC showed similar behaviour as CT-based AC and similar accuracy as offered by segmented CT-based AC. Standardized uptake value (SUV) comparisons with reference to CT-based AC using predefined attenuation coefficients showed the largest difference for bone lesions (mean value \u00b1 standard variation of SUV(max): -3.0% \u00b1 3.9% for MR; -6.5% \u00b1 4.1% for segmented CT). A blind comparison of PET images corrected with segmented MR-based, CT-based and segmented CT-based AC afforded identical lesion detectability, but slight differences in image quality were found.\nCONCLUSION: Our MR-based attenuation correction method offers similar correction accuracy as offered by segmented CT. According to the specialists involved in the blind study, these differences do not affect the diagnostic value of the PET images.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00259-010-1603-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "name": "Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data", 
        "pagination": "138-152", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "99a807362e7b652aeff391ffe66651e3f696efa7c7a09f3fe3130ff9d22b13cb"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20922522"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101140988"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-010-1603-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032254809"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-010-1603-1", 
          "https://app.dimensions.ai/details/publication/pub.1032254809"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43229_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00259-010-1603-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1603-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1603-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1603-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1603-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    310 TRIPLES      21 PREDICATES      66 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-010-1603-1 schema:about N163a4c766fe048378597edf23cabada0
    2 N19d0bbfcb29f47a7b33de72750598c42
    3 N468be3e76aa640b1a7cb11160acaa3bd
    4 N48dafe275b634a29ae740a4d0e70a04f
    5 N588fc5902e3d49b18762b7fe6d9a1367
    6 N5bd525ea2c7549079d01716121ef78c4
    7 N80247e401d0d40b5a06fd992f1d9f704
    8 Nc16b6a34305e4b80ab3226f3ffcabcd6
    9 Nceea7517c0e34d368ceb72141d024f35
    10 Nda5858224c434121881d60c5b761fcff
    11 Ndefafeac6ca94ed8b9cef39fc4e4f9f5
    12 Nf8a837fd82b444ae8b8547e8faea66a4
    13 anzsrc-for:08
    14 anzsrc-for:0801
    15 schema:author N5d8cace3ae5b4a6cbcd70997486bf927
    16 schema:citation sg:pub.10.1007/978-1-4020-8442-3_14
    17 sg:pub.10.1007/s00259-003-1327-6
    18 sg:pub.10.1007/s00259-005-1784-1
    19 sg:pub.10.1007/s00259-006-0337-6
    20 sg:pub.10.1007/s00259-008-0734-0
    21 sg:pub.10.1007/s00259-008-1007-7
    22 https://app.dimensions.ai/details/publication/pub.1077169841
    23 https://app.dimensions.ai/details/publication/pub.1106890943
    24 https://doi.org/10.1002/9781118165881
    25 https://doi.org/10.1002/jmri.21746
    26 https://doi.org/10.1002/nbm.1100
    27 https://doi.org/10.1016/s0531-5131(01)00088-7
    28 https://doi.org/10.1109/23.819300
    29 https://doi.org/10.1109/42.796284
    30 https://doi.org/10.1109/nssmic.2006.354229
    31 https://doi.org/10.1109/nssmic.2007.4437073
    32 https://doi.org/10.1109/nssmic.2009.5401802
    33 https://doi.org/10.1109/tns.2003.817281
    34 https://doi.org/10.1118/1.1569270
    35 https://doi.org/10.1148/radiol.2262012141
    36 https://doi.org/10.1148/radiol.2443070092
    37 https://doi.org/10.1152/japplphysiol.00324.2009
    38 https://doi.org/10.2214/ajr.161.4.8372744
    39 https://doi.org/10.2967/jnumed.107.049353
    40 https://doi.org/10.2967/jnumed.108.054726
    41 schema:datePublished 2011-01
    42 schema:datePublishedReg 2011-01-01
    43 schema:description PURPOSE: The combination of positron emission tomography (PET) and magnetic resonance (MR) tomography in a single device is anticipated to be the next step following PET/CT for future molecular imaging application. Compared to CT, the main advantages of MR are versatile soft tissue contrast and its capability to acquire functional information without ionizing radiation. However, MR is not capable of measuring a physical quantity that would allow a direct derivation of the attenuation values for high-energy photons. METHODS: To overcome this problem, we propose a fully automated approach that uses a dedicated T1-weighted MR sequence in combination with a customized image processing technique to derive attenuation maps for whole-body PET. The algorithm automatically identifies the outer contour of the body and the lungs using region-growing techniques in combination with an intensity analysis for automatic threshold estimation. No user interaction is required to generate the attenuation map. RESULTS: The accuracy of the proposed MR-based attenuation correction (AC) approach was evaluated in a clinical study using whole-body PET/CT and MR images of the same patients (n = 15). The segmentation of the body and lung contour (L-R directions) was evaluated via a four-point scale in comparison to the original MR image (mean values >3.8). PET images were reconstructed using elastically registered MR-based and CT-based (segmented and non-segmented) attenuation maps. The MR-based AC showed similar behaviour as CT-based AC and similar accuracy as offered by segmented CT-based AC. Standardized uptake value (SUV) comparisons with reference to CT-based AC using predefined attenuation coefficients showed the largest difference for bone lesions (mean value ± standard variation of SUV(max): -3.0% ± 3.9% for MR; -6.5% ± 4.1% for segmented CT). A blind comparison of PET images corrected with segmented MR-based, CT-based and segmented CT-based AC afforded identical lesion detectability, but slight differences in image quality were found. CONCLUSION: Our MR-based attenuation correction method offers similar correction accuracy as offered by segmented CT. According to the specialists involved in the blind study, these differences do not affect the diagnostic value of the PET images.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N996ff86fddd8406e94522091b34dc345
    48 Nedb78b7ffe1542cfaaeaac0d760aa7e1
    49 sg:journal.1297401
    50 schema:name Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data
    51 schema:pagination 138-152
    52 schema:productId Ncea9cd56324b413193a4461c3df70c96
    53 Nebe4e436707a47b2ada93b8344b0f0f9
    54 Nf56252003e9e4e04ba946e72beae6409
    55 Nf56f1977b0ed43c5869cee16e63affbb
    56 Nfd19ae9a5e1d4549937c89601458824e
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032254809
    58 https://doi.org/10.1007/s00259-010-1603-1
    59 schema:sdDatePublished 2019-04-11T10:52
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N35e79295ccdc48e2b84c726974a81649
    62 schema:url http://link.springer.com/10.1007%2Fs00259-010-1603-1
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N12027f8363b04ec7864cb662ec3ea732 rdf:first sg:person.0603112452.73
    67 rdf:rest N6a11894c537f4cd9b07987439db50069
    68 N163a4c766fe048378597edf23cabada0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Middle Aged
    70 rdf:type schema:DefinedTerm
    71 N19d0bbfcb29f47a7b33de72750598c42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Female
    73 rdf:type schema:DefinedTerm
    74 N21e59796a3e047fca44adcc0a7b55771 rdf:first sg:person.01315346441.11
    75 rdf:rest N2ad44ec2335042d1a5076b5cc6077ce0
    76 N2ad44ec2335042d1a5076b5cc6077ce0 rdf:first sg:person.01107537576.32
    77 rdf:rest rdf:nil
    78 N2f574dee33eb492a9374ec3bd5de599d rdf:first sg:person.01153126411.72
    79 rdf:rest Nff999ae737b944f1a8c3bde562d69f6a
    80 N314b9c623055429390c204bb08989bf5 rdf:first sg:person.014772360063.70
    81 rdf:rest Ne070dcdf486d4751b3aec73b3a4a22ab
    82 N35e79295ccdc48e2b84c726974a81649 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N3e405a734e0b4923b16b6b2969d18e74 schema:name Philips Healthcare, Cleveland, OH, USA
    85 rdf:type schema:Organization
    86 N468be3e76aa640b1a7cb11160acaa3bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Image Processing, Computer-Assisted
    88 rdf:type schema:DefinedTerm
    89 N48dafe275b634a29ae740a4d0e70a04f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Automation
    91 rdf:type schema:DefinedTerm
    92 N4906e14237d04f9fb67076f1e155bfa2 rdf:first sg:person.01267335540.32
    93 rdf:rest N696425083d4141cc96e30d323038b949
    94 N588fc5902e3d49b18762b7fe6d9a1367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Aged
    96 rdf:type schema:DefinedTerm
    97 N5bd525ea2c7549079d01716121ef78c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Male
    99 rdf:type schema:DefinedTerm
    100 N5d8cace3ae5b4a6cbcd70997486bf927 rdf:first sg:person.01155061521.10
    101 rdf:rest Na314683e8d8e4aa597d8193399cc4a23
    102 N61914cd1fc7e4a099dafe1ef8ab62d11 rdf:first sg:person.01030351352.51
    103 rdf:rest N2f574dee33eb492a9374ec3bd5de599d
    104 N696425083d4141cc96e30d323038b949 rdf:first sg:person.01222065412.27
    105 rdf:rest N61914cd1fc7e4a099dafe1ef8ab62d11
    106 N6a11894c537f4cd9b07987439db50069 rdf:first sg:person.011455252222.95
    107 rdf:rest N21e59796a3e047fca44adcc0a7b55771
    108 N80247e401d0d40b5a06fd992f1d9f704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Whole Body Imaging
    110 rdf:type schema:DefinedTerm
    111 N996ff86fddd8406e94522091b34dc345 schema:volumeNumber 38
    112 rdf:type schema:PublicationVolume
    113 Na314683e8d8e4aa597d8193399cc4a23 rdf:first sg:person.0703450021.60
    114 rdf:rest Nbae25387583d4fe795f2e2a38904ce3f
    115 Nbae25387583d4fe795f2e2a38904ce3f rdf:first sg:person.012151422173.43
    116 rdf:rest N314b9c623055429390c204bb08989bf5
    117 Nc16b6a34305e4b80ab3226f3ffcabcd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Adult
    119 rdf:type schema:DefinedTerm
    120 Nc3fa501d69c043cb99e12d826d195a9d rdf:first sg:person.01330360624.42
    121 rdf:rest N4906e14237d04f9fb67076f1e155bfa2
    122 Ncea9cd56324b413193a4461c3df70c96 schema:name readcube_id
    123 schema:value 99a807362e7b652aeff391ffe66651e3f696efa7c7a09f3fe3130ff9d22b13cb
    124 rdf:type schema:PropertyValue
    125 Nceea7517c0e34d368ceb72141d024f35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Magnetic Resonance Imaging
    127 rdf:type schema:DefinedTerm
    128 Nda5858224c434121881d60c5b761fcff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Positron-Emission Tomography
    130 rdf:type schema:DefinedTerm
    131 Ndefafeac6ca94ed8b9cef39fc4e4f9f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Humans
    133 rdf:type schema:DefinedTerm
    134 Ne070dcdf486d4751b3aec73b3a4a22ab rdf:first sg:person.01060517660.69
    135 rdf:rest Nc3fa501d69c043cb99e12d826d195a9d
    136 Nebe4e436707a47b2ada93b8344b0f0f9 schema:name pubmed_id
    137 schema:value 20922522
    138 rdf:type schema:PropertyValue
    139 Nece1f994c468477e994e617c70bdc424 schema:name Philips Healthcare, Cleveland, OH, USA
    140 rdf:type schema:Organization
    141 Nedb78b7ffe1542cfaaeaac0d760aa7e1 schema:issueNumber 1
    142 rdf:type schema:PublicationIssue
    143 Nf56252003e9e4e04ba946e72beae6409 schema:name dimensions_id
    144 schema:value pub.1032254809
    145 rdf:type schema:PropertyValue
    146 Nf56f1977b0ed43c5869cee16e63affbb schema:name doi
    147 schema:value 10.1007/s00259-010-1603-1
    148 rdf:type schema:PropertyValue
    149 Nf8a837fd82b444ae8b8547e8faea66a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Tomography, X-Ray Computed
    151 rdf:type schema:DefinedTerm
    152 Nfd19ae9a5e1d4549937c89601458824e schema:name nlm_unique_id
    153 schema:value 101140988
    154 rdf:type schema:PropertyValue
    155 Nff999ae737b944f1a8c3bde562d69f6a rdf:first sg:person.01356051204.71
    156 rdf:rest N12027f8363b04ec7864cb662ec3ea732
    157 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Information and Computing Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Artificial Intelligence and Image Processing
    162 rdf:type schema:DefinedTerm
    163 sg:journal.1297401 schema:issn 1619-7070
    164 1619-7089
    165 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    166 rdf:type schema:Periodical
    167 sg:person.01030351352.51 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    168 schema:familyName Schäfer
    169 schema:givenName W. M.
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030351352.51
    171 rdf:type schema:Person
    172 sg:person.01060517660.69 schema:affiliation N3e405a734e0b4923b16b6b2969d18e74
    173 schema:familyName Ojha
    174 schema:givenName N.
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060517660.69
    176 rdf:type schema:Person
    177 sg:person.01107537576.32 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    178 schema:familyName Krombach
    179 schema:givenName G. A.
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107537576.32
    181 rdf:type schema:Person
    182 sg:person.011455252222.95 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    183 schema:familyName Günther
    184 schema:givenName R. W.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455252222.95
    186 rdf:type schema:Person
    187 sg:person.01153126411.72 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    188 schema:familyName Brockmann
    189 schema:givenName H.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153126411.72
    191 rdf:type schema:Person
    192 sg:person.01155061521.10 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    193 schema:familyName Schulz
    194 schema:givenName V.
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155061521.10
    196 rdf:type schema:Person
    197 sg:person.012151422173.43 schema:affiliation https://www.grid.ac/institutes/grid.418621.8
    198 schema:familyName Renisch
    199 schema:givenName S.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012151422173.43
    201 rdf:type schema:Person
    202 sg:person.01222065412.27 schema:affiliation https://www.grid.ac/institutes/grid.419491.0
    203 schema:familyName Niendorf
    204 schema:givenName T.
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222065412.27
    206 rdf:type schema:Person
    207 sg:person.01267335540.32 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    208 schema:familyName Perkuhn
    209 schema:givenName M.
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267335540.32
    211 rdf:type schema:Person
    212 sg:person.01315346441.11 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    213 schema:familyName Mottaghy
    214 schema:givenName F. M.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315346441.11
    216 rdf:type schema:Person
    217 sg:person.01330360624.42 schema:affiliation https://www.grid.ac/institutes/grid.418621.8
    218 schema:familyName Börnert
    219 schema:givenName P.
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330360624.42
    221 rdf:type schema:Person
    222 sg:person.01356051204.71 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    223 schema:familyName Krohn
    224 schema:givenName T.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356051204.71
    226 rdf:type schema:Person
    227 sg:person.014772360063.70 schema:affiliation Nece1f994c468477e994e617c70bdc424
    228 schema:familyName Hu
    229 schema:givenName Z.
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772360063.70
    231 rdf:type schema:Person
    232 sg:person.0603112452.73 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    233 schema:familyName Buhl
    234 schema:givenName A.
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603112452.73
    236 rdf:type schema:Person
    237 sg:person.0703450021.60 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    238 schema:familyName Torres-Espallardo
    239 schema:givenName I.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703450021.60
    241 rdf:type schema:Person
    242 sg:pub.10.1007/978-1-4020-8442-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044546618
    243 https://doi.org/10.1007/978-1-4020-8442-3_14
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00259-003-1327-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003736595
    246 https://doi.org/10.1007/s00259-003-1327-6
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s00259-005-1784-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040692090
    249 https://doi.org/10.1007/s00259-005-1784-1
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00259-006-0337-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014114082
    252 https://doi.org/10.1007/s00259-006-0337-6
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s00259-008-0734-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040920766
    255 https://doi.org/10.1007/s00259-008-0734-0
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s00259-008-1007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043480777
    258 https://doi.org/10.1007/s00259-008-1007-7
    259 rdf:type schema:CreativeWork
    260 https://app.dimensions.ai/details/publication/pub.1077169841 schema:CreativeWork
    261 https://app.dimensions.ai/details/publication/pub.1106890943 schema:CreativeWork
    262 https://doi.org/10.1002/9781118165881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106890943
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1002/jmri.21746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023587921
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1002/nbm.1100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037970336
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/s0531-5131(01)00088-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024795062
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1109/23.819300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061132239
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1109/nssmic.2006.354229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094877317
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1109/nssmic.2007.4437073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094255225
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1109/nssmic.2009.5401802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094453680
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1109/tns.2003.817281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061731977
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1118/1.1569270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024753364
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1148/radiol.2262012141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036887411
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1148/radiol.2443070092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020878676
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1152/japplphysiol.00324.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000473642
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.2214/ajr.161.4.8372744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069318151
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.2967/jnumed.107.049353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008631016
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
    295 rdf:type schema:CreativeWork
    296 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
    297 schema:name Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany
    298 Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
    299 Department of Molecular Imaging Systems, Philips Research Europe, Weishausstrasse 2, 52066, Aachen, Germany
    300 Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany
    301 Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
    302 Philips Research Europe, Aachen, Germany
    303 rdf:type schema:Organization
    304 https://www.grid.ac/institutes/grid.418621.8 schema:alternateName Philips (Germany)
    305 schema:name Philips Research Europe, Hamburg, Germany
    306 rdf:type schema:Organization
    307 https://www.grid.ac/institutes/grid.419491.0 schema:alternateName Max Delbrück Center for Molecular Medicine
    308 schema:name Department of Diagnostic Radiology, RWTH Aachen University, Aachen, Germany
    309 Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
    310 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...