Partial volume correction strategies for quantitative FDG PET in oncology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08

AUTHORS

Nikie J. Hoetjes, Floris H. P. van Velden, Otto S. Hoekstra, Corneline J. Hoekstra, Nanda C. Krak, Adriaan A. Lammertsma, Ronald Boellaard

ABSTRACT

PURPOSE: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods. METHODS: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds. RESULTS: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Clinical studies showed that PVC increased SUV by 5-80% depending on tumour size. Test-retest variability slightly worsened from 9.8 +/- 6.5 without to 10.8 +/- 7.9% with PVC. Finally, PVC resulted in slightly smaller SUV responses, i.e. from -30.5% without to -26.3% with PVC after the first cycle of treatment (p < 0.01). CONCLUSION: PVC improves accuracy of SUV without decreasing (clinical) test-retest variability significantly and it has a small, but significant effect on observed tumour responses. Reconstruction-based PVC outperforms image-based methods, but requires dedicated reconstruction software. Image-based methods are good alternatives because of their ease of implementation and their similar performance in clinical studies. More... »

PAGES

1679-1687

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7

DOI

http://dx.doi.org/10.1007/s00259-010-1472-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031811580

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20422184


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Body Imaging", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoetjes", 
        "givenName": "Nikie J.", 
        "id": "sg:person.0757172725.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757172725.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Velden", 
        "givenName": "Floris H. P.", 
        "id": "sg:person.01024242563.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024242563.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoekstra", 
        "givenName": "Otto S.", 
        "id": "sg:person.0621551653.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jeroen Bosch Ziekenhuis", 
          "id": "https://www.grid.ac/institutes/grid.413508.b", 
          "name": [
            "Department of Nuclear Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoekstra", 
        "givenName": "Corneline J.", 
        "id": "sg:person.0626764200.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krak", 
        "givenName": "Nanda C.", 
        "id": "sg:person.0673777171.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A.", 
        "id": "sg:person.01352511753.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "Ronald", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.1688041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00879667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002232405", 
          "https://doi.org/10.1007/bf00879667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005067118", 
          "https://doi.org/10.1007/s002590050570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005425955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.035774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005435708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009165294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(01)01722-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013460574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.04.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015506626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0224-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015743919", 
          "https://doi.org/10.1007/s00259-006-0224-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/00004647-200208000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022368753", 
          "https://doi.org/10.1097/00004647-200208000-00014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-200208000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022368753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023484161", 
          "https://doi.org/10.1007/s002590050022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19990301)85:5<1026::aid-cncr3>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025906909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2005.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027079728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.04.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039551825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1448824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043466826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-004-1566-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049135908", 
          "https://doi.org/10.1007/s00259-004-1566-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049911299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049978779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-8051(00)00143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051024992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/7/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/7/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.363108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2008.2012036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.2003.817327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061731990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074718580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075081052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075200348", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075232023", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076887958", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1625102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077113800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077412763", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082487097", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083176392", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083263153", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "PURPOSE: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods.\nMETHODS: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds.\nRESULTS: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Clinical studies showed that PVC increased SUV by 5-80% depending on tumour size. Test-retest variability slightly worsened from 9.8 +/- 6.5 without to 10.8 +/- 7.9% with PVC. Finally, PVC resulted in slightly smaller SUV responses, i.e. from -30.5% without to -26.3% with PVC after the first cycle of treatment (p < 0.01).\nCONCLUSION: PVC improves accuracy of SUV without decreasing (clinical) test-retest variability significantly and it has a small, but significant effect on observed tumour responses. Reconstruction-based PVC outperforms image-based methods, but requires dedicated reconstruction software. Image-based methods are good alternatives because of their ease of implementation and their similar performance in clinical studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-010-1472-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Partial volume correction strategies for quantitative FDG PET in oncology", 
    "pagination": "1679-1687", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "978afe027aa750a66790271cb93bd41f71737909273354df1370f06e12ea5629"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20422184"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-010-1472-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031811580"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-010-1472-7", 
      "https://app.dimensions.ai/details/publication/pub.1031811580"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-010-1472-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      80 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-010-1472-7 schema:about N0a25b1afac444e638feb88a070d4fe38
2 N0d739debd6334f0eb61f714b64bf4f7b
3 N1f0d0440d26c4859bcff070fb31199e5
4 N218cbe2a3e5f49779fd26070c900fb55
5 N391fc48304e84ab09ce0f4a171ab4723
6 N4fdd960061b245f7b19db105116029fa
7 N9e5d48607268437299d45c76fdd93250
8 Nabda9dc5e5104209b0856e311a099c12
9 Nb953aa7f003e41bdab8c6c255bcbb213
10 Nc72fa41948194364a6a298537969b701
11 Nd3eb2746aa59492681ee1d9616185376
12 Neacc73729d6e45569fb1d1aa5acad580
13 Nee3303d002f441c487378ad26937be73
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author N2a236369e7204e2fb377ebc22b47308a
17 schema:citation sg:pub.10.1007/bf00879667
18 sg:pub.10.1007/s00259-002-0924-0
19 sg:pub.10.1007/s00259-004-1566-1
20 sg:pub.10.1007/s00259-006-0224-1
21 sg:pub.10.1007/s002590050022
22 sg:pub.10.1007/s002590050570
23 sg:pub.10.1097/00004647-200208000-00014
24 https://app.dimensions.ai/details/publication/pub.1074718580
25 https://app.dimensions.ai/details/publication/pub.1075081052
26 https://app.dimensions.ai/details/publication/pub.1075200348
27 https://app.dimensions.ai/details/publication/pub.1075232023
28 https://app.dimensions.ai/details/publication/pub.1076887958
29 https://app.dimensions.ai/details/publication/pub.1077412763
30 https://app.dimensions.ai/details/publication/pub.1082487097
31 https://app.dimensions.ai/details/publication/pub.1083176392
32 https://app.dimensions.ai/details/publication/pub.1083263153
33 https://doi.org/10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.0.co;2-f
34 https://doi.org/10.1002/(sici)1097-0142(19990301)85:5<1026::aid-cncr3>3.0.co;2-n
35 https://doi.org/10.1016/j.neuroimage.2004.04.041
36 https://doi.org/10.1016/j.neuroimage.2006.04.072
37 https://doi.org/10.1016/j.neuroimage.2007.10.022
38 https://doi.org/10.1016/j.neuroimage.2007.10.038
39 https://doi.org/10.1016/j.radonc.2005.09.017
40 https://doi.org/10.1016/s0360-3016(01)01722-9
41 https://doi.org/10.1016/s0969-8051(00)00143-8
42 https://doi.org/10.1038/jcbfm.1992.81
43 https://doi.org/10.1055/s-0038-1625102
44 https://doi.org/10.1088/0031-9155/51/7/016
45 https://doi.org/10.1097/00004647-200208000-00014
46 https://doi.org/10.1097/00004728-197906000-00001
47 https://doi.org/10.1097/00004728-199007000-00011
48 https://doi.org/10.1109/42.363108
49 https://doi.org/10.1109/tmi.2008.2012036
50 https://doi.org/10.1109/tns.2003.817327
51 https://doi.org/10.1118/1.1448824
52 https://doi.org/10.1118/1.1688041
53 https://doi.org/10.1118/1.598485
54 https://doi.org/10.2967/jnumed.106.035774
55 schema:datePublished 2010-08
56 schema:datePublishedReg 2010-08-01
57 schema:description PURPOSE: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods. METHODS: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds. RESULTS: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Clinical studies showed that PVC increased SUV by 5-80% depending on tumour size. Test-retest variability slightly worsened from 9.8 +/- 6.5 without to 10.8 +/- 7.9% with PVC. Finally, PVC resulted in slightly smaller SUV responses, i.e. from -30.5% without to -26.3% with PVC after the first cycle of treatment (p < 0.01). CONCLUSION: PVC improves accuracy of SUV without decreasing (clinical) test-retest variability significantly and it has a small, but significant effect on observed tumour responses. Reconstruction-based PVC outperforms image-based methods, but requires dedicated reconstruction software. Image-based methods are good alternatives because of their ease of implementation and their similar performance in clinical studies.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N11ccffe6779d428e8fdaeb7f0b1037f4
62 N41f0fc3ac77c4fe5a54ad79b2bf4a434
63 sg:journal.1297401
64 schema:name Partial volume correction strategies for quantitative FDG PET in oncology
65 schema:pagination 1679-1687
66 schema:productId N58da4321e16b42e29d131a3f656cc534
67 Nc133788d32e2469ca875098cb04569b8
68 Nc32e71039e95418c8dfa856fa252382d
69 Nd0459497cb4340bdb62a5bb50b4d5eed
70 Nd5e5d2053add459080a6324b6fc8232c
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031811580
72 https://doi.org/10.1007/s00259-010-1472-7
73 schema:sdDatePublished 2019-04-11T10:35
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nf09862901520459099eb2fba0bcfdf53
76 schema:url http://link.springer.com/10.1007%2Fs00259-010-1472-7
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N08cb67686c814ca7af08c73f54bae3f7 rdf:first sg:person.0626764200.40
81 rdf:rest Nf2e92c9f015c4dada47eba1ec2937ae5
82 N0a25b1afac444e638feb88a070d4fe38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Whole Body Imaging
84 rdf:type schema:DefinedTerm
85 N0d739debd6334f0eb61f714b64bf4f7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Artifacts
87 rdf:type schema:DefinedTerm
88 N11ccffe6779d428e8fdaeb7f0b1037f4 schema:volumeNumber 37
89 rdf:type schema:PublicationVolume
90 N190dad2375044ec0b387c4f776d0e3ee rdf:first sg:person.01352511753.53
91 rdf:rest Nd1dce85515094603ab5f1b49ac2fff63
92 N1f0d0440d26c4859bcff070fb31199e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Reproducibility of Results
94 rdf:type schema:DefinedTerm
95 N218cbe2a3e5f49779fd26070c900fb55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Phantoms, Imaging
97 rdf:type schema:DefinedTerm
98 N2a236369e7204e2fb377ebc22b47308a rdf:first sg:person.0757172725.33
99 rdf:rest Nc5042b6c221c4b5793a0a549eb73db21
100 N391fc48304e84ab09ce0f4a171ab4723 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Humans
102 rdf:type schema:DefinedTerm
103 N41f0fc3ac77c4fe5a54ad79b2bf4a434 schema:issueNumber 9
104 rdf:type schema:PublicationIssue
105 N4fdd960061b245f7b19db105116029fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Tumor Burden
107 rdf:type schema:DefinedTerm
108 N58da4321e16b42e29d131a3f656cc534 schema:name nlm_unique_id
109 schema:value 101140988
110 rdf:type schema:PropertyValue
111 N9e5d48607268437299d45c76fdd93250 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Female
113 rdf:type schema:DefinedTerm
114 Nabda9dc5e5104209b0856e311a099c12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Positron-Emission Tomography
116 rdf:type schema:DefinedTerm
117 Nb953aa7f003e41bdab8c6c255bcbb213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Image Processing, Computer-Assisted
119 rdf:type schema:DefinedTerm
120 Nc133788d32e2469ca875098cb04569b8 schema:name pubmed_id
121 schema:value 20422184
122 rdf:type schema:PropertyValue
123 Nc32e71039e95418c8dfa856fa252382d schema:name doi
124 schema:value 10.1007/s00259-010-1472-7
125 rdf:type schema:PropertyValue
126 Nc5042b6c221c4b5793a0a549eb73db21 rdf:first sg:person.01024242563.29
127 rdf:rest Nc7704adbbeb84a1f998423964f6b03fb
128 Nc72fa41948194364a6a298537969b701 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Neoplasms
130 rdf:type schema:DefinedTerm
131 Nc7704adbbeb84a1f998423964f6b03fb rdf:first sg:person.0621551653.25
132 rdf:rest N08cb67686c814ca7af08c73f54bae3f7
133 Nd0459497cb4340bdb62a5bb50b4d5eed schema:name readcube_id
134 schema:value 978afe027aa750a66790271cb93bd41f71737909273354df1370f06e12ea5629
135 rdf:type schema:PropertyValue
136 Nd1dce85515094603ab5f1b49ac2fff63 rdf:first sg:person.01361420011.63
137 rdf:rest rdf:nil
138 Nd3eb2746aa59492681ee1d9616185376 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Middle Aged
140 rdf:type schema:DefinedTerm
141 Nd5e5d2053add459080a6324b6fc8232c schema:name dimensions_id
142 schema:value pub.1031811580
143 rdf:type schema:PropertyValue
144 Neacc73729d6e45569fb1d1aa5acad580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Male
146 rdf:type schema:DefinedTerm
147 Nee3303d002f441c487378ad26937be73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Fluorodeoxyglucose F18
149 rdf:type schema:DefinedTerm
150 Nf09862901520459099eb2fba0bcfdf53 schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 Nf2e92c9f015c4dada47eba1ec2937ae5 rdf:first sg:person.0673777171.10
153 rdf:rest N190dad2375044ec0b387c4f776d0e3ee
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
158 schema:name Oncology and Carcinogenesis
159 rdf:type schema:DefinedTerm
160 sg:journal.1297401 schema:issn 1619-7070
161 1619-7089
162 schema:name European Journal of Nuclear Medicine and Molecular Imaging
163 rdf:type schema:Periodical
164 sg:person.01024242563.29 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
165 schema:familyName van Velden
166 schema:givenName Floris H. P.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024242563.29
168 rdf:type schema:Person
169 sg:person.01352511753.53 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
170 schema:familyName Lammertsma
171 schema:givenName Adriaan A.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53
173 rdf:type schema:Person
174 sg:person.01361420011.63 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
175 schema:familyName Boellaard
176 schema:givenName Ronald
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
178 rdf:type schema:Person
179 sg:person.0621551653.25 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
180 schema:familyName Hoekstra
181 schema:givenName Otto S.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25
183 rdf:type schema:Person
184 sg:person.0626764200.40 schema:affiliation https://www.grid.ac/institutes/grid.413508.b
185 schema:familyName Hoekstra
186 schema:givenName Corneline J.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40
188 rdf:type schema:Person
189 sg:person.0673777171.10 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
190 schema:familyName Krak
191 schema:givenName Nanda C.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10
193 rdf:type schema:Person
194 sg:person.0757172725.33 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
195 schema:familyName Hoetjes
196 schema:givenName Nikie J.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757172725.33
198 rdf:type schema:Person
199 sg:pub.10.1007/bf00879667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002232405
200 https://doi.org/10.1007/bf00879667
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
203 https://doi.org/10.1007/s00259-002-0924-0
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00259-004-1566-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049135908
206 https://doi.org/10.1007/s00259-004-1566-1
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00259-006-0224-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743919
209 https://doi.org/10.1007/s00259-006-0224-1
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s002590050022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023484161
212 https://doi.org/10.1007/s002590050022
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s002590050570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005067118
215 https://doi.org/10.1007/s002590050570
216 rdf:type schema:CreativeWork
217 sg:pub.10.1097/00004647-200208000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022368753
218 https://doi.org/10.1097/00004647-200208000-00014
219 rdf:type schema:CreativeWork
220 https://app.dimensions.ai/details/publication/pub.1074718580 schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1075081052 schema:CreativeWork
222 https://app.dimensions.ai/details/publication/pub.1075200348 schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1075232023 schema:CreativeWork
224 https://app.dimensions.ai/details/publication/pub.1076887958 schema:CreativeWork
225 https://app.dimensions.ai/details/publication/pub.1077412763 schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1082487097 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1083176392 schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1083263153 schema:CreativeWork
229 https://doi.org/10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911299
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/(sici)1097-0142(19990301)85:5<1026::aid-cncr3>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1025906909
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.neuroimage.2004.04.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039551825
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.neuroimage.2006.04.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015506626
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.neuroimage.2007.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049978779
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.neuroimage.2007.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005425955
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.radonc.2005.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027079728
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s0360-3016(01)01722-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013460574
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/s0969-8051(00)00143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051024992
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1038/jcbfm.1992.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033466882
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1055/s-0038-1625102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077113800
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1088/0031-9155/51/7/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026484
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1097/00004647-200208000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022368753
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1097/00004728-197906000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040716713
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1097/00004728-199007000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018471449
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/42.363108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170278
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/tmi.2008.2012036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695221
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/tns.2003.817327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061731990
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1118/1.1448824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043466826
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1118/1.1688041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000362062
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1118/1.598485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009165294
270 rdf:type schema:CreativeWork
271 https://doi.org/10.2967/jnumed.106.035774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005435708
272 rdf:type schema:CreativeWork
273 https://www.grid.ac/institutes/grid.16872.3a schema:alternateName VU University Medical Center
274 schema:name Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.413508.b schema:alternateName Jeroen Bosch Ziekenhuis
277 schema:name Department of Nuclear Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
280 schema:name Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...