Partial volume correction strategies for quantitative FDG PET in oncology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08

AUTHORS

Nikie J. Hoetjes, Floris H. P. van Velden, Otto S. Hoekstra, Corneline J. Hoekstra, Nanda C. Krak, Adriaan A. Lammertsma, Ronald Boellaard

ABSTRACT

PURPOSE: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods. METHODS: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds. RESULTS: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Clinical studies showed that PVC increased SUV by 5-80% depending on tumour size. Test-retest variability slightly worsened from 9.8 +/- 6.5 without to 10.8 +/- 7.9% with PVC. Finally, PVC resulted in slightly smaller SUV responses, i.e. from -30.5% without to -26.3% with PVC after the first cycle of treatment (p < 0.01). CONCLUSION: PVC improves accuracy of SUV without decreasing (clinical) test-retest variability significantly and it has a small, but significant effect on observed tumour responses. Reconstruction-based PVC outperforms image-based methods, but requires dedicated reconstruction software. Image-based methods are good alternatives because of their ease of implementation and their similar performance in clinical studies. More... »

PAGES

1679-1687

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7

DOI

http://dx.doi.org/10.1007/s00259-010-1472-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031811580

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20422184


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Body Imaging", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoetjes", 
        "givenName": "Nikie J.", 
        "id": "sg:person.0757172725.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757172725.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Velden", 
        "givenName": "Floris H. P.", 
        "id": "sg:person.01024242563.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024242563.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoekstra", 
        "givenName": "Otto S.", 
        "id": "sg:person.0621551653.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jeroen Bosch Ziekenhuis", 
          "id": "https://www.grid.ac/institutes/grid.413508.b", 
          "name": [
            "Department of Nuclear Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoekstra", 
        "givenName": "Corneline J.", 
        "id": "sg:person.0626764200.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krak", 
        "givenName": "Nanda C.", 
        "id": "sg:person.0673777171.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A.", 
        "id": "sg:person.01352511753.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box\u00a07057, 1007 MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "Ronald", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.1688041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00879667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002232405", 
          "https://doi.org/10.1007/bf00879667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005067118", 
          "https://doi.org/10.1007/s002590050570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005425955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.035774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005435708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009165294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(01)01722-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013460574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.04.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015506626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0224-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015743919", 
          "https://doi.org/10.1007/s00259-006-0224-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/00004647-200208000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022368753", 
          "https://doi.org/10.1097/00004647-200208000-00014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-200208000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022368753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023484161", 
          "https://doi.org/10.1007/s002590050022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19990301)85:5<1026::aid-cncr3>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025906909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2005.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027079728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.04.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039551825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1448824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043466826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-004-1566-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049135908", 
          "https://doi.org/10.1007/s00259-004-1566-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049911299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049978779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-8051(00)00143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051024992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/7/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/7/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.363108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2008.2012036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.2003.817327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061731990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074718580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075081052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075200348", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075232023", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076887958", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1625102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077113800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077412763", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082487097", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083176392", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083263153", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "PURPOSE: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods.\nMETHODS: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds.\nRESULTS: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Clinical studies showed that PVC increased SUV by 5-80% depending on tumour size. Test-retest variability slightly worsened from 9.8 +/- 6.5 without to 10.8 +/- 7.9% with PVC. Finally, PVC resulted in slightly smaller SUV responses, i.e. from -30.5% without to -26.3% with PVC after the first cycle of treatment (p < 0.01).\nCONCLUSION: PVC improves accuracy of SUV without decreasing (clinical) test-retest variability significantly and it has a small, but significant effect on observed tumour responses. Reconstruction-based PVC outperforms image-based methods, but requires dedicated reconstruction software. Image-based methods are good alternatives because of their ease of implementation and their similar performance in clinical studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-010-1472-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Partial volume correction strategies for quantitative FDG PET in oncology", 
    "pagination": "1679-1687", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "978afe027aa750a66790271cb93bd41f71737909273354df1370f06e12ea5629"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20422184"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-010-1472-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031811580"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-010-1472-7", 
      "https://app.dimensions.ai/details/publication/pub.1031811580"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-010-1472-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-010-1472-7'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      80 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-010-1472-7 schema:about N3ba6fadd50b34f5f960ea78aa98bd0d2
2 N3bac0703c2b04ed0b53e57596a01ae61
3 N3df2b835bb7f4372b5fca4d02b692726
4 N3fdf0311385f4ae39e877339472fe3db
5 N491f83c2e6554ce8ba1e2b54b148fdab
6 N59047079bed64c4b9a64e4a3de899ef3
7 N628ecdfb56974d6e8604313aebdf7555
8 N78c200db34a94a8e91e650c531dcb6d9
9 Naf09973db7584bd9b49e7ec187ec1441
10 Nb3adbea1d9ff481db8d3e8693b33b813
11 Nd78a6db1e06b4b459a955ae8e1677d36
12 Nd87ea96667514b8ab6015f1ff525addb
13 Ndabe9838fbc34f1485ececf490a3f358
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author N41327978917b490a9b7af6bb4e1e5a48
17 schema:citation sg:pub.10.1007/bf00879667
18 sg:pub.10.1007/s00259-002-0924-0
19 sg:pub.10.1007/s00259-004-1566-1
20 sg:pub.10.1007/s00259-006-0224-1
21 sg:pub.10.1007/s002590050022
22 sg:pub.10.1007/s002590050570
23 sg:pub.10.1097/00004647-200208000-00014
24 https://app.dimensions.ai/details/publication/pub.1074718580
25 https://app.dimensions.ai/details/publication/pub.1075081052
26 https://app.dimensions.ai/details/publication/pub.1075200348
27 https://app.dimensions.ai/details/publication/pub.1075232023
28 https://app.dimensions.ai/details/publication/pub.1076887958
29 https://app.dimensions.ai/details/publication/pub.1077412763
30 https://app.dimensions.ai/details/publication/pub.1082487097
31 https://app.dimensions.ai/details/publication/pub.1083176392
32 https://app.dimensions.ai/details/publication/pub.1083263153
33 https://doi.org/10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.0.co;2-f
34 https://doi.org/10.1002/(sici)1097-0142(19990301)85:5<1026::aid-cncr3>3.0.co;2-n
35 https://doi.org/10.1016/j.neuroimage.2004.04.041
36 https://doi.org/10.1016/j.neuroimage.2006.04.072
37 https://doi.org/10.1016/j.neuroimage.2007.10.022
38 https://doi.org/10.1016/j.neuroimage.2007.10.038
39 https://doi.org/10.1016/j.radonc.2005.09.017
40 https://doi.org/10.1016/s0360-3016(01)01722-9
41 https://doi.org/10.1016/s0969-8051(00)00143-8
42 https://doi.org/10.1038/jcbfm.1992.81
43 https://doi.org/10.1055/s-0038-1625102
44 https://doi.org/10.1088/0031-9155/51/7/016
45 https://doi.org/10.1097/00004647-200208000-00014
46 https://doi.org/10.1097/00004728-197906000-00001
47 https://doi.org/10.1097/00004728-199007000-00011
48 https://doi.org/10.1109/42.363108
49 https://doi.org/10.1109/tmi.2008.2012036
50 https://doi.org/10.1109/tns.2003.817327
51 https://doi.org/10.1118/1.1448824
52 https://doi.org/10.1118/1.1688041
53 https://doi.org/10.1118/1.598485
54 https://doi.org/10.2967/jnumed.106.035774
55 schema:datePublished 2010-08
56 schema:datePublishedReg 2010-08-01
57 schema:description PURPOSE: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods. METHODS: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds. RESULTS: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Clinical studies showed that PVC increased SUV by 5-80% depending on tumour size. Test-retest variability slightly worsened from 9.8 +/- 6.5 without to 10.8 +/- 7.9% with PVC. Finally, PVC resulted in slightly smaller SUV responses, i.e. from -30.5% without to -26.3% with PVC after the first cycle of treatment (p < 0.01). CONCLUSION: PVC improves accuracy of SUV without decreasing (clinical) test-retest variability significantly and it has a small, but significant effect on observed tumour responses. Reconstruction-based PVC outperforms image-based methods, but requires dedicated reconstruction software. Image-based methods are good alternatives because of their ease of implementation and their similar performance in clinical studies.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N481638493535438bbbc61161eb800825
62 Ne641e2c40c894fc9b704136d5707131b
63 sg:journal.1297401
64 schema:name Partial volume correction strategies for quantitative FDG PET in oncology
65 schema:pagination 1679-1687
66 schema:productId N429d6760b4ba47efaccc62bd10708efd
67 N4310710b860d485d9a17b25b20eafb3c
68 N7c1684425e5b4bcf914d574d141107c8
69 N9552f86d6af645f68a09026cd3916a80
70 Nfbd1f59b7d874a029b8c9455343d1da6
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031811580
72 https://doi.org/10.1007/s00259-010-1472-7
73 schema:sdDatePublished 2019-04-11T10:35
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N5c7a050cddf84d30801ff8bd7b4e1450
76 schema:url http://link.springer.com/10.1007%2Fs00259-010-1472-7
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N1d70b5e13ffd4f92976048ccdabe2e4d rdf:first sg:person.0673777171.10
81 rdf:rest N887bff804c27461eb5e8a32a1869e875
82 N3ba6fadd50b34f5f960ea78aa98bd0d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Fluorodeoxyglucose F18
84 rdf:type schema:DefinedTerm
85 N3bac0703c2b04ed0b53e57596a01ae61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Image Processing, Computer-Assisted
87 rdf:type schema:DefinedTerm
88 N3df2b835bb7f4372b5fca4d02b692726 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Male
90 rdf:type schema:DefinedTerm
91 N3fdf0311385f4ae39e877339472fe3db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Female
93 rdf:type schema:DefinedTerm
94 N41327978917b490a9b7af6bb4e1e5a48 rdf:first sg:person.0757172725.33
95 rdf:rest N70ea06f5932c480ca756b62019e5c93b
96 N429d6760b4ba47efaccc62bd10708efd schema:name pubmed_id
97 schema:value 20422184
98 rdf:type schema:PropertyValue
99 N4310710b860d485d9a17b25b20eafb3c schema:name doi
100 schema:value 10.1007/s00259-010-1472-7
101 rdf:type schema:PropertyValue
102 N44586d0dd7c74118aa59fafb3c46decc rdf:first sg:person.0626764200.40
103 rdf:rest N1d70b5e13ffd4f92976048ccdabe2e4d
104 N481638493535438bbbc61161eb800825 schema:issueNumber 9
105 rdf:type schema:PublicationIssue
106 N491f83c2e6554ce8ba1e2b54b148fdab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Middle Aged
108 rdf:type schema:DefinedTerm
109 N562cf2eed9e7402ea1e0ac95f608d7f4 rdf:first sg:person.01361420011.63
110 rdf:rest rdf:nil
111 N59047079bed64c4b9a64e4a3de899ef3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Positron-Emission Tomography
113 rdf:type schema:DefinedTerm
114 N5c7a050cddf84d30801ff8bd7b4e1450 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N628ecdfb56974d6e8604313aebdf7555 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Tumor Burden
118 rdf:type schema:DefinedTerm
119 N70ea06f5932c480ca756b62019e5c93b rdf:first sg:person.01024242563.29
120 rdf:rest Ne8820957c42047ab870d48bef19c1aa8
121 N78c200db34a94a8e91e650c531dcb6d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Artifacts
123 rdf:type schema:DefinedTerm
124 N7c1684425e5b4bcf914d574d141107c8 schema:name readcube_id
125 schema:value 978afe027aa750a66790271cb93bd41f71737909273354df1370f06e12ea5629
126 rdf:type schema:PropertyValue
127 N887bff804c27461eb5e8a32a1869e875 rdf:first sg:person.01352511753.53
128 rdf:rest N562cf2eed9e7402ea1e0ac95f608d7f4
129 N9552f86d6af645f68a09026cd3916a80 schema:name nlm_unique_id
130 schema:value 101140988
131 rdf:type schema:PropertyValue
132 Naf09973db7584bd9b49e7ec187ec1441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Whole Body Imaging
134 rdf:type schema:DefinedTerm
135 Nb3adbea1d9ff481db8d3e8693b33b813 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Phantoms, Imaging
137 rdf:type schema:DefinedTerm
138 Nd78a6db1e06b4b459a955ae8e1677d36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Reproducibility of Results
140 rdf:type schema:DefinedTerm
141 Nd87ea96667514b8ab6015f1ff525addb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Neoplasms
143 rdf:type schema:DefinedTerm
144 Ndabe9838fbc34f1485ececf490a3f358 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 Ne641e2c40c894fc9b704136d5707131b schema:volumeNumber 37
148 rdf:type schema:PublicationVolume
149 Ne8820957c42047ab870d48bef19c1aa8 rdf:first sg:person.0621551653.25
150 rdf:rest N44586d0dd7c74118aa59fafb3c46decc
151 Nfbd1f59b7d874a029b8c9455343d1da6 schema:name dimensions_id
152 schema:value pub.1031811580
153 rdf:type schema:PropertyValue
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
158 schema:name Oncology and Carcinogenesis
159 rdf:type schema:DefinedTerm
160 sg:journal.1297401 schema:issn 1619-7070
161 1619-7089
162 schema:name European Journal of Nuclear Medicine and Molecular Imaging
163 rdf:type schema:Periodical
164 sg:person.01024242563.29 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
165 schema:familyName van Velden
166 schema:givenName Floris H. P.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024242563.29
168 rdf:type schema:Person
169 sg:person.01352511753.53 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
170 schema:familyName Lammertsma
171 schema:givenName Adriaan A.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53
173 rdf:type schema:Person
174 sg:person.01361420011.63 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
175 schema:familyName Boellaard
176 schema:givenName Ronald
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
178 rdf:type schema:Person
179 sg:person.0621551653.25 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
180 schema:familyName Hoekstra
181 schema:givenName Otto S.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25
183 rdf:type schema:Person
184 sg:person.0626764200.40 schema:affiliation https://www.grid.ac/institutes/grid.413508.b
185 schema:familyName Hoekstra
186 schema:givenName Corneline J.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40
188 rdf:type schema:Person
189 sg:person.0673777171.10 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
190 schema:familyName Krak
191 schema:givenName Nanda C.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10
193 rdf:type schema:Person
194 sg:person.0757172725.33 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
195 schema:familyName Hoetjes
196 schema:givenName Nikie J.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757172725.33
198 rdf:type schema:Person
199 sg:pub.10.1007/bf00879667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002232405
200 https://doi.org/10.1007/bf00879667
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
203 https://doi.org/10.1007/s00259-002-0924-0
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00259-004-1566-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049135908
206 https://doi.org/10.1007/s00259-004-1566-1
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00259-006-0224-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743919
209 https://doi.org/10.1007/s00259-006-0224-1
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s002590050022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023484161
212 https://doi.org/10.1007/s002590050022
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s002590050570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005067118
215 https://doi.org/10.1007/s002590050570
216 rdf:type schema:CreativeWork
217 sg:pub.10.1097/00004647-200208000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022368753
218 https://doi.org/10.1097/00004647-200208000-00014
219 rdf:type schema:CreativeWork
220 https://app.dimensions.ai/details/publication/pub.1074718580 schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1075081052 schema:CreativeWork
222 https://app.dimensions.ai/details/publication/pub.1075200348 schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1075232023 schema:CreativeWork
224 https://app.dimensions.ai/details/publication/pub.1076887958 schema:CreativeWork
225 https://app.dimensions.ai/details/publication/pub.1077412763 schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1082487097 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1083176392 schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1083263153 schema:CreativeWork
229 https://doi.org/10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911299
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/(sici)1097-0142(19990301)85:5<1026::aid-cncr3>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1025906909
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.neuroimage.2004.04.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039551825
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.neuroimage.2006.04.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015506626
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.neuroimage.2007.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049978779
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.neuroimage.2007.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005425955
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.radonc.2005.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027079728
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s0360-3016(01)01722-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013460574
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/s0969-8051(00)00143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051024992
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1038/jcbfm.1992.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033466882
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1055/s-0038-1625102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077113800
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1088/0031-9155/51/7/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026484
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1097/00004647-200208000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022368753
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1097/00004728-197906000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040716713
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1097/00004728-199007000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018471449
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/42.363108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170278
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/tmi.2008.2012036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695221
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/tns.2003.817327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061731990
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1118/1.1448824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043466826
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1118/1.1688041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000362062
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1118/1.598485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009165294
270 rdf:type schema:CreativeWork
271 https://doi.org/10.2967/jnumed.106.035774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005435708
272 rdf:type schema:CreativeWork
273 https://www.grid.ac/institutes/grid.16872.3a schema:alternateName VU University Medical Center
274 schema:name Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.413508.b schema:alternateName Jeroen Bosch Ziekenhuis
277 schema:name Department of Nuclear Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
280 schema:name Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...