The impact of reconstruction method on the quantification of DaTSCAN images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-01

AUTHORS

John C. Dickson, Livia Tossici-Bolt, Terez Sera, Kjell Erlandsson, Andrea Varrone, Klaus Tatsch, Brian F. Hutton

ABSTRACT

PURPOSE: Reconstruction of DaTSCAN brain studies using OS-EM iterative reconstruction offers better image quality and more accurate quantification than filtered back-projection. However, reconstruction must proceed for a sufficient number of iterations to achieve stable and accurate data. This study assessed the impact of the number of iterations on the image quantification, comparing the results of the iterative reconstruction with filtered back-projection data. METHODS: A striatal phantom filled with (123)I using striatal to background ratios between 2:1 and 10:1 was imaged on five different gamma camera systems. Data from each system were reconstructed using OS-EM (which included depth-independent resolution recovery) with various combinations of iterations and subsets to achieve up to 200 EM-equivalent iterations and with filtered back-projection. Using volume of interest analysis, the relationships between image reconstruction strategy and quantification of striatal uptake were assessed. RESULTS: For phantom filling ratios of 5:1 or less, significant convergence of measured ratios occurred close to 100 EM-equivalent iterations, whereas for higher filling ratios, measured uptake ratios did not display a convergence pattern. Assessment of the count concentrations used to derive the measured uptake ratio showed that nonconvergence of low background count concentrations caused peaking in higher measured uptake ratios. Compared to filtered back-projection, OS-EM displayed larger uptake ratios because of the resolution recovery applied in the iterative algorithm. CONCLUSION: The number of EM-equivalent iterations used in OS-EM reconstruction influences the quantification of DaTSCAN studies because of incomplete convergence and possible bias in areas of low activity due to the nonnegativity constraint in OS-EM reconstruction. Nevertheless, OS-EM using 100 EM-equivalent iterations provides the best linear discriminatory measure to quantify the uptake in DaTSCAN studies. More... »

PAGES

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-009-1212-z

DOI

http://dx.doi.org/10.1007/s00259-009-1212-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026061446

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19618181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Corpus Striatum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tropanes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Institute of Nuclear Medicine, UCLH NHS Foundation Trust and University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dickson", 
        "givenName": "John C.", 
        "id": "sg:person.01052417735.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052417735.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Southampton NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.430506.4", 
          "name": [
            "Department of Medical Physics, Southampton University Hospitals NHS Trust, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tossici-Bolt", 
        "givenName": "Livia", 
        "id": "sg:person.01001433353.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001433353.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Szeged", 
          "id": "https://www.grid.ac/institutes/grid.9008.1", 
          "name": [
            "Department of Nuclear Medicine and Euromedic Szeged, University of Szeged, Szeged, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sera", 
        "givenName": "Terez", 
        "id": "sg:person.01047546553.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047546553.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Institute of Nuclear Medicine, UCLH NHS Foundation Trust and University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erlandsson", 
        "givenName": "Kjell", 
        "id": "sg:person.01230665602.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230665602.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Karolinska Institute, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varrone", 
        "givenName": "Andrea", 
        "id": "sg:person.01170775200.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170775200.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Association of Nuclear Medicine", 
          "id": "https://www.grid.ac/institutes/grid.488256.5", 
          "name": [
            "EANM/European Network of Excellence for Brain Imaging, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatsch", 
        "givenName": "Klaus", 
        "id": "sg:person.01203226043.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203226043.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Institute of Nuclear Medicine, UCLH NHS Foundation Trust and University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hutton", 
        "givenName": "Brian F.", 
        "id": "sg:person.015072257734.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072257734.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.07.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004699189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2003.08.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010447405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/14/6/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011144050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.21685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017951166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590000460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019347956", 
          "https://doi.org/10.1007/s002590000460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-200106000-00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024773257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-200106000-00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024773257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.62.2.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034125453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-200205000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036384158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-200205000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036384158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(07)70057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037968851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-25444-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042482114", 
          "https://doi.org/10.1007/0-387-25444-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-003-1229-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044783826", 
          "https://doi.org/10.1007/s00259-003-1229-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1531-8257(200005)15:3<503::aid-mds1013>3.0.co;2-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048609164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-007-0711-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052853385", 
          "https://doi.org/10.1007/s00259-007-0711-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-007-0711-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052853385", 
          "https://doi.org/10.1007/s00259-007-0711-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/47/10/311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059024421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/5/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/5/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.682023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061131470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.363108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075310674", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077076567", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077111923", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077136755", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nssmic.2000.950113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093494069"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "PURPOSE: Reconstruction of DaTSCAN brain studies using OS-EM iterative reconstruction offers better image quality and more accurate quantification than filtered back-projection. However, reconstruction must proceed for a sufficient number of iterations to achieve stable and accurate data. This study assessed the impact of the number of iterations on the image quantification, comparing the results of the iterative reconstruction with filtered back-projection data.\nMETHODS: A striatal phantom filled with (123)I using striatal to background ratios between 2:1 and 10:1 was imaged on five different gamma camera systems. Data from each system were reconstructed using OS-EM (which included depth-independent resolution recovery) with various combinations of iterations and subsets to achieve up to 200 EM-equivalent iterations and with filtered back-projection. Using volume of interest analysis, the relationships between image reconstruction strategy and quantification of striatal uptake were assessed.\nRESULTS: For phantom filling ratios of 5:1 or less, significant convergence of measured ratios occurred close to 100 EM-equivalent iterations, whereas for higher filling ratios, measured uptake ratios did not display a convergence pattern. Assessment of the count concentrations used to derive the measured uptake ratio showed that nonconvergence of low background count concentrations caused peaking in higher measured uptake ratios. Compared to filtered back-projection, OS-EM displayed larger uptake ratios because of the resolution recovery applied in the iterative algorithm.\nCONCLUSION: The number of EM-equivalent iterations used in OS-EM reconstruction influences the quantification of DaTSCAN studies because of incomplete convergence and possible bias in areas of low activity due to the nonnegativity constraint in OS-EM reconstruction. Nevertheless, OS-EM using 100 EM-equivalent iterations provides the best linear discriminatory measure to quantify the uptake in DaTSCAN studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-009-1212-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "The impact of reconstruction method on the quantification of DaTSCAN images", 
    "pagination": "23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c27d77dd755c0e02bd81c26c2dfe2327707cf3fc41ee7b5d0f00f164ed3dd15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19618181"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-009-1212-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026061446"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-009-1212-z", 
      "https://app.dimensions.ai/details/publication/pub.1026061446"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-009-1212-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1212-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1212-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1212-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1212-z'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      63 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-009-1212-z schema:about N057bd6b6f1e543f0a8227c186bb8c8ed
2 N0af5cb13c41341d28bd5ba518507a529
3 N1b34cb07d6ee4190ae675c8f51bb6c64
4 N50a5dd7689404b6a8f34325b335e6ef7
5 N56c47f1b021e418eb041538a7d8c27db
6 N810b0f4b22cc4649a266168d45b33968
7 N832ceefd82204b99a94a3e3016450420
8 N8fb92bc1f8344455a9ebad516384db9a
9 N9a86d8b68050484890ff6118bb4aa44e
10 Nc25234c2c85b49939da5a514b543f14d
11 Ncc9709c4cd5e454aa6e021b1362cb071
12 Necff83f85ff44920963e9775e9a19be0
13 anzsrc-for:08
14 anzsrc-for:0801
15 schema:author Nd8840783cf514f0990e5da0fa34c9ed1
16 schema:citation sg:pub.10.1007/0-387-25444-7_4
17 sg:pub.10.1007/s00259-003-1229-7
18 sg:pub.10.1007/s00259-007-0711-z
19 sg:pub.10.1007/s002590000460
20 https://app.dimensions.ai/details/publication/pub.1075310674
21 https://app.dimensions.ai/details/publication/pub.1077076567
22 https://app.dimensions.ai/details/publication/pub.1077111923
23 https://app.dimensions.ai/details/publication/pub.1077136755
24 https://doi.org/10.1002/1531-8257(200005)15:3<503::aid-mds1013>3.0.co;2-v
25 https://doi.org/10.1002/mds.21685
26 https://doi.org/10.1016/j.neuroimage.2003.08.035
27 https://doi.org/10.1016/j.neuroimage.2007.07.038
28 https://doi.org/10.1016/s1474-4422(07)70057-1
29 https://doi.org/10.1088/0031-9155/47/10/311
30 https://doi.org/10.1088/0031-9155/51/5/016
31 https://doi.org/10.1088/0266-5611/14/6/006
32 https://doi.org/10.1097/00006231-200106000-00017
33 https://doi.org/10.1097/00006231-200205000-00009
34 https://doi.org/10.1109/23.682023
35 https://doi.org/10.1109/42.363108
36 https://doi.org/10.1109/nssmic.2000.950113
37 https://doi.org/10.1136/jnnp.62.2.133
38 schema:datePublished 2010-01
39 schema:datePublishedReg 2010-01-01
40 schema:description PURPOSE: Reconstruction of DaTSCAN brain studies using OS-EM iterative reconstruction offers better image quality and more accurate quantification than filtered back-projection. However, reconstruction must proceed for a sufficient number of iterations to achieve stable and accurate data. This study assessed the impact of the number of iterations on the image quantification, comparing the results of the iterative reconstruction with filtered back-projection data. METHODS: A striatal phantom filled with (123)I using striatal to background ratios between 2:1 and 10:1 was imaged on five different gamma camera systems. Data from each system were reconstructed using OS-EM (which included depth-independent resolution recovery) with various combinations of iterations and subsets to achieve up to 200 EM-equivalent iterations and with filtered back-projection. Using volume of interest analysis, the relationships between image reconstruction strategy and quantification of striatal uptake were assessed. RESULTS: For phantom filling ratios of 5:1 or less, significant convergence of measured ratios occurred close to 100 EM-equivalent iterations, whereas for higher filling ratios, measured uptake ratios did not display a convergence pattern. Assessment of the count concentrations used to derive the measured uptake ratio showed that nonconvergence of low background count concentrations caused peaking in higher measured uptake ratios. Compared to filtered back-projection, OS-EM displayed larger uptake ratios because of the resolution recovery applied in the iterative algorithm. CONCLUSION: The number of EM-equivalent iterations used in OS-EM reconstruction influences the quantification of DaTSCAN studies because of incomplete convergence and possible bias in areas of low activity due to the nonnegativity constraint in OS-EM reconstruction. Nevertheless, OS-EM using 100 EM-equivalent iterations provides the best linear discriminatory measure to quantify the uptake in DaTSCAN studies.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N18b286b2d22c4b6cb05e0c4f8d2d5be2
45 N9aa31abfe1fb44f692ccd889ba5a159c
46 sg:journal.1297401
47 schema:name The impact of reconstruction method on the quantification of DaTSCAN images
48 schema:pagination 23
49 schema:productId N2854c756804644a3be4156f0a2ca5a36
50 N51a8e520c99b42dda69ad054fb9307a3
51 Nc1e65693d05646929022ffe9a5fa79b5
52 Ncefd20f56db046c9a4324ae2c7f5fe3f
53 Ne2aee81f774242df88fa6f026fc67be6
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026061446
55 https://doi.org/10.1007/s00259-009-1212-z
56 schema:sdDatePublished 2019-04-11T14:26
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N3fd482466f7443f197043993219f2c8d
59 schema:url http://link.springer.com/10.1007%2Fs00259-009-1212-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N057bd6b6f1e543f0a8227c186bb8c8ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Reproducibility of Results
65 rdf:type schema:DefinedTerm
66 N0af5cb13c41341d28bd5ba518507a529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Image Interpretation, Computer-Assisted
68 rdf:type schema:DefinedTerm
69 N1140b47040f848f1b1b9b17cb3f5d07b rdf:first sg:person.01230665602.94
70 rdf:rest N72f6f895971b48a5be51e459f436b9c3
71 N18b286b2d22c4b6cb05e0c4f8d2d5be2 schema:volumeNumber 37
72 rdf:type schema:PublicationVolume
73 N18b747f2f2f043328b79cf2ffc2d5135 rdf:first sg:person.01001433353.19
74 rdf:rest N8b1ac271db6040c79a5e70cd78d7cf67
75 N1b34cb07d6ee4190ae675c8f51bb6c64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Corpus Striatum
77 rdf:type schema:DefinedTerm
78 N2854c756804644a3be4156f0a2ca5a36 schema:name readcube_id
79 schema:value 7c27d77dd755c0e02bd81c26c2dfe2327707cf3fc41ee7b5d0f00f164ed3dd15
80 rdf:type schema:PropertyValue
81 N3fd482466f7443f197043993219f2c8d schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N50a5dd7689404b6a8f34325b335e6ef7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Tomography, Emission-Computed, Single-Photon
85 rdf:type schema:DefinedTerm
86 N51a8e520c99b42dda69ad054fb9307a3 schema:name pubmed_id
87 schema:value 19618181
88 rdf:type schema:PropertyValue
89 N56c47f1b021e418eb041538a7d8c27db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Radiopharmaceuticals
91 rdf:type schema:DefinedTerm
92 N72f6f895971b48a5be51e459f436b9c3 rdf:first sg:person.01170775200.65
93 rdf:rest Nd75ddbbe7f1d4a2aba8f22424b6d588a
94 N810b0f4b22cc4649a266168d45b33968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Sensitivity and Specificity
96 rdf:type schema:DefinedTerm
97 N832ceefd82204b99a94a3e3016450420 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Imaging, Three-Dimensional
99 rdf:type schema:DefinedTerm
100 N8b1ac271db6040c79a5e70cd78d7cf67 rdf:first sg:person.01047546553.40
101 rdf:rest N1140b47040f848f1b1b9b17cb3f5d07b
102 N8fb92bc1f8344455a9ebad516384db9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Image Enhancement
104 rdf:type schema:DefinedTerm
105 N9a86d8b68050484890ff6118bb4aa44e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 N9aa31abfe1fb44f692ccd889ba5a159c schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 Nb75012f8f99640639198aaa701b24745 rdf:first sg:person.015072257734.43
111 rdf:rest rdf:nil
112 Nc1e65693d05646929022ffe9a5fa79b5 schema:name dimensions_id
113 schema:value pub.1026061446
114 rdf:type schema:PropertyValue
115 Nc25234c2c85b49939da5a514b543f14d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Algorithms
117 rdf:type schema:DefinedTerm
118 Ncc9709c4cd5e454aa6e021b1362cb071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Tropanes
120 rdf:type schema:DefinedTerm
121 Ncefd20f56db046c9a4324ae2c7f5fe3f schema:name nlm_unique_id
122 schema:value 101140988
123 rdf:type schema:PropertyValue
124 Nd75ddbbe7f1d4a2aba8f22424b6d588a rdf:first sg:person.01203226043.77
125 rdf:rest Nb75012f8f99640639198aaa701b24745
126 Nd8840783cf514f0990e5da0fa34c9ed1 rdf:first sg:person.01052417735.07
127 rdf:rest N18b747f2f2f043328b79cf2ffc2d5135
128 Ne2aee81f774242df88fa6f026fc67be6 schema:name doi
129 schema:value 10.1007/s00259-009-1212-z
130 rdf:type schema:PropertyValue
131 Necff83f85ff44920963e9775e9a19be0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Phantoms, Imaging
133 rdf:type schema:DefinedTerm
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
138 schema:name Artificial Intelligence and Image Processing
139 rdf:type schema:DefinedTerm
140 sg:journal.1297401 schema:issn 1619-7070
141 1619-7089
142 schema:name European Journal of Nuclear Medicine and Molecular Imaging
143 rdf:type schema:Periodical
144 sg:person.01001433353.19 schema:affiliation https://www.grid.ac/institutes/grid.430506.4
145 schema:familyName Tossici-Bolt
146 schema:givenName Livia
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001433353.19
148 rdf:type schema:Person
149 sg:person.01047546553.40 schema:affiliation https://www.grid.ac/institutes/grid.9008.1
150 schema:familyName Sera
151 schema:givenName Terez
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047546553.40
153 rdf:type schema:Person
154 sg:person.01052417735.07 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
155 schema:familyName Dickson
156 schema:givenName John C.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052417735.07
158 rdf:type schema:Person
159 sg:person.01170775200.65 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
160 schema:familyName Varrone
161 schema:givenName Andrea
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170775200.65
163 rdf:type schema:Person
164 sg:person.01203226043.77 schema:affiliation https://www.grid.ac/institutes/grid.488256.5
165 schema:familyName Tatsch
166 schema:givenName Klaus
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203226043.77
168 rdf:type schema:Person
169 sg:person.01230665602.94 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
170 schema:familyName Erlandsson
171 schema:givenName Kjell
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230665602.94
173 rdf:type schema:Person
174 sg:person.015072257734.43 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
175 schema:familyName Hutton
176 schema:givenName Brian F.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072257734.43
178 rdf:type schema:Person
179 sg:pub.10.1007/0-387-25444-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042482114
180 https://doi.org/10.1007/0-387-25444-7_4
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00259-003-1229-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044783826
183 https://doi.org/10.1007/s00259-003-1229-7
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00259-007-0711-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052853385
186 https://doi.org/10.1007/s00259-007-0711-z
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s002590000460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019347956
189 https://doi.org/10.1007/s002590000460
190 rdf:type schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1075310674 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1077076567 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1077111923 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1077136755 schema:CreativeWork
195 https://doi.org/10.1002/1531-8257(200005)15:3<503::aid-mds1013>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1048609164
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/mds.21685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017951166
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.neuroimage.2003.08.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010447405
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.neuroimage.2007.07.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004699189
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s1474-4422(07)70057-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037968851
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1088/0031-9155/47/10/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059024421
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1088/0031-9155/51/5/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026434
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1088/0266-5611/14/6/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011144050
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1097/00006231-200106000-00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024773257
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1097/00006231-200205000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036384158
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/23.682023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061131470
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/42.363108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170278
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/nssmic.2000.950113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093494069
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1136/jnnp.62.2.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034125453
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.430506.4 schema:alternateName University Hospital Southampton NHS Foundation Trust
224 schema:name Department of Medical Physics, Southampton University Hospitals NHS Trust, Southampton, UK
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
227 schema:name Karolinska Institute, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm, Sweden
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.488256.5 schema:alternateName European Association of Nuclear Medicine
230 schema:name EANM/European Network of Excellence for Brain Imaging, Vienna, Austria
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
233 schema:name Institute of Nuclear Medicine, UCLH NHS Foundation Trust and University College London, London, UK
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.9008.1 schema:alternateName University of Szeged
236 schema:name Department of Nuclear Medicine and Euromedic Szeged, University of Szeged, Szeged, Hungary
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...