Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-07

AUTHORS

N. Boussion, C. Cheze Le Rest, M. Hatt, D. Visvikis

ABSTRACT

PURPOSE: Partial volume effects (PVEs) are consequences of the limited resolution of emission tomography. The aim of the present study was to compare two new voxel-wise PVE correction algorithms based on deconvolution and wavelet-based denoising. MATERIALS AND METHODS: Deconvolution was performed using the Lucy-Richardson and the Van-Cittert algorithms. Both of these methods were tested using simulated and real FDG PET images. Wavelet-based denoising was incorporated into the process in order to eliminate the noise observed in classical deconvolution methods. RESULTS: Both deconvolution approaches led to significant intensity recovery, but the Van-Cittert algorithm provided images of inferior qualitative appearance. Furthermore, this method added massive levels of noise, even with the associated use of wavelet-denoising. On the other hand, the Lucy-Richardson algorithm combined with the same denoising process gave the best compromise between intensity recovery, noise attenuation and qualitative aspect of the images. CONCLUSION: The appropriate combination of deconvolution and wavelet-based denoising is an efficient method for reducing PVEs in emission tomography. More... »

PAGES

1064-1075

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-009-1065-5

DOI

http://dx.doi.org/10.1007/s00259-009-1065-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052639217

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19224209


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Body Imaging", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INSERM, U650, Laboratoire de Traitement de l\u2019Information M\u00e9dicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boussion", 
        "givenName": "N.", 
        "id": "sg:person.0721543407.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721543407.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INSERM, U650, Laboratoire de Traitement de l\u2019Information M\u00e9dicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheze Le Rest", 
        "givenName": "C.", 
        "id": "sg:person.012576527021.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576527021.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INSERM, U650, Laboratoire de Traitement de l\u2019Information M\u00e9dicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatt", 
        "givenName": "M.", 
        "id": "sg:person.01202724075.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202724075.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INSERM, U650, Laboratoire de Traitement de l\u2019Information M\u00e9dicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visvikis", 
        "givenName": "D.", 
        "id": "sg:person.01255045106.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045106.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-007-0454-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003502621", 
          "https://doi.org/10.1007/s00259-007-0454-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005425955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.035774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005435708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/81.3.425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016957463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.046136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017943586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026254228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035621842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.050401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037285767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2007.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037329759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01391351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044785439", 
          "https://doi.org/10.1007/bf01391351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.048330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048520989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/111605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058450184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/7/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/7/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/10/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.382009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061099553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.157290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.862633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.887733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2008.2001404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2003.809691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josa.62.000055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065152408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077412763", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083263153", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511564352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098709070"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-07", 
    "datePublishedReg": "2009-07-01", 
    "description": "PURPOSE: Partial volume effects (PVEs) are consequences of the limited resolution of emission tomography. The aim of the present study was to compare two new voxel-wise PVE correction algorithms based on deconvolution and wavelet-based denoising.\nMATERIALS AND METHODS: Deconvolution was performed using the Lucy-Richardson and the Van-Cittert algorithms. Both of these methods were tested using simulated and real FDG PET images. Wavelet-based denoising was incorporated into the process in order to eliminate the noise observed in classical deconvolution methods.\nRESULTS: Both deconvolution approaches led to significant intensity recovery, but the Van-Cittert algorithm provided images of inferior qualitative appearance. Furthermore, this method added massive levels of noise, even with the associated use of wavelet-denoising. On the other hand, the Lucy-Richardson algorithm combined with the same denoising process gave the best compromise between intensity recovery, noise attenuation and qualitative aspect of the images.\nCONCLUSION: The appropriate combination of deconvolution and wavelet-based denoising is an efficient method for reducing PVEs in emission tomography.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-009-1065-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging", 
    "pagination": "1064-1075", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fabcb23d13660d5d96631f44c609a019e6a3ac8c2b29783b702ab26bd4c5d534"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19224209"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-009-1065-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052639217"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-009-1065-5", 
      "https://app.dimensions.ai/details/publication/pub.1052639217"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13090_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-009-1065-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1065-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1065-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1065-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-009-1065-5'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      61 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-009-1065-5 schema:about N2203520bdeec4f46b8ab9db3e98b1065
2 N2d9fbb3d4b98445984ae79ba5e04c043
3 N33f2ad79067541b9ab519ba03fdb3085
4 N36d815e9301c4eab84d9cf3cf29be529
5 Nbab5b2ce9f20479fa3167ef950513411
6 Nc840940ab5a14be3835bcbf7d43c9e6a
7 Ncd44456d0a0642758c85d9db2331edca
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N5c0bc4962bb845e7964af8ba9328ad69
11 schema:citation sg:pub.10.1007/bf01391351
12 sg:pub.10.1007/s00259-007-0454-x
13 https://app.dimensions.ai/details/publication/pub.1077412763
14 https://app.dimensions.ai/details/publication/pub.1083263153
15 https://doi.org/10.1016/j.neurobiolaging.2007.05.019
16 https://doi.org/10.1016/j.neuroimage.2006.03.002
17 https://doi.org/10.1016/j.neuroimage.2007.04.048
18 https://doi.org/10.1016/j.neuroimage.2007.10.038
19 https://doi.org/10.1017/cbo9780511564352
20 https://doi.org/10.1086/111605
21 https://doi.org/10.1088/0031-9155/51/7/016
22 https://doi.org/10.1088/0031-9155/53/10/009
23 https://doi.org/10.1093/biomet/81.3.425
24 https://doi.org/10.1109/18.382009
25 https://doi.org/10.1109/34.192463
26 https://doi.org/10.1109/78.157290
27 https://doi.org/10.1109/83.862633
28 https://doi.org/10.1109/tip.2006.887733
29 https://doi.org/10.1109/tip.2008.2001404
30 https://doi.org/10.1109/tmi.2003.809691
31 https://doi.org/10.1364/josa.62.000055
32 https://doi.org/10.2967/jnumed.106.035774
33 https://doi.org/10.2967/jnumed.107.046136
34 https://doi.org/10.2967/jnumed.107.048330
35 https://doi.org/10.2967/jnumed.108.050401
36 schema:datePublished 2009-07
37 schema:datePublishedReg 2009-07-01
38 schema:description PURPOSE: Partial volume effects (PVEs) are consequences of the limited resolution of emission tomography. The aim of the present study was to compare two new voxel-wise PVE correction algorithms based on deconvolution and wavelet-based denoising. MATERIALS AND METHODS: Deconvolution was performed using the Lucy-Richardson and the Van-Cittert algorithms. Both of these methods were tested using simulated and real FDG PET images. Wavelet-based denoising was incorporated into the process in order to eliminate the noise observed in classical deconvolution methods. RESULTS: Both deconvolution approaches led to significant intensity recovery, but the Van-Cittert algorithm provided images of inferior qualitative appearance. Furthermore, this method added massive levels of noise, even with the associated use of wavelet-denoising. On the other hand, the Lucy-Richardson algorithm combined with the same denoising process gave the best compromise between intensity recovery, noise attenuation and qualitative aspect of the images. CONCLUSION: The appropriate combination of deconvolution and wavelet-based denoising is an efficient method for reducing PVEs in emission tomography.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N48d72d921765447688b4f44f71af507a
43 N832871d0b0004501998bb2d60427f3bb
44 sg:journal.1297401
45 schema:name Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging
46 schema:pagination 1064-1075
47 schema:productId N1b720998b52b406383ca32b9d4641190
48 N1b9b02d8ff884b9ea22eff060f2a40c7
49 N5f08159550264ef6b0c6640c8068275d
50 N9e50644c6ebc4b469842a6129e9048d5
51 Neca810911ccb44bbad811b13bd74ba6a
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052639217
53 https://doi.org/10.1007/s00259-009-1065-5
54 schema:sdDatePublished 2019-04-11T14:30
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N435ef84112294d13bb18febe898eacf7
57 schema:url http://link.springer.com/10.1007%2Fs00259-009-1065-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N02cfbcebea984c2184e0e49ad1091820 schema:name INSERM, U650, Laboratoire de Traitement de l’Information Médicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France
62 rdf:type schema:Organization
63 N063f7995ac404758a04cbdbe5197ed77 schema:name INSERM, U650, Laboratoire de Traitement de l’Information Médicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France
64 rdf:type schema:Organization
65 N16844636bb55451d8177fc58d00538c0 schema:name INSERM, U650, Laboratoire de Traitement de l’Information Médicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France
66 rdf:type schema:Organization
67 N1b720998b52b406383ca32b9d4641190 schema:name pubmed_id
68 schema:value 19224209
69 rdf:type schema:PropertyValue
70 N1b9b02d8ff884b9ea22eff060f2a40c7 schema:name dimensions_id
71 schema:value pub.1052639217
72 rdf:type schema:PropertyValue
73 N2203520bdeec4f46b8ab9db3e98b1065 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Fluorodeoxyglucose F18
75 rdf:type schema:DefinedTerm
76 N2d9fbb3d4b98445984ae79ba5e04c043 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N33f2ad79067541b9ab519ba03fdb3085 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Whole Body Imaging
81 rdf:type schema:DefinedTerm
82 N36d815e9301c4eab84d9cf3cf29be529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Algorithms
84 rdf:type schema:DefinedTerm
85 N435ef84112294d13bb18febe898eacf7 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N48d72d921765447688b4f44f71af507a schema:issueNumber 7
88 rdf:type schema:PublicationIssue
89 N498ae61ac5f745609d9d4bf3fca1d6ae schema:name INSERM, U650, Laboratoire de Traitement de l’Information Médicale (LaTIM) CHU MORVAN, Bat 2bis (I3S), 5 avenue Foch, 29609, Brest, France
90 rdf:type schema:Organization
91 N5a0b8220fed040aa8b430e31161b8b5c rdf:first sg:person.01255045106.49
92 rdf:rest rdf:nil
93 N5c0bc4962bb845e7964af8ba9328ad69 rdf:first sg:person.0721543407.12
94 rdf:rest Nc9dda65a56cf4ca49eff0345ab9dab22
95 N5f08159550264ef6b0c6640c8068275d schema:name doi
96 schema:value 10.1007/s00259-009-1065-5
97 rdf:type schema:PropertyValue
98 N832871d0b0004501998bb2d60427f3bb schema:volumeNumber 36
99 rdf:type schema:PublicationVolume
100 N9e50644c6ebc4b469842a6129e9048d5 schema:name nlm_unique_id
101 schema:value 101140988
102 rdf:type schema:PropertyValue
103 Na90061baeced4d0cbf3c9454e02e94b4 rdf:first sg:person.01202724075.78
104 rdf:rest N5a0b8220fed040aa8b430e31161b8b5c
105 Nbab5b2ce9f20479fa3167ef950513411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Positron-Emission Tomography
107 rdf:type schema:DefinedTerm
108 Nc840940ab5a14be3835bcbf7d43c9e6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Sensitivity and Specificity
110 rdf:type schema:DefinedTerm
111 Nc9dda65a56cf4ca49eff0345ab9dab22 rdf:first sg:person.012576527021.82
112 rdf:rest Na90061baeced4d0cbf3c9454e02e94b4
113 Ncd44456d0a0642758c85d9db2331edca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Image Processing, Computer-Assisted
115 rdf:type schema:DefinedTerm
116 Neca810911ccb44bbad811b13bd74ba6a schema:name readcube_id
117 schema:value fabcb23d13660d5d96631f44c609a019e6a3ac8c2b29783b702ab26bd4c5d534
118 rdf:type schema:PropertyValue
119 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information and Computing Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
123 schema:name Artificial Intelligence and Image Processing
124 rdf:type schema:DefinedTerm
125 sg:journal.1297401 schema:issn 1619-7070
126 1619-7089
127 schema:name European Journal of Nuclear Medicine and Molecular Imaging
128 rdf:type schema:Periodical
129 sg:person.01202724075.78 schema:affiliation N063f7995ac404758a04cbdbe5197ed77
130 schema:familyName Hatt
131 schema:givenName M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202724075.78
133 rdf:type schema:Person
134 sg:person.01255045106.49 schema:affiliation N498ae61ac5f745609d9d4bf3fca1d6ae
135 schema:familyName Visvikis
136 schema:givenName D.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045106.49
138 rdf:type schema:Person
139 sg:person.012576527021.82 schema:affiliation N02cfbcebea984c2184e0e49ad1091820
140 schema:familyName Cheze Le Rest
141 schema:givenName C.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576527021.82
143 rdf:type schema:Person
144 sg:person.0721543407.12 schema:affiliation N16844636bb55451d8177fc58d00538c0
145 schema:familyName Boussion
146 schema:givenName N.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721543407.12
148 rdf:type schema:Person
149 sg:pub.10.1007/bf01391351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044785439
150 https://doi.org/10.1007/bf01391351
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00259-007-0454-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003502621
153 https://doi.org/10.1007/s00259-007-0454-x
154 rdf:type schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1077412763 schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1083263153 schema:CreativeWork
157 https://doi.org/10.1016/j.neurobiolaging.2007.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037329759
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neuroimage.2006.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026254228
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neuroimage.2007.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035621842
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.neuroimage.2007.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005425955
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1017/cbo9780511564352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098709070
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1086/111605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058450184
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0031-9155/51/7/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026484
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0031-9155/53/10/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027096
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/biomet/81.3.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016957463
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/18.382009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061099553
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/34.192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155760
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/78.157290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228108
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/83.862633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240184
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tip.2006.887733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641634
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tip.2008.2001404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641931
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tmi.2003.809691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694404
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1364/josa.62.000055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065152408
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2967/jnumed.106.035774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005435708
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2967/jnumed.107.046136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017943586
194 rdf:type schema:CreativeWork
195 https://doi.org/10.2967/jnumed.107.048330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048520989
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2967/jnumed.108.050401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037285767
198 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...