Parametric renal blood flow imaging using [15O]H2O and PET View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-12-03

AUTHORS

Nobuyuki Kudomi, Niina Koivuviita, Kaisa E. Liukko, Vesa J. Oikonen, Tuula Tolvanen, Hidehiro Iida, Risto Tertti, Kaj Metsärinne, Patricia Iozzo, Pirjo Nuutila

ABSTRACT

PurposeThe quantitative assessment of renal blood flow (RBF) may help to understand the physiological basis of kidney function and allow an evaluation of pathophysiological events leading to vascular damage, such as renal arterial stenosis and chronic allograft nephropathy. The RBF may be quantified using PET with H215O, although RBF studies that have been performed without theoretical evaluation have assumed the partition coefficient of water (p, ml/g) to be uniform over the whole region of renal tissue, and/or radioactivity from the vascular space (VA. ml/ml) to be negligible. The aim of this study was to develop a method for calculating parametric images of RBF (K1, k2) as well as VA without fixing the partition coefficient by the basis function method (BFM).MethodsThe feasibility was tested in healthy subjects. A simulation study was performed to evaluate error sensitivities for possible error sources.ResultsThe experimental study showed that the quantitative accuracy of the present method was consistent with nonlinear least-squares fitting, i.e. K1,BFM=0.93K1,NLF−0.11 ml/min/g (r=0.80, p<0.001), k2,BFM=0.96k2,NLF−0.13 ml/min/g (r=0.77, p<0.001), and VA,BFM=0.92VA,NLF−0.00 ml/ml (r=0.97, p<0.001). Values of the Akaike information criterion from this fitting were the smallest for all subjects except two. The quality of parametric images obtained was acceptable.ConclusionThe simulation study suggested that delay and dispersion time constants should be estimated within an accuracy of 2 s. VA and p cannot be neglected or fixed, and reliable measurement of even relative RBF values requires that VA is fitted. This study showed the feasibility of measurement of RBF using PET with H215O. More... »

PAGES

683-691

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-008-0994-8

DOI

http://dx.doi.org/10.1007/s00259-008-0994-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050215159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19050876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Renal Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudomi", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.01065623464.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065623464.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Turku, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Department of Medicine, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koivuviita", 
        "givenName": "Niina", 
        "id": "sg:person.0632244006.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632244006.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liukko", 
        "givenName": "Kaisa E.", 
        "id": "sg:person.01132370453.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132370453.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oikonen", 
        "givenName": "Vesa J.", 
        "id": "sg:person.0633127700.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633127700.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolvanen", 
        "givenName": "Tuula", 
        "id": "sg:person.01066765250.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066765250.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Investigative Radiology, Advanced Medical-Engineering Center, National Cardiovascular Center-Research Institute, 5-7-1, Fujishirodai, 565-8565, Suita, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410796.d", 
          "name": [
            "Department of Investigative Radiology, Advanced Medical-Engineering Center, National Cardiovascular Center-Research Institute, 5-7-1, Fujishirodai, 565-8565, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iida", 
        "givenName": "Hidehiro", 
        "id": "sg:person.01225435647.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225435647.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Turku, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Department of Medicine, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tertti", 
        "givenName": "Risto", 
        "id": "sg:person.01203240526.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203240526.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Turku, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Department of Medicine, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mets\u00e4rinne", 
        "givenName": "Kaj", 
        "id": "sg:person.015764613414.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015764613414.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Clinical Physiology, National Research Council, 56100, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.418529.3", 
          "name": [
            "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland", 
            "Institute of Clinical Physiology, National Research Council, 56100, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iozzo", 
        "givenName": "Patricia", 
        "id": "sg:person.01225611056.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225611056.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Turku, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland", 
            "Department of Medicine, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nuutila", 
        "givenName": "Pirjo", 
        "id": "sg:person.0763376117.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763376117.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01254567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000667190", 
          "https://doi.org/10.1007/bf01254567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6601105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021125163", 
          "https://doi.org/10.1038/sj.bjc.6601105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-005-0007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003075443", 
          "https://doi.org/10.1007/s11307-005-0007-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-03", 
    "datePublishedReg": "2008-12-03", 
    "description": "PurposeThe quantitative assessment of renal blood flow (RBF) may help to understand the physiological basis of kidney function and allow an evaluation of pathophysiological events leading to vascular damage, such as renal arterial stenosis and chronic allograft nephropathy. The RBF may be quantified using PET with H215O, although RBF studies that have been performed without theoretical evaluation have assumed the partition coefficient of water (p, ml/g) to be uniform over the whole region of renal tissue, and/or radioactivity from the vascular space (VA. ml/ml) to be negligible. The aim of this study was to develop a method for calculating parametric images of RBF (K1, k2) as well as VA without fixing the partition coefficient by the basis function method (BFM).MethodsThe feasibility was tested in healthy subjects. A simulation study was performed to evaluate error sensitivities for possible error sources.ResultsThe experimental study showed that the quantitative accuracy of the present method was consistent with nonlinear least-squares fitting, i.e. K1,BFM=0.93K1,NLF\u22120.11\u00a0ml/min/g (r=0.80, p<0.001), k2,BFM=0.96k2,NLF\u22120.13\u00a0ml/min/g (r=0.77, p<0.001), and VA,BFM=0.92VA,NLF\u22120.00\u00a0ml/ml (r=0.97, p<0.001). Values of the Akaike information criterion from this fitting were the smallest for all subjects except two. The quality of parametric images obtained was acceptable.ConclusionThe simulation study suggested that delay and dispersion time constants should be estimated within an accuracy of 2\u00a0s. VA and p cannot be neglected or fixed, and reliable measurement of even relative RBF values requires that VA is fitted. This study showed the feasibility of measurement of RBF using PET with H215O.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-008-0994-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8846712", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "renal blood flow", 
      "chronic allograft nephropathy", 
      "renal arterial stenosis", 
      "min/", 
      "allograft nephropathy", 
      "kidney function", 
      "vascular damage", 
      "renal tissue", 
      "healthy subjects", 
      "blood flow", 
      "pathophysiological events", 
      "arterial stenosis", 
      "vascular space", 
      "MethodsThe feasibility", 
      "RBF values", 
      "blood flow imaging", 
      "feasibility of measurement", 
      "flow imaging", 
      "VA", 
      "parametric images", 
      "PET", 
      "subjects", 
      "physiological basis", 
      "nephropathy", 
      "stenosis", 
      "quantitative assessment", 
      "study", 
      "H215O.", 
      "H215O", 
      "evaluation", 
      "tissue", 
      "imaging", 
      "radioactivity", 
      "aim", 
      "reliable measurements", 
      "damage", 
      "assessment", 
      "criteria", 
      "feasibility", 
      "Akaike information criterion", 
      "sensitivity", 
      "events", 
      "time constants", 
      "function", 
      "values", 
      "method", 
      "quality", 
      "experimental study", 
      "delay", 
      "measurements", 
      "information criterion", 
      "partition coefficients", 
      "basis", 
      "region", 
      "images", 
      "quantitative accuracy", 
      "accuracy", 
      "flow", 
      "source", 
      "coefficient", 
      "present method", 
      "space", 
      "water", 
      "simulation study", 
      "fitting", 
      "whole region", 
      "constants", 
      "theoretical evaluation", 
      "possible error sources", 
      "error sensitivity", 
      "basis function method", 
      "error sources", 
      "function method", 
      "RBF studies", 
      "dispersion time constants", 
      "relative RBF values", 
      "Parametric renal blood flow imaging", 
      "renal blood flow imaging"
    ], 
    "name": "Parametric renal blood flow imaging using [15O]H2O and PET", 
    "pagination": "683-691", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050215159"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-008-0994-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19050876"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-008-0994-8", 
      "https://app.dimensions.ai/details/publication/pub.1050215159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_459.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-008-0994-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0994-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0994-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0994-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0994-8'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      22 PREDICATES      122 URIs      111 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-008-0994-8 schema:about N07cbce97014f4ab38410c063818f555c
2 N266225393734495aa391b5204088d070
3 N3d5432acbe314035b3a821be9c2210e1
4 N5dfb03ce7db149908f8985ff86dd8369
5 N68e9a3a219c14ebebf211a6e7f4797a1
6 N80646c3e31884401b76c399971e9c748
7 N81ddb05b27144d0c87979001c1d5e300
8 N909231b1e4594d88b2dcebfe4e91461f
9 N97c4ce2177f64aa78a537f620e1b56b5
10 N9b9a4ab0d8b246278fe440646edc2dc6
11 Na70e09aee6e94cb2a2b471906ca0f79c
12 Nacc02647eb174164b26ab8562c0bab39
13 Ne5cc48e0f18c400b9fe9c1dfa8e89d97
14 Ne60c6e8fd0d440b4b845a886e7e04e22
15 Ned58851fb0cd48cda327c6d8320c3b66
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author N718e60d706c345e19a1973b85ea9d34a
19 schema:citation sg:pub.10.1007/bf01254567
20 sg:pub.10.1007/s11307-005-0007-2
21 sg:pub.10.1038/sj.bjc.6601105
22 schema:datePublished 2008-12-03
23 schema:datePublishedReg 2008-12-03
24 schema:description PurposeThe quantitative assessment of renal blood flow (RBF) may help to understand the physiological basis of kidney function and allow an evaluation of pathophysiological events leading to vascular damage, such as renal arterial stenosis and chronic allograft nephropathy. The RBF may be quantified using PET with H215O, although RBF studies that have been performed without theoretical evaluation have assumed the partition coefficient of water (p, ml/g) to be uniform over the whole region of renal tissue, and/or radioactivity from the vascular space (VA. ml/ml) to be negligible. The aim of this study was to develop a method for calculating parametric images of RBF (K1, k2) as well as VA without fixing the partition coefficient by the basis function method (BFM).MethodsThe feasibility was tested in healthy subjects. A simulation study was performed to evaluate error sensitivities for possible error sources.ResultsThe experimental study showed that the quantitative accuracy of the present method was consistent with nonlinear least-squares fitting, i.e. K1,BFM=0.93K1,NLF−0.11 ml/min/g (r=0.80, p<0.001), k2,BFM=0.96k2,NLF−0.13 ml/min/g (r=0.77, p<0.001), and VA,BFM=0.92VA,NLF−0.00 ml/ml (r=0.97, p<0.001). Values of the Akaike information criterion from this fitting were the smallest for all subjects except two. The quality of parametric images obtained was acceptable.ConclusionThe simulation study suggested that delay and dispersion time constants should be estimated within an accuracy of 2 s. VA and p cannot be neglected or fixed, and reliable measurement of even relative RBF values requires that VA is fitted. This study showed the feasibility of measurement of RBF using PET with H215O.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N91e991c844fa47e087b3d00592e18436
29 Nbc6b4a2a7c214e54b0dce76722145bb2
30 sg:journal.1297401
31 schema:keywords Akaike information criterion
32 H215O
33 H215O.
34 MethodsThe feasibility
35 PET
36 Parametric renal blood flow imaging
37 RBF studies
38 RBF values
39 VA
40 accuracy
41 aim
42 allograft nephropathy
43 arterial stenosis
44 assessment
45 basis
46 basis function method
47 blood flow
48 blood flow imaging
49 chronic allograft nephropathy
50 coefficient
51 constants
52 criteria
53 damage
54 delay
55 dispersion time constants
56 error sensitivity
57 error sources
58 evaluation
59 events
60 experimental study
61 feasibility
62 feasibility of measurement
63 fitting
64 flow
65 flow imaging
66 function
67 function method
68 healthy subjects
69 images
70 imaging
71 information criterion
72 kidney function
73 measurements
74 method
75 min/
76 nephropathy
77 parametric images
78 partition coefficients
79 pathophysiological events
80 physiological basis
81 possible error sources
82 present method
83 quality
84 quantitative accuracy
85 quantitative assessment
86 radioactivity
87 region
88 relative RBF values
89 reliable measurements
90 renal arterial stenosis
91 renal blood flow
92 renal blood flow imaging
93 renal tissue
94 sensitivity
95 simulation study
96 source
97 space
98 stenosis
99 study
100 subjects
101 theoretical evaluation
102 time constants
103 tissue
104 values
105 vascular damage
106 vascular space
107 water
108 whole region
109 schema:name Parametric renal blood flow imaging using [15O]H2O and PET
110 schema:pagination 683-691
111 schema:productId N34fd8aa7bdf24c0b8c1c0af839564f25
112 N7e01fae641d847b0b1ba197061646159
113 Na6e73897098e461fb3fec879ba417dc0
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050215159
115 https://doi.org/10.1007/s00259-008-0994-8
116 schema:sdDatePublished 2021-12-01T19:19
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N1734765a095045b89aed0d9a749a7e3a
119 schema:url https://doi.org/10.1007/s00259-008-0994-8
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N01e26c54be8e4688b0a08a2713a2f891 rdf:first sg:person.0632244006.51
124 rdf:rest N2d74518460af401cb86f596a9a51bfe5
125 N07cbce97014f4ab38410c063818f555c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Image Interpretation, Computer-Assisted
127 rdf:type schema:DefinedTerm
128 N1463632814ce4941b8494bf069aedab7 rdf:first sg:person.0633127700.74
129 rdf:rest N90fba5da6fdb4c5caa840fef9719aa38
130 N14fe7ec531544b87bfd4019591ec50e1 rdf:first sg:person.01203240526.25
131 rdf:rest N4b43f1b7fe014207b7c57d40aba01683
132 N1734765a095045b89aed0d9a749a7e3a schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N266225393734495aa391b5204088d070 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Positron-Emission Tomography
136 rdf:type schema:DefinedTerm
137 N2d74518460af401cb86f596a9a51bfe5 rdf:first sg:person.01132370453.92
138 rdf:rest N1463632814ce4941b8494bf069aedab7
139 N34fd8aa7bdf24c0b8c1c0af839564f25 schema:name doi
140 schema:value 10.1007/s00259-008-0994-8
141 rdf:type schema:PropertyValue
142 N3d5432acbe314035b3a821be9c2210e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 N4b43f1b7fe014207b7c57d40aba01683 rdf:first sg:person.015764613414.39
146 rdf:rest Nf5cc3b4b2fec4375a918d01c132cd5eb
147 N52c9d569620747b495384c109bb6f5e3 rdf:first sg:person.0763376117.17
148 rdf:rest rdf:nil
149 N5400dc334b474b5b8684ad95099dfeac rdf:first sg:person.01225435647.37
150 rdf:rest N14fe7ec531544b87bfd4019591ec50e1
151 N5dfb03ce7db149908f8985ff86dd8369 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Computer Simulation
153 rdf:type schema:DefinedTerm
154 N68e9a3a219c14ebebf211a6e7f4797a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Diagnostic Imaging
156 rdf:type schema:DefinedTerm
157 N718e60d706c345e19a1973b85ea9d34a rdf:first sg:person.01065623464.32
158 rdf:rest N01e26c54be8e4688b0a08a2713a2f891
159 N7e01fae641d847b0b1ba197061646159 schema:name pubmed_id
160 schema:value 19050876
161 rdf:type schema:PropertyValue
162 N80646c3e31884401b76c399971e9c748 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Reproducibility of Results
164 rdf:type schema:DefinedTerm
165 N81ddb05b27144d0c87979001c1d5e300 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Renal Circulation
167 rdf:type schema:DefinedTerm
168 N909231b1e4594d88b2dcebfe4e91461f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Models, Statistical
170 rdf:type schema:DefinedTerm
171 N90fba5da6fdb4c5caa840fef9719aa38 rdf:first sg:person.01066765250.13
172 rdf:rest N5400dc334b474b5b8684ad95099dfeac
173 N91e991c844fa47e087b3d00592e18436 schema:volumeNumber 36
174 rdf:type schema:PublicationVolume
175 N97c4ce2177f64aa78a537f620e1b56b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Models, Theoretical
177 rdf:type schema:DefinedTerm
178 N9b9a4ab0d8b246278fe440646edc2dc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged
180 rdf:type schema:DefinedTerm
181 Na6e73897098e461fb3fec879ba417dc0 schema:name dimensions_id
182 schema:value pub.1050215159
183 rdf:type schema:PropertyValue
184 Na70e09aee6e94cb2a2b471906ca0f79c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Middle Aged
186 rdf:type schema:DefinedTerm
187 Nacc02647eb174164b26ab8562c0bab39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Oxygen Radioisotopes
189 rdf:type schema:DefinedTerm
190 Nbc6b4a2a7c214e54b0dce76722145bb2 schema:issueNumber 4
191 rdf:type schema:PublicationIssue
192 Ne5cc48e0f18c400b9fe9c1dfa8e89d97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Water
194 rdf:type schema:DefinedTerm
195 Ne60c6e8fd0d440b4b845a886e7e04e22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Radiopharmaceuticals
197 rdf:type schema:DefinedTerm
198 Ned58851fb0cd48cda327c6d8320c3b66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Kidney
200 rdf:type schema:DefinedTerm
201 Nf5cc3b4b2fec4375a918d01c132cd5eb rdf:first sg:person.01225611056.51
202 rdf:rest N52c9d569620747b495384c109bb6f5e3
203 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
204 schema:name Medical and Health Sciences
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
207 schema:name Clinical Sciences
208 rdf:type schema:DefinedTerm
209 sg:grant.8846712 http://pending.schema.org/fundedItem sg:pub.10.1007/s00259-008-0994-8
210 rdf:type schema:MonetaryGrant
211 sg:journal.1297401 schema:issn 1619-7070
212 1619-7089
213 schema:name European Journal of Nuclear Medicine and Molecular Imaging
214 schema:publisher Springer Nature
215 rdf:type schema:Periodical
216 sg:person.01065623464.32 schema:affiliation grid-institutes:grid.470895.7
217 schema:familyName Kudomi
218 schema:givenName Nobuyuki
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065623464.32
220 rdf:type schema:Person
221 sg:person.01066765250.13 schema:affiliation grid-institutes:grid.470895.7
222 schema:familyName Tolvanen
223 schema:givenName Tuula
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066765250.13
225 rdf:type schema:Person
226 sg:person.01132370453.92 schema:affiliation grid-institutes:grid.470895.7
227 schema:familyName Liukko
228 schema:givenName Kaisa E.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132370453.92
230 rdf:type schema:Person
231 sg:person.01203240526.25 schema:affiliation grid-institutes:grid.1374.1
232 schema:familyName Tertti
233 schema:givenName Risto
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203240526.25
235 rdf:type schema:Person
236 sg:person.01225435647.37 schema:affiliation grid-institutes:grid.410796.d
237 schema:familyName Iida
238 schema:givenName Hidehiro
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225435647.37
240 rdf:type schema:Person
241 sg:person.01225611056.51 schema:affiliation grid-institutes:grid.418529.3
242 schema:familyName Iozzo
243 schema:givenName Patricia
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225611056.51
245 rdf:type schema:Person
246 sg:person.015764613414.39 schema:affiliation grid-institutes:grid.1374.1
247 schema:familyName Metsärinne
248 schema:givenName Kaj
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015764613414.39
250 rdf:type schema:Person
251 sg:person.0632244006.51 schema:affiliation grid-institutes:grid.1374.1
252 schema:familyName Koivuviita
253 schema:givenName Niina
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632244006.51
255 rdf:type schema:Person
256 sg:person.0633127700.74 schema:affiliation grid-institutes:grid.470895.7
257 schema:familyName Oikonen
258 schema:givenName Vesa J.
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633127700.74
260 rdf:type schema:Person
261 sg:person.0763376117.17 schema:affiliation grid-institutes:grid.1374.1
262 schema:familyName Nuutila
263 schema:givenName Pirjo
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763376117.17
265 rdf:type schema:Person
266 sg:pub.10.1007/bf01254567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000667190
267 https://doi.org/10.1007/bf01254567
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s11307-005-0007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003075443
270 https://doi.org/10.1007/s11307-005-0007-2
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/sj.bjc.6601105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021125163
273 https://doi.org/10.1038/sj.bjc.6601105
274 rdf:type schema:CreativeWork
275 grid-institutes:grid.1374.1 schema:alternateName Department of Medicine, University of Turku, Turku, Finland
276 schema:name Department of Medicine, University of Turku, Turku, Finland
277 Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
278 rdf:type schema:Organization
279 grid-institutes:grid.410796.d schema:alternateName Department of Investigative Radiology, Advanced Medical-Engineering Center, National Cardiovascular Center-Research Institute, 5-7-1, Fujishirodai, 565-8565, Suita, Osaka, Japan
280 schema:name Department of Investigative Radiology, Advanced Medical-Engineering Center, National Cardiovascular Center-Research Institute, 5-7-1, Fujishirodai, 565-8565, Suita, Osaka, Japan
281 rdf:type schema:Organization
282 grid-institutes:grid.418529.3 schema:alternateName Institute of Clinical Physiology, National Research Council, 56100, Pisa, Italy
283 schema:name Institute of Clinical Physiology, National Research Council, 56100, Pisa, Italy
284 Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
285 rdf:type schema:Organization
286 grid-institutes:grid.470895.7 schema:alternateName Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
287 schema:name Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...