Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-05-27

AUTHORS

Kenichi Nakajima, Nagara Tamaki, Yoichi Kuwabara, Masaya Kawano, Ichiro Matsunari, Junichi Taki, Shigeyuki Nishimura, Akira Yamashina, Yoshio Ishida, Hitonobu Tomoike

ABSTRACT

BackgroundsPrediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies.MethodsA total of 252 patients with recent myocardial infarction (n = 74) and old myocardial infarction (n = 175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99mTc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132 ± 81 days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments.ResultsNon-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66 ± 17% and 55 ± 18%, p < 0.0001 for non-gated; 64 ± 16% and 51 ± 17% for ES percent uptake, p < 0.0001). The area under the curve of receiver operating characteristics curve for non-gated percent uptake, ES percent uptake, end-diastolic percent uptake and visual perfusion defect score was 0.70, 0.71, 0.61, and 0.56, respectively. Sensitivity and specificity of percent uptake were 68% and 64% for non-gated map and 80% and 52% for ES percent uptake map. An optimal threshold for predicting segmental improvement was 63% for non-gated and 52% for ES percent uptake values.ConclusionSegmental 99mTc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study. More... »

PAGES

2038-2048

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6

DOI

http://dx.doi.org/10.1007/s00259-008-0838-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015077647

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18504576


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Revascularization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organotechnetium Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recovery of Function", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakajima", 
        "givenName": "Kenichi", 
        "id": "sg:person.014366212412.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamaki", 
        "givenName": "Nagara", 
        "id": "sg:person.0634755344.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755344.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuwabara", 
        "givenName": "Yoichi", 
        "id": "sg:person.0752532133.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752532133.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawano", 
        "givenName": "Masaya", 
        "id": "sg:person.01354224343.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354224343.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Medical and Pharmacological Research Center Foundation, Hakui, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Medical and Pharmacological Research Center Foundation, Hakui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsunari", 
        "givenName": "Ichiro", 
        "id": "sg:person.01304620656.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304620656.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412002.5", 
          "name": [
            "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taki", 
        "givenName": "Junichi", 
        "id": "sg:person.01215073031.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215073031.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Saitama Medical University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410802.f", 
          "name": [
            "Department of Cardiology, Saitama Medical University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimura", 
        "givenName": "Shigeyuki", 
        "id": "sg:person.016665110142.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665110142.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Tokyo Medical University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410793.8", 
          "name": [
            "Department of Cardiology, Tokyo Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamashina", 
        "givenName": "Akira", 
        "id": "sg:person.01243457214.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243457214.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cardiovascular Center, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410796.d", 
          "name": [
            "National Cardiovascular Center, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishida", 
        "givenName": "Yoshio", 
        "id": "sg:person.0717447470.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717447470.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cardiovascular Center, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410796.d", 
          "name": [
            "National Cardiovascular Center, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomoike", 
        "givenName": "Hitonobu", 
        "id": "sg:person.01365307304.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365307304.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03032555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026866859", 
          "https://doi.org/10.1007/bf03032555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039261088", 
          "https://doi.org/10.1007/bf00168164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2004.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034051507", 
          "https://doi.org/10.1016/j.nuclcard.2004.03.033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-004-1569-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043079855", 
          "https://doi.org/10.1007/s00259-004-1569-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1067/mnc.2002.118122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027365947", 
          "https://doi.org/10.1067/mnc.2002.118122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1916-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047719218", 
          "https://doi.org/10.1007/s00259-005-1916-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(05)80075-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034767417", 
          "https://doi.org/10.1016/s1071-3581(05)80075-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-05-27", 
    "datePublishedReg": "2008-05-27", 
    "description": "BackgroundsPrediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies.MethodsA total of 252 patients with recent myocardial infarction (n\u2009=\u200974) and old myocardial infarction (n\u2009=\u2009175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99mTc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132\u2009\u00b1\u200981\u00a0days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments.ResultsNon-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66\u2009\u00b1\u200917% and 55\u2009\u00b1\u200918%, p\u2009<\u20090.0001 for non-gated; 64\u2009\u00b1\u200916% and 51\u2009\u00b1\u200917% for ES percent uptake, p\u2009<\u20090.0001). The area under the curve of receiver operating characteristics curve for non-gated percent uptake, ES percent uptake, end-diastolic percent uptake and visual perfusion defect score was 0.70, 0.71, 0.61, and 0.56, respectively. Sensitivity and specificity of percent uptake were 68% and 64% for non-gated map and 80% and 52% for ES percent uptake map. An optimal threshold for predicting segmental improvement was 63% for non-gated and 52% for ES percent uptake values.ConclusionSegmental 99mTc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-008-0838-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "multi-center study", 
      "myocardial infarction", 
      "functional recovery", 
      "percent uptake", 
      "left ventricular functional recovery", 
      "multi-center cohort study", 
      "ventricular functional recovery", 
      "wall motion recovery", 
      "recent myocardial infarction", 
      "perfusion defect score", 
      "wall motion improvement", 
      "non-improved group", 
      "old myocardial infarction", 
      "percent uptake values", 
      "single photon emission", 
      "myocardial perfusion SPECT", 
      "curve (AUC) of receiver", 
      "average follow", 
      "cohort study", 
      "defect score", 
      "motion improvement", 
      "perfusion SPECT", 
      "uptake value", 
      "gated SPECT", 
      "infarction", 
      "quantitative perfusion", 
      "useful predictor", 
      "revascularization", 
      "characteristic curve", 
      "patients", 
      "perfusion", 
      "wall motion", 
      "SPECT", 
      "best predictor", 
      "predictors", 
      "uptake", 
      "uptake maps", 
      "predictive accuracy", 
      "quantitative assessment", 
      "follow", 
      "study", 
      "recovery", 
      "predictive ability", 
      "motion analysis", 
      "tomography", 
      "total", 
      "scores", 
      "optimal threshold", 
      "days", 
      "motion recovery", 
      "improvement", 
      "group", 
      "visual analysis", 
      "specificity", 
      "assessment", 
      "period", 
      "sensitivity", 
      "curves", 
      "analysis", 
      "segments", 
      "threshold", 
      "ability", 
      "institutions", 
      "impact", 
      "Japan", 
      "area", 
      "receiver", 
      "quantitative approach", 
      "isonitrile", 
      "values", 
      "approach", 
      "accuracy", 
      "motion", 
      "maps", 
      "prediction", 
      "applications", 
      "emission", 
      "BackgroundsPrediction", 
      "isobutyl isonitrile", 
      "ResultsNon-gated segmental percent uptake", 
      "segmental percent uptake", 
      "end-systolic (ES) percent uptake", 
      "non-gated percent uptake", 
      "ES percent uptake", 
      "end-diastolic percent uptake", 
      "visual perfusion defect score", 
      "non-gated map", 
      "ES percent uptake map", 
      "percent uptake map", 
      "segmental improvement", 
      "ES percent uptake values", 
      "ConclusionSegmental 99mTc-MIBI uptake", 
      "ES percent uptake enhanced predictive accuracy", 
      "percent uptake enhanced predictive accuracy", 
      "uptake enhanced predictive accuracy", 
      "enhanced predictive accuracy"
    ], 
    "name": "Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan", 
    "pagination": "2038-2048", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015077647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-008-0838-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18504576"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-008-0838-6", 
      "https://app.dimensions.ai/details/publication/pub.1015077647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_469.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-008-0838-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'


 

This table displays all metadata directly associated to this object as RDF triples.

340 TRIPLES      22 PREDICATES      146 URIs      129 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-008-0838-6 schema:about N020afcfa0c8c436ea4d74f29cf679d2e
2 N1471707cc2274a9fb467fe5ae1551287
3 N189bc1e7fa4e4b75933f2d593eb0068d
4 N271b581892854a4cba22495b447c84a8
5 N3ebd611c45b044448172210089b5ead6
6 N42615b885c7d4796855f71ed2a9993e9
7 N6ad840da4d074224b30d25fb49efd5f8
8 N8a224d944aaa42daa9c6290d619c2935
9 N90347e4b90274e7bab59224971f24f5c
10 Na9279d1918424856958bd7e9727c03d0
11 Nad2252ce3eef49a1bb3afd5ec6bdf787
12 Nc22d54043fbc4f9890351f423b206f75
13 Nd5fc9b0083d14e4c931178c9b83b0dd8
14 Nd72f76b3e3994029891b3eab39c2c0fd
15 Ne6e50b578e17468ba64274c0e1342bfb
16 anzsrc-for:02
17 anzsrc-for:0299
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N77db3ed35da1463285ef7a1b92ba1a11
21 schema:citation sg:pub.10.1007/bf00168164
22 sg:pub.10.1007/bf03032555
23 sg:pub.10.1007/s00259-004-1569-y
24 sg:pub.10.1007/s00259-005-1916-7
25 sg:pub.10.1016/j.nuclcard.2004.03.033
26 sg:pub.10.1016/s1071-3581(05)80075-3
27 sg:pub.10.1067/mnc.2002.118122
28 schema:datePublished 2008-05-27
29 schema:datePublishedReg 2008-05-27
30 schema:description BackgroundsPrediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies.MethodsA total of 252 patients with recent myocardial infarction (n = 74) and old myocardial infarction (n = 175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99mTc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132 ± 81 days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments.ResultsNon-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66 ± 17% and 55 ± 18%, p < 0.0001 for non-gated; 64 ± 16% and 51 ± 17% for ES percent uptake, p < 0.0001). The area under the curve of receiver operating characteristics curve for non-gated percent uptake, ES percent uptake, end-diastolic percent uptake and visual perfusion defect score was 0.70, 0.71, 0.61, and 0.56, respectively. Sensitivity and specificity of percent uptake were 68% and 64% for non-gated map and 80% and 52% for ES percent uptake map. An optimal threshold for predicting segmental improvement was 63% for non-gated and 52% for ES percent uptake values.ConclusionSegmental 99mTc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N5da5d593337f42c78c2f72545024031d
35 N7e57d166a1e641c2a50cef02e3279b9d
36 sg:journal.1297401
37 schema:keywords BackgroundsPrediction
38 ConclusionSegmental 99mTc-MIBI uptake
39 ES percent uptake
40 ES percent uptake enhanced predictive accuracy
41 ES percent uptake map
42 ES percent uptake values
43 Japan
44 ResultsNon-gated segmental percent uptake
45 SPECT
46 ability
47 accuracy
48 analysis
49 applications
50 approach
51 area
52 assessment
53 average follow
54 best predictor
55 characteristic curve
56 cohort study
57 curve (AUC) of receiver
58 curves
59 days
60 defect score
61 emission
62 end-diastolic percent uptake
63 end-systolic (ES) percent uptake
64 enhanced predictive accuracy
65 follow
66 functional recovery
67 gated SPECT
68 group
69 impact
70 improvement
71 infarction
72 institutions
73 isobutyl isonitrile
74 isonitrile
75 left ventricular functional recovery
76 maps
77 motion
78 motion analysis
79 motion improvement
80 motion recovery
81 multi-center cohort study
82 multi-center study
83 myocardial infarction
84 myocardial perfusion SPECT
85 non-gated map
86 non-gated percent uptake
87 non-improved group
88 old myocardial infarction
89 optimal threshold
90 patients
91 percent uptake
92 percent uptake enhanced predictive accuracy
93 percent uptake map
94 percent uptake values
95 perfusion
96 perfusion SPECT
97 perfusion defect score
98 period
99 prediction
100 predictive ability
101 predictive accuracy
102 predictors
103 quantitative approach
104 quantitative assessment
105 quantitative perfusion
106 receiver
107 recent myocardial infarction
108 recovery
109 revascularization
110 scores
111 segmental improvement
112 segmental percent uptake
113 segments
114 sensitivity
115 single photon emission
116 specificity
117 study
118 threshold
119 tomography
120 total
121 uptake
122 uptake enhanced predictive accuracy
123 uptake maps
124 uptake value
125 useful predictor
126 values
127 ventricular functional recovery
128 visual analysis
129 visual perfusion defect score
130 wall motion
131 wall motion improvement
132 wall motion recovery
133 schema:name Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan
134 schema:pagination 2038-2048
135 schema:productId N2cc992db03ae4bebbebe2fb86b880242
136 N9b5b0578176648eab697e82518c4f0ac
137 Nd9f65ea22b5f418884ab8e813f58faf3
138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015077647
139 https://doi.org/10.1007/s00259-008-0838-6
140 schema:sdDatePublished 2022-01-01T18:19
141 schema:sdLicense https://scigraph.springernature.com/explorer/license/
142 schema:sdPublisher Ne485c4510db64852ac627057deded958
143 schema:url https://doi.org/10.1007/s00259-008-0838-6
144 sgo:license sg:explorer/license/
145 sgo:sdDataset articles
146 rdf:type schema:ScholarlyArticle
147 N020afcfa0c8c436ea4d74f29cf679d2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Male
149 rdf:type schema:DefinedTerm
150 N0cd0e9c92f0047fca712f28f66a0e740 rdf:first sg:person.01243457214.67
151 rdf:rest Nf3dd67992d2844f9b99d6b72a6a714a7
152 N1471707cc2274a9fb467fe5ae1551287 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Myocardial Perfusion Imaging
154 rdf:type schema:DefinedTerm
155 N189bc1e7fa4e4b75933f2d593eb0068d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Tomography, Emission-Computed, Single-Photon
157 rdf:type schema:DefinedTerm
158 N271b581892854a4cba22495b447c84a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Female
160 rdf:type schema:DefinedTerm
161 N2cc992db03ae4bebbebe2fb86b880242 schema:name doi
162 schema:value 10.1007/s00259-008-0838-6
163 rdf:type schema:PropertyValue
164 N3ebd611c45b044448172210089b5ead6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Myocardial Revascularization
166 rdf:type schema:DefinedTerm
167 N42615b885c7d4796855f71ed2a9993e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Aged
169 rdf:type schema:DefinedTerm
170 N5da5d593337f42c78c2f72545024031d schema:issueNumber 11
171 rdf:type schema:PublicationIssue
172 N6ad840da4d074224b30d25fb49efd5f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Sensitivity and Specificity
174 rdf:type schema:DefinedTerm
175 N77db3ed35da1463285ef7a1b92ba1a11 rdf:first sg:person.014366212412.16
176 rdf:rest Nc43d51e462b543fbac0c284fa7fe9d2f
177 N7e57d166a1e641c2a50cef02e3279b9d schema:volumeNumber 35
178 rdf:type schema:PublicationVolume
179 N8a224d944aaa42daa9c6290d619c2935 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Cohort Studies
181 rdf:type schema:DefinedTerm
182 N90347e4b90274e7bab59224971f24f5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Recovery of Function
184 rdf:type schema:DefinedTerm
185 N9ae8b3e1d33f49b4bd5b9f38fc4935e9 rdf:first sg:person.01365307304.22
186 rdf:rest rdf:nil
187 N9b5b0578176648eab697e82518c4f0ac schema:name dimensions_id
188 schema:value pub.1015077647
189 rdf:type schema:PropertyValue
190 Na9279d1918424856958bd7e9727c03d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Japan
192 rdf:type schema:DefinedTerm
193 Nad2252ce3eef49a1bb3afd5ec6bdf787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name ROC Curve
195 rdf:type schema:DefinedTerm
196 Nb2975eeaba564e818fe7ab03dd6265f7 rdf:first sg:person.016665110142.28
197 rdf:rest N0cd0e9c92f0047fca712f28f66a0e740
198 Nb6f2d4f620274269a70ef3a53033edf1 rdf:first sg:person.01354224343.12
199 rdf:rest Nca12b582547c40368d9fc17015ed2559
200 Nc22d54043fbc4f9890351f423b206f75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Organotechnetium Compounds
202 rdf:type schema:DefinedTerm
203 Nc43d51e462b543fbac0c284fa7fe9d2f rdf:first sg:person.0634755344.01
204 rdf:rest Nf30e9ae95a7946c19ef52a0f48e5367b
205 Nca12b582547c40368d9fc17015ed2559 rdf:first sg:person.01304620656.79
206 rdf:rest Ncae3293cf6ba4250a371f6452a4856d3
207 Ncae3293cf6ba4250a371f6452a4856d3 rdf:first sg:person.01215073031.18
208 rdf:rest Nb2975eeaba564e818fe7ab03dd6265f7
209 Nd5fc9b0083d14e4c931178c9b83b0dd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Myocardial Infarction
211 rdf:type schema:DefinedTerm
212 Nd72f76b3e3994029891b3eab39c2c0fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Movement
214 rdf:type schema:DefinedTerm
215 Nd9f65ea22b5f418884ab8e813f58faf3 schema:name pubmed_id
216 schema:value 18504576
217 rdf:type schema:PropertyValue
218 Ne485c4510db64852ac627057deded958 schema:name Springer Nature - SN SciGraph project
219 rdf:type schema:Organization
220 Ne6e50b578e17468ba64274c0e1342bfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Humans
222 rdf:type schema:DefinedTerm
223 Nf30e9ae95a7946c19ef52a0f48e5367b rdf:first sg:person.0752532133.65
224 rdf:rest Nb6f2d4f620274269a70ef3a53033edf1
225 Nf3dd67992d2844f9b99d6b72a6a714a7 rdf:first sg:person.0717447470.81
226 rdf:rest N9ae8b3e1d33f49b4bd5b9f38fc4935e9
227 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
228 schema:name Physical Sciences
229 rdf:type schema:DefinedTerm
230 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
231 schema:name Other Physical Sciences
232 rdf:type schema:DefinedTerm
233 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
234 schema:name Medical and Health Sciences
235 rdf:type schema:DefinedTerm
236 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
237 schema:name Clinical Sciences
238 rdf:type schema:DefinedTerm
239 sg:journal.1297401 schema:issn 1619-7070
240 1619-7089
241 schema:name European Journal of Nuclear Medicine and Molecular Imaging
242 schema:publisher Springer Nature
243 rdf:type schema:Periodical
244 sg:person.01215073031.18 schema:affiliation grid-institutes:grid.412002.5
245 schema:familyName Taki
246 schema:givenName Junichi
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215073031.18
248 rdf:type schema:Person
249 sg:person.01243457214.67 schema:affiliation grid-institutes:grid.410793.8
250 schema:familyName Yamashina
251 schema:givenName Akira
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243457214.67
253 rdf:type schema:Person
254 sg:person.01304620656.79 schema:affiliation grid-institutes:None
255 schema:familyName Matsunari
256 schema:givenName Ichiro
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304620656.79
258 rdf:type schema:Person
259 sg:person.01354224343.12 schema:affiliation grid-institutes:None
260 schema:familyName Kawano
261 schema:givenName Masaya
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354224343.12
263 rdf:type schema:Person
264 sg:person.01365307304.22 schema:affiliation grid-institutes:grid.410796.d
265 schema:familyName Tomoike
266 schema:givenName Hitonobu
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365307304.22
268 rdf:type schema:Person
269 sg:person.014366212412.16 schema:affiliation grid-institutes:grid.9707.9
270 schema:familyName Nakajima
271 schema:givenName Kenichi
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16
273 rdf:type schema:Person
274 sg:person.016665110142.28 schema:affiliation grid-institutes:grid.410802.f
275 schema:familyName Nishimura
276 schema:givenName Shigeyuki
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665110142.28
278 rdf:type schema:Person
279 sg:person.0634755344.01 schema:affiliation grid-institutes:grid.39158.36
280 schema:familyName Tamaki
281 schema:givenName Nagara
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755344.01
283 rdf:type schema:Person
284 sg:person.0717447470.81 schema:affiliation grid-institutes:grid.410796.d
285 schema:familyName Ishida
286 schema:givenName Yoshio
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717447470.81
288 rdf:type schema:Person
289 sg:person.0752532133.65 schema:affiliation grid-institutes:grid.136304.3
290 schema:familyName Kuwabara
291 schema:givenName Yoichi
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752532133.65
293 rdf:type schema:Person
294 sg:pub.10.1007/bf00168164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039261088
295 https://doi.org/10.1007/bf00168164
296 rdf:type schema:CreativeWork
297 sg:pub.10.1007/bf03032555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026866859
298 https://doi.org/10.1007/bf03032555
299 rdf:type schema:CreativeWork
300 sg:pub.10.1007/s00259-004-1569-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043079855
301 https://doi.org/10.1007/s00259-004-1569-y
302 rdf:type schema:CreativeWork
303 sg:pub.10.1007/s00259-005-1916-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047719218
304 https://doi.org/10.1007/s00259-005-1916-7
305 rdf:type schema:CreativeWork
306 sg:pub.10.1016/j.nuclcard.2004.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034051507
307 https://doi.org/10.1016/j.nuclcard.2004.03.033
308 rdf:type schema:CreativeWork
309 sg:pub.10.1016/s1071-3581(05)80075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034767417
310 https://doi.org/10.1016/s1071-3581(05)80075-3
311 rdf:type schema:CreativeWork
312 sg:pub.10.1067/mnc.2002.118122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027365947
313 https://doi.org/10.1067/mnc.2002.118122
314 rdf:type schema:CreativeWork
315 grid-institutes:None schema:alternateName Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan
316 The Medical and Pharmacological Research Center Foundation, Hakui, Japan
317 schema:name Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan
318 The Medical and Pharmacological Research Center Foundation, Hakui, Japan
319 rdf:type schema:Organization
320 grid-institutes:grid.136304.3 schema:alternateName Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
321 schema:name Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
322 rdf:type schema:Organization
323 grid-institutes:grid.39158.36 schema:alternateName Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
324 schema:name Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
325 rdf:type schema:Organization
326 grid-institutes:grid.410793.8 schema:alternateName Department of Cardiology, Tokyo Medical University, Tokyo, Japan
327 schema:name Department of Cardiology, Tokyo Medical University, Tokyo, Japan
328 rdf:type schema:Organization
329 grid-institutes:grid.410796.d schema:alternateName National Cardiovascular Center, Osaka, Japan
330 schema:name National Cardiovascular Center, Osaka, Japan
331 rdf:type schema:Organization
332 grid-institutes:grid.410802.f schema:alternateName Department of Cardiology, Saitama Medical University, Saitama, Japan
333 schema:name Department of Cardiology, Saitama Medical University, Saitama, Japan
334 rdf:type schema:Organization
335 grid-institutes:grid.412002.5 schema:alternateName Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
336 schema:name Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
337 rdf:type schema:Organization
338 grid-institutes:grid.9707.9 schema:alternateName Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan
339 schema:name Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan
340 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...