Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-05-27

AUTHORS

Kenichi Nakajima, Nagara Tamaki, Yoichi Kuwabara, Masaya Kawano, Ichiro Matsunari, Junichi Taki, Shigeyuki Nishimura, Akira Yamashina, Yoshio Ishida, Hitonobu Tomoike

ABSTRACT

BackgroundsPrediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies.MethodsA total of 252 patients with recent myocardial infarction (n = 74) and old myocardial infarction (n = 175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99mTc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132 ± 81 days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments.ResultsNon-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66 ± 17% and 55 ± 18%, p < 0.0001 for non-gated; 64 ± 16% and 51 ± 17% for ES percent uptake, p < 0.0001). The area under the curve of receiver operating characteristics curve for non-gated percent uptake, ES percent uptake, end-diastolic percent uptake and visual perfusion defect score was 0.70, 0.71, 0.61, and 0.56, respectively. Sensitivity and specificity of percent uptake were 68% and 64% for non-gated map and 80% and 52% for ES percent uptake map. An optimal threshold for predicting segmental improvement was 63% for non-gated and 52% for ES percent uptake values.ConclusionSegmental 99mTc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study. More... »

PAGES

2038-2048

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6

DOI

http://dx.doi.org/10.1007/s00259-008-0838-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015077647

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18504576


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Revascularization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organotechnetium Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recovery of Function", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakajima", 
        "givenName": "Kenichi", 
        "id": "sg:person.014366212412.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamaki", 
        "givenName": "Nagara", 
        "id": "sg:person.0634755344.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755344.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuwabara", 
        "givenName": "Yoichi", 
        "id": "sg:person.0752532133.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752532133.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawano", 
        "givenName": "Masaya", 
        "id": "sg:person.01354224343.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354224343.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Medical and Pharmacological Research Center Foundation, Hakui, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Medical and Pharmacological Research Center Foundation, Hakui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsunari", 
        "givenName": "Ichiro", 
        "id": "sg:person.01304620656.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304620656.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412002.5", 
          "name": [
            "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taki", 
        "givenName": "Junichi", 
        "id": "sg:person.01215073031.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215073031.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Saitama Medical University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410802.f", 
          "name": [
            "Department of Cardiology, Saitama Medical University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishimura", 
        "givenName": "Shigeyuki", 
        "id": "sg:person.016665110142.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665110142.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Tokyo Medical University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410793.8", 
          "name": [
            "Department of Cardiology, Tokyo Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamashina", 
        "givenName": "Akira", 
        "id": "sg:person.01243457214.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243457214.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cardiovascular Center, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410796.d", 
          "name": [
            "National Cardiovascular Center, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishida", 
        "givenName": "Yoshio", 
        "id": "sg:person.0717447470.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717447470.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cardiovascular Center, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410796.d", 
          "name": [
            "National Cardiovascular Center, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomoike", 
        "givenName": "Hitonobu", 
        "id": "sg:person.01365307304.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365307304.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/j.nuclcard.2004.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034051507", 
          "https://doi.org/10.1016/j.nuclcard.2004.03.033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-004-1569-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043079855", 
          "https://doi.org/10.1007/s00259-004-1569-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1067/mnc.2002.118122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027365947", 
          "https://doi.org/10.1067/mnc.2002.118122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039261088", 
          "https://doi.org/10.1007/bf00168164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03032555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026866859", 
          "https://doi.org/10.1007/bf03032555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(05)80075-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034767417", 
          "https://doi.org/10.1016/s1071-3581(05)80075-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1916-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047719218", 
          "https://doi.org/10.1007/s00259-005-1916-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-05-27", 
    "datePublishedReg": "2008-05-27", 
    "description": "BackgroundsPrediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies.MethodsA total of 252 patients with recent myocardial infarction (n\u2009=\u200974) and old myocardial infarction (n\u2009=\u2009175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99mTc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132\u2009\u00b1\u200981\u00a0days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments.ResultsNon-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66\u2009\u00b1\u200917% and 55\u2009\u00b1\u200918%, p\u2009<\u20090.0001 for non-gated; 64\u2009\u00b1\u200916% and 51\u2009\u00b1\u200917% for ES percent uptake, p\u2009<\u20090.0001). The area under the curve of receiver operating characteristics curve for non-gated percent uptake, ES percent uptake, end-diastolic percent uptake and visual perfusion defect score was 0.70, 0.71, 0.61, and 0.56, respectively. Sensitivity and specificity of percent uptake were 68% and 64% for non-gated map and 80% and 52% for ES percent uptake map. An optimal threshold for predicting segmental improvement was 63% for non-gated and 52% for ES percent uptake values.ConclusionSegmental 99mTc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-008-0838-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "multi-center study", 
      "myocardial infarction", 
      "functional recovery", 
      "percent uptake", 
      "left ventricular functional recovery", 
      "multi-center cohort study", 
      "ventricular functional recovery", 
      "wall motion recovery", 
      "recent myocardial infarction", 
      "perfusion defect score", 
      "wall motion improvement", 
      "non-improved group", 
      "old myocardial infarction", 
      "percent uptake values", 
      "single photon emission", 
      "myocardial perfusion SPECT", 
      "curve (AUC) of receiver", 
      "average follow", 
      "cohort study", 
      "defect score", 
      "motion improvement", 
      "perfusion SPECT", 
      "uptake value", 
      "gated SPECT", 
      "infarction", 
      "quantitative perfusion", 
      "useful predictor", 
      "revascularization", 
      "characteristic curve", 
      "patients", 
      "perfusion", 
      "wall motion", 
      "SPECT", 
      "best predictor", 
      "predictors", 
      "uptake", 
      "uptake maps", 
      "predictive accuracy", 
      "quantitative assessment", 
      "follow", 
      "study", 
      "recovery", 
      "predictive ability", 
      "motion analysis", 
      "tomography", 
      "total", 
      "scores", 
      "optimal threshold", 
      "days", 
      "motion recovery", 
      "improvement", 
      "group", 
      "visual analysis", 
      "specificity", 
      "assessment", 
      "period", 
      "sensitivity", 
      "curves", 
      "analysis", 
      "segments", 
      "threshold", 
      "ability", 
      "institutions", 
      "impact", 
      "Japan", 
      "area", 
      "receiver", 
      "quantitative approach", 
      "isonitrile", 
      "values", 
      "approach", 
      "accuracy", 
      "motion", 
      "maps", 
      "prediction", 
      "applications", 
      "emission"
    ], 
    "name": "Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan", 
    "pagination": "2038-2048", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015077647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-008-0838-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18504576"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-008-0838-6", 
      "https://app.dimensions.ai/details/publication/pub.1015077647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_471.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-008-0838-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-008-0838-6'


 

This table displays all metadata directly associated to this object as RDF triples.

321 TRIPLES      22 PREDICATES      127 URIs      110 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-008-0838-6 schema:about N202349ed92844d3e962708fe6352b6ae
2 N28a7deaa6d33404993c012d2cb201f95
3 N54023b6e96494447a741f53155cac8d0
4 N65a350c190b646aeae49b8cdcb013b8d
5 N6b5ac3a7fe1f48798386f4395b70431e
6 N7bb434fb8e8f4b0ebafb18201f8bb98b
7 N87f24c6c8c214d71af20985d44f7a709
8 N9386fb0266274f0d9df55e71dd8b0127
9 Na25ceab4b2da4927b2dcfe055117b3f2
10 Naab2fa5101094c6b81756d6fd9741a8c
11 Nb753a332bccf4fa39840202851705300
12 Nbc44ca10a46447aeaee1be02b3e386d3
13 Nc0338b5daf1e4335afcd8b6310968ed9
14 Nee11f3a13e7a465aaf7b6a07f57d9505
15 Nfebbdefa5ec047d680f82e3e308f8b59
16 anzsrc-for:02
17 anzsrc-for:0299
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N98b1582653d6412da9409a62c70d5720
21 schema:citation sg:pub.10.1007/bf00168164
22 sg:pub.10.1007/bf03032555
23 sg:pub.10.1007/s00259-004-1569-y
24 sg:pub.10.1007/s00259-005-1916-7
25 sg:pub.10.1016/j.nuclcard.2004.03.033
26 sg:pub.10.1016/s1071-3581(05)80075-3
27 sg:pub.10.1067/mnc.2002.118122
28 schema:datePublished 2008-05-27
29 schema:datePublishedReg 2008-05-27
30 schema:description BackgroundsPrediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies.MethodsA total of 252 patients with recent myocardial infarction (n = 74) and old myocardial infarction (n = 175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99mTc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132 ± 81 days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments.ResultsNon-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66 ± 17% and 55 ± 18%, p < 0.0001 for non-gated; 64 ± 16% and 51 ± 17% for ES percent uptake, p < 0.0001). The area under the curve of receiver operating characteristics curve for non-gated percent uptake, ES percent uptake, end-diastolic percent uptake and visual perfusion defect score was 0.70, 0.71, 0.61, and 0.56, respectively. Sensitivity and specificity of percent uptake were 68% and 64% for non-gated map and 80% and 52% for ES percent uptake map. An optimal threshold for predicting segmental improvement was 63% for non-gated and 52% for ES percent uptake values.ConclusionSegmental 99mTc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf Nb00d5675b8334ee59cb8e62d9073c23d
35 Nb0cb4d78c54543d7afd9fd61d7452fd2
36 sg:journal.1297401
37 schema:keywords Japan
38 SPECT
39 ability
40 accuracy
41 analysis
42 applications
43 approach
44 area
45 assessment
46 average follow
47 best predictor
48 characteristic curve
49 cohort study
50 curve (AUC) of receiver
51 curves
52 days
53 defect score
54 emission
55 follow
56 functional recovery
57 gated SPECT
58 group
59 impact
60 improvement
61 infarction
62 institutions
63 isonitrile
64 left ventricular functional recovery
65 maps
66 motion
67 motion analysis
68 motion improvement
69 motion recovery
70 multi-center cohort study
71 multi-center study
72 myocardial infarction
73 myocardial perfusion SPECT
74 non-improved group
75 old myocardial infarction
76 optimal threshold
77 patients
78 percent uptake
79 percent uptake values
80 perfusion
81 perfusion SPECT
82 perfusion defect score
83 period
84 prediction
85 predictive ability
86 predictive accuracy
87 predictors
88 quantitative approach
89 quantitative assessment
90 quantitative perfusion
91 receiver
92 recent myocardial infarction
93 recovery
94 revascularization
95 scores
96 segments
97 sensitivity
98 single photon emission
99 specificity
100 study
101 threshold
102 tomography
103 total
104 uptake
105 uptake maps
106 uptake value
107 useful predictor
108 values
109 ventricular functional recovery
110 visual analysis
111 wall motion
112 wall motion improvement
113 wall motion recovery
114 schema:name Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan
115 schema:pagination 2038-2048
116 schema:productId N8dbe17c3ddf14a2eaae3fe66ef76e3ce
117 N99d4d562091f44179e82aa6fe90328af
118 Nd09793fc40d248a683512c223d24a2b4
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015077647
120 https://doi.org/10.1007/s00259-008-0838-6
121 schema:sdDatePublished 2022-05-10T10:00
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N56550bb0e7b34b2ca84bd40f97d5c186
124 schema:url https://doi.org/10.1007/s00259-008-0838-6
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N202349ed92844d3e962708fe6352b6ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 N28a7deaa6d33404993c012d2cb201f95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Female
133 rdf:type schema:DefinedTerm
134 N353df670b5844e82be86683b5c52b53f rdf:first sg:person.016665110142.28
135 rdf:rest N57fd823a8e4743d88362a6bb842ff07e
136 N47fbbae22160424d8ecfbdb6dee01268 rdf:first sg:person.01365307304.22
137 rdf:rest rdf:nil
138 N4b0f73d8f80941ae9e1e8545ddab2940 rdf:first sg:person.0752532133.65
139 rdf:rest Nf3b033847c844b96a2b1f3d028b44853
140 N54023b6e96494447a741f53155cac8d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Sensitivity and Specificity
142 rdf:type schema:DefinedTerm
143 N56550bb0e7b34b2ca84bd40f97d5c186 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 N57fd823a8e4743d88362a6bb842ff07e rdf:first sg:person.01243457214.67
146 rdf:rest N83f25f1306f944ada719342da9673606
147 N65a350c190b646aeae49b8cdcb013b8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Cohort Studies
149 rdf:type schema:DefinedTerm
150 N6b5ac3a7fe1f48798386f4395b70431e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Organotechnetium Compounds
152 rdf:type schema:DefinedTerm
153 N7bb434fb8e8f4b0ebafb18201f8bb98b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Tomography, Emission-Computed, Single-Photon
155 rdf:type schema:DefinedTerm
156 N7e0300b8ed5d4c3691336e4738033c82 rdf:first sg:person.01304620656.79
157 rdf:rest Nc88c4e41cdf64a3f9e4f20ff71fe314a
158 N83f25f1306f944ada719342da9673606 rdf:first sg:person.0717447470.81
159 rdf:rest N47fbbae22160424d8ecfbdb6dee01268
160 N87f24c6c8c214d71af20985d44f7a709 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Recovery of Function
162 rdf:type schema:DefinedTerm
163 N8dbe17c3ddf14a2eaae3fe66ef76e3ce schema:name doi
164 schema:value 10.1007/s00259-008-0838-6
165 rdf:type schema:PropertyValue
166 N9386fb0266274f0d9df55e71dd8b0127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Myocardial Infarction
168 rdf:type schema:DefinedTerm
169 N98b1582653d6412da9409a62c70d5720 rdf:first sg:person.014366212412.16
170 rdf:rest Nddd6f1d726c142d39e28d1e29ea008a7
171 N99d4d562091f44179e82aa6fe90328af schema:name dimensions_id
172 schema:value pub.1015077647
173 rdf:type schema:PropertyValue
174 Na25ceab4b2da4927b2dcfe055117b3f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Myocardial Revascularization
176 rdf:type schema:DefinedTerm
177 Naab2fa5101094c6b81756d6fd9741a8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Myocardial Perfusion Imaging
179 rdf:type schema:DefinedTerm
180 Nb00d5675b8334ee59cb8e62d9073c23d schema:issueNumber 11
181 rdf:type schema:PublicationIssue
182 Nb0cb4d78c54543d7afd9fd61d7452fd2 schema:volumeNumber 35
183 rdf:type schema:PublicationVolume
184 Nb753a332bccf4fa39840202851705300 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Aged
186 rdf:type schema:DefinedTerm
187 Nbc44ca10a46447aeaee1be02b3e386d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Japan
189 rdf:type schema:DefinedTerm
190 Nc0338b5daf1e4335afcd8b6310968ed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Humans
192 rdf:type schema:DefinedTerm
193 Nc88c4e41cdf64a3f9e4f20ff71fe314a rdf:first sg:person.01215073031.18
194 rdf:rest N353df670b5844e82be86683b5c52b53f
195 Nd09793fc40d248a683512c223d24a2b4 schema:name pubmed_id
196 schema:value 18504576
197 rdf:type schema:PropertyValue
198 Nddd6f1d726c142d39e28d1e29ea008a7 rdf:first sg:person.0634755344.01
199 rdf:rest N4b0f73d8f80941ae9e1e8545ddab2940
200 Nee11f3a13e7a465aaf7b6a07f57d9505 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name ROC Curve
202 rdf:type schema:DefinedTerm
203 Nf3b033847c844b96a2b1f3d028b44853 rdf:first sg:person.01354224343.12
204 rdf:rest N7e0300b8ed5d4c3691336e4738033c82
205 Nfebbdefa5ec047d680f82e3e308f8b59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Movement
207 rdf:type schema:DefinedTerm
208 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
209 schema:name Physical Sciences
210 rdf:type schema:DefinedTerm
211 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
212 schema:name Other Physical Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
215 schema:name Medical and Health Sciences
216 rdf:type schema:DefinedTerm
217 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
218 schema:name Clinical Sciences
219 rdf:type schema:DefinedTerm
220 sg:journal.1297401 schema:issn 1619-7070
221 1619-7089
222 schema:name European Journal of Nuclear Medicine and Molecular Imaging
223 schema:publisher Springer Nature
224 rdf:type schema:Periodical
225 sg:person.01215073031.18 schema:affiliation grid-institutes:grid.412002.5
226 schema:familyName Taki
227 schema:givenName Junichi
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215073031.18
229 rdf:type schema:Person
230 sg:person.01243457214.67 schema:affiliation grid-institutes:grid.410793.8
231 schema:familyName Yamashina
232 schema:givenName Akira
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243457214.67
234 rdf:type schema:Person
235 sg:person.01304620656.79 schema:affiliation grid-institutes:None
236 schema:familyName Matsunari
237 schema:givenName Ichiro
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304620656.79
239 rdf:type schema:Person
240 sg:person.01354224343.12 schema:affiliation grid-institutes:None
241 schema:familyName Kawano
242 schema:givenName Masaya
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354224343.12
244 rdf:type schema:Person
245 sg:person.01365307304.22 schema:affiliation grid-institutes:grid.410796.d
246 schema:familyName Tomoike
247 schema:givenName Hitonobu
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365307304.22
249 rdf:type schema:Person
250 sg:person.014366212412.16 schema:affiliation grid-institutes:grid.9707.9
251 schema:familyName Nakajima
252 schema:givenName Kenichi
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16
254 rdf:type schema:Person
255 sg:person.016665110142.28 schema:affiliation grid-institutes:grid.410802.f
256 schema:familyName Nishimura
257 schema:givenName Shigeyuki
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665110142.28
259 rdf:type schema:Person
260 sg:person.0634755344.01 schema:affiliation grid-institutes:grid.39158.36
261 schema:familyName Tamaki
262 schema:givenName Nagara
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755344.01
264 rdf:type schema:Person
265 sg:person.0717447470.81 schema:affiliation grid-institutes:grid.410796.d
266 schema:familyName Ishida
267 schema:givenName Yoshio
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717447470.81
269 rdf:type schema:Person
270 sg:person.0752532133.65 schema:affiliation grid-institutes:grid.136304.3
271 schema:familyName Kuwabara
272 schema:givenName Yoichi
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752532133.65
274 rdf:type schema:Person
275 sg:pub.10.1007/bf00168164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039261088
276 https://doi.org/10.1007/bf00168164
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/bf03032555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026866859
279 https://doi.org/10.1007/bf03032555
280 rdf:type schema:CreativeWork
281 sg:pub.10.1007/s00259-004-1569-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043079855
282 https://doi.org/10.1007/s00259-004-1569-y
283 rdf:type schema:CreativeWork
284 sg:pub.10.1007/s00259-005-1916-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047719218
285 https://doi.org/10.1007/s00259-005-1916-7
286 rdf:type schema:CreativeWork
287 sg:pub.10.1016/j.nuclcard.2004.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034051507
288 https://doi.org/10.1016/j.nuclcard.2004.03.033
289 rdf:type schema:CreativeWork
290 sg:pub.10.1016/s1071-3581(05)80075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034767417
291 https://doi.org/10.1016/s1071-3581(05)80075-3
292 rdf:type schema:CreativeWork
293 sg:pub.10.1067/mnc.2002.118122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027365947
294 https://doi.org/10.1067/mnc.2002.118122
295 rdf:type schema:CreativeWork
296 grid-institutes:None schema:alternateName Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan
297 The Medical and Pharmacological Research Center Foundation, Hakui, Japan
298 schema:name Department of Radiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan
299 The Medical and Pharmacological Research Center Foundation, Hakui, Japan
300 rdf:type schema:Organization
301 grid-institutes:grid.136304.3 schema:alternateName Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
302 schema:name Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
303 rdf:type schema:Organization
304 grid-institutes:grid.39158.36 schema:alternateName Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
305 schema:name Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
306 rdf:type schema:Organization
307 grid-institutes:grid.410793.8 schema:alternateName Department of Cardiology, Tokyo Medical University, Tokyo, Japan
308 schema:name Department of Cardiology, Tokyo Medical University, Tokyo, Japan
309 rdf:type schema:Organization
310 grid-institutes:grid.410796.d schema:alternateName National Cardiovascular Center, Osaka, Japan
311 schema:name National Cardiovascular Center, Osaka, Japan
312 rdf:type schema:Organization
313 grid-institutes:grid.410802.f schema:alternateName Department of Cardiology, Saitama Medical University, Saitama, Japan
314 schema:name Department of Cardiology, Saitama Medical University, Saitama, Japan
315 rdf:type schema:Organization
316 grid-institutes:grid.412002.5 schema:alternateName Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
317 schema:name Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
318 rdf:type schema:Organization
319 grid-institutes:grid.9707.9 schema:alternateName Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan
320 schema:name Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan
321 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...