CT-based attenuation correction in 82Rb-myocardial perfusion PET–CT: incidence of misalignment and effect on regional tracer distribution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

Riikka Lautamäki, Tracy L. Y. Brown, Jennifer Merrill, Frank M. Bengel

ABSTRACT

PURPOSE: Misalignment of low-dose-CT used for attenuation correction (AC) may cause artifacts in cardiac-PET-CT. The aim was to evaluate incidence and severity of misalignment and its quantitative effects on regional myocardial (82)Rb-distribution. METHODS: Rest/dipyridamole (82)Rb-perfusion-PET-CT studies of 92 consecutive patients were analyzed for misalignment. Two different scanning protocols were employed: the first 57 patients had separate CTs for rest and stress PET. The following 35 patients had one CT at rest, used for AC of rest and stress PET. Misalignment was visually scored on a five-point scale (0 = no, 1 = minimal, 2 = mild, 3 = moderate, and 4 = severe). In five representative patients with normal perfusion and low probability of disease, 95 polarmaps were created by shifting CT vs PET prior to reconstruction of attenuation-corrected data sets using dedicated software (three dimensions of space; magnitude of shifts, 5, 10, 14 mm). RESULTS: PET/CT -misalignment was detected in 60% of rest and 67% of stress studies. Alignment for rest was better than that for stress (0.7 +/- 0.7 vs 1.0 +/- 0.9, P = 0.03). Comparison of the two protocols revealed no effect on the alignment of the stress study (1.0 +/- 0.9 vs 1.0 +/- 0.9, P = 0.9). Quantitatively, the largest individual effect of any artificial misalignment was a 25% reduction of relative (82)Rb uptake. With a shift of 1 cm, the largest effect in an individual was a 19% decrease. Anterior wall was most frequently influenced by misalignment, but changes of uptake also occurred in all other segments. CONCLUSIONS: Misalignment between CT and PET in cardiac-PET-CT influences regional tracer distribution in multiple segments. Repeated CT imaging after dipyridamole does not improve alignment. These results emphasize the need for strategies to improve coregistration in clinical imaging protocols. More... »

PAGES

305-310

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-007-0607-y

DOI

http://dx.doi.org/10.1007/s00259-007-0607-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019732602

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17909791


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rubidium Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Dysfunction, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Cardiovascular Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N Caroline St, JHOC 3225, 21210, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lautam\u00e4ki", 
        "givenName": "Riikka", 
        "id": "sg:person.0617216003.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617216003.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Cardiovascular Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N Caroline St, JHOC 3225, 21210, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Tracy L. Y.", 
        "id": "sg:person.0665653512.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665653512.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Cardiovascular Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N Caroline St, JHOC 3225, 21210, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merrill", 
        "givenName": "Jennifer", 
        "id": "sg:person.01067051554.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067051554.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Cardiovascular Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N Caroline St, JHOC 3225, 21210, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bengel", 
        "givenName": "Frank M.", 
        "id": "sg:person.01225020511.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225020511.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/j.nuclcard.2006.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001298753", 
          "https://doi.org/10.1016/j.nuclcard.2006.09.001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2006.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006643560", 
          "https://doi.org/10.1016/j.nuclcard.2006.09.003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007430749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.541664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011762710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2006.12.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012469889", 
          "https://doi.org/10.1016/j.nuclcard.2006.12.325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.039792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016113501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1536-1632(03)00044-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025910175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1536-1632(03)00044-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025910175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.040535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030993369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1809778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038821018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-1024-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039895492", 
          "https://doi.org/10.1007/s00259-002-1024-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-1024-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039895492", 
          "https://doi.org/10.1007/s00259-002-1024-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-1097-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039950580", 
          "https://doi.org/10.1007/s00259-002-1097-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-001-0710-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043921145", 
          "https://doi.org/10.1007/s00259-001-0710-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2005.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049290178", 
          "https://doi.org/10.1016/j.nuclcard.2005.12.004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075232030", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076822339", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076848681", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077071080", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077076565", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077111921", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077362902", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083237973", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02", 
    "datePublishedReg": "2008-02-01", 
    "description": "PURPOSE: Misalignment of low-dose-CT used for attenuation correction (AC) may cause artifacts in cardiac-PET-CT. The aim was to evaluate incidence and severity of misalignment and its quantitative effects on regional myocardial (82)Rb-distribution.\nMETHODS: Rest/dipyridamole (82)Rb-perfusion-PET-CT studies of 92 consecutive patients were analyzed for misalignment. Two different scanning protocols were employed: the first 57 patients had separate CTs for rest and stress PET. The following 35 patients had one CT at rest, used for AC of rest and stress PET. Misalignment was visually scored on a five-point scale (0 = no, 1 = minimal, 2 = mild, 3 = moderate, and 4 = severe). In five representative patients with normal perfusion and low probability of disease, 95 polarmaps were created by shifting CT vs PET prior to reconstruction of attenuation-corrected data sets using dedicated software (three dimensions of space; magnitude of shifts, 5, 10, 14 mm).\nRESULTS: PET/CT -misalignment was detected in 60% of rest and 67% of stress studies. Alignment for rest was better than that for stress (0.7 +/- 0.7 vs 1.0 +/- 0.9, P = 0.03). Comparison of the two protocols revealed no effect on the alignment of the stress study (1.0 +/- 0.9 vs 1.0 +/- 0.9, P = 0.9). Quantitatively, the largest individual effect of any artificial misalignment was a 25% reduction of relative (82)Rb uptake. With a shift of 1 cm, the largest effect in an individual was a 19% decrease. Anterior wall was most frequently influenced by misalignment, but changes of uptake also occurred in all other segments.\nCONCLUSIONS: Misalignment between CT and PET in cardiac-PET-CT influences regional tracer distribution in multiple segments. Repeated CT imaging after dipyridamole does not improve alignment. These results emphasize the need for strategies to improve coregistration in clinical imaging protocols.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-007-0607-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "CT-based attenuation correction in 82Rb-myocardial perfusion PET\u2013CT: incidence of misalignment and effect on regional tracer distribution", 
    "pagination": "305-310", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e04c77a56a25bd1fc772508c82e5c4e2517eb078f17f14741acc071ae410b54"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17909791"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-007-0607-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019732602"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-007-0607-y", 
      "https://app.dimensions.ai/details/publication/pub.1019732602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-007-0607-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-007-0607-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-007-0607-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-007-0607-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-007-0607-y'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      64 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-007-0607-y schema:about N03c498101c0c4d59aa24f926a3ec8509
2 N1283be9de5d84edc974ab7b9694f94eb
3 N173352f3ecec4aaa9f3e860c28a8c2c6
4 N1741f2225e1c4da1a62532d327599d02
5 N2648272c17bb4b97a6439c84061644e5
6 N358a3bf1f8b04417885693f9ccc34738
7 N6df7efd8c79e4117979780bf0132a7d2
8 Nab076e4ba79045fa8336af3e8e6b3957
9 Ncb21299f48914a72842985957889e664
10 Ncdb79c2fd61d497f8ecf202a7386cdd1
11 Nddb2510af8f64d478f2d8d708c0a3caa
12 Ndeb073f6909d4716bd0def8a13f1d129
13 Ne24fe90be79b438fa4aa6eed4f0c1a9c
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author Nd2ea9c4519864749a4e0a25753ab1429
17 schema:citation sg:pub.10.1007/s00259-001-0710-4
18 sg:pub.10.1007/s00259-002-1024-x
19 sg:pub.10.1007/s00259-002-1097-6
20 sg:pub.10.1016/j.nuclcard.2005.12.004
21 sg:pub.10.1016/j.nuclcard.2006.09.001
22 sg:pub.10.1016/j.nuclcard.2006.09.003
23 sg:pub.10.1016/j.nuclcard.2006.12.325
24 https://app.dimensions.ai/details/publication/pub.1075232030
25 https://app.dimensions.ai/details/publication/pub.1076822339
26 https://app.dimensions.ai/details/publication/pub.1076848681
27 https://app.dimensions.ai/details/publication/pub.1077071080
28 https://app.dimensions.ai/details/publication/pub.1077076565
29 https://app.dimensions.ai/details/publication/pub.1077111921
30 https://app.dimensions.ai/details/publication/pub.1077362902
31 https://app.dimensions.ai/details/publication/pub.1083237973
32 https://doi.org/10.1016/j.jacc.2006.06.025
33 https://doi.org/10.1016/j.jacc.2006.12.015
34 https://doi.org/10.1016/s1536-1632(03)00044-1
35 https://doi.org/10.1118/1.1809778
36 https://doi.org/10.1161/circulationaha.105.541664
37 https://doi.org/10.2967/jnumed.107.039792
38 https://doi.org/10.2967/jnumed.107.040535
39 schema:datePublished 2008-02
40 schema:datePublishedReg 2008-02-01
41 schema:description PURPOSE: Misalignment of low-dose-CT used for attenuation correction (AC) may cause artifacts in cardiac-PET-CT. The aim was to evaluate incidence and severity of misalignment and its quantitative effects on regional myocardial (82)Rb-distribution. METHODS: Rest/dipyridamole (82)Rb-perfusion-PET-CT studies of 92 consecutive patients were analyzed for misalignment. Two different scanning protocols were employed: the first 57 patients had separate CTs for rest and stress PET. The following 35 patients had one CT at rest, used for AC of rest and stress PET. Misalignment was visually scored on a five-point scale (0 = no, 1 = minimal, 2 = mild, 3 = moderate, and 4 = severe). In five representative patients with normal perfusion and low probability of disease, 95 polarmaps were created by shifting CT vs PET prior to reconstruction of attenuation-corrected data sets using dedicated software (three dimensions of space; magnitude of shifts, 5, 10, 14 mm). RESULTS: PET/CT -misalignment was detected in 60% of rest and 67% of stress studies. Alignment for rest was better than that for stress (0.7 +/- 0.7 vs 1.0 +/- 0.9, P = 0.03). Comparison of the two protocols revealed no effect on the alignment of the stress study (1.0 +/- 0.9 vs 1.0 +/- 0.9, P = 0.9). Quantitatively, the largest individual effect of any artificial misalignment was a 25% reduction of relative (82)Rb uptake. With a shift of 1 cm, the largest effect in an individual was a 19% decrease. Anterior wall was most frequently influenced by misalignment, but changes of uptake also occurred in all other segments. CONCLUSIONS: Misalignment between CT and PET in cardiac-PET-CT influences regional tracer distribution in multiple segments. Repeated CT imaging after dipyridamole does not improve alignment. These results emphasize the need for strategies to improve coregistration in clinical imaging protocols.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N6697c2679f884f17882b4c96431ea1b8
46 N9471c95e65f54650a05446afb1b8e6ac
47 sg:journal.1297401
48 schema:name CT-based attenuation correction in 82Rb-myocardial perfusion PET–CT: incidence of misalignment and effect on regional tracer distribution
49 schema:pagination 305-310
50 schema:productId N0bd17321650843c387b1f6048b513cab
51 N1405e17567a344ddac73124eb8f8fb8a
52 N217db6366fc64d008c9342e099981c79
53 Ne5e0bfc9e8fe4c28ae441bbf2bb491ba
54 Nf81977043ed0462091c062480c811f73
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019732602
56 https://doi.org/10.1007/s00259-007-0607-y
57 schema:sdDatePublished 2019-04-11T14:29
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N08ab7f770598460fb8cc6cf03a73c4a0
60 schema:url http://link.springer.com/10.1007%2Fs00259-007-0607-y
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N03c498101c0c4d59aa24f926a3ec8509 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Male
66 rdf:type schema:DefinedTerm
67 N08ab7f770598460fb8cc6cf03a73c4a0 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N0bd17321650843c387b1f6048b513cab schema:name nlm_unique_id
70 schema:value 101140988
71 rdf:type schema:PropertyValue
72 N1283be9de5d84edc974ab7b9694f94eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Image Enhancement
74 rdf:type schema:DefinedTerm
75 N1405e17567a344ddac73124eb8f8fb8a schema:name readcube_id
76 schema:value 5e04c77a56a25bd1fc772508c82e5c4e2517eb078f17f14741acc071ae410b54
77 rdf:type schema:PropertyValue
78 N173352f3ecec4aaa9f3e860c28a8c2c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Ventricular Dysfunction, Left
80 rdf:type schema:DefinedTerm
81 N1741f2225e1c4da1a62532d327599d02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Positron-Emission Tomography
83 rdf:type schema:DefinedTerm
84 N217db6366fc64d008c9342e099981c79 schema:name doi
85 schema:value 10.1007/s00259-007-0607-y
86 rdf:type schema:PropertyValue
87 N2648272c17bb4b97a6439c84061644e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Sensitivity and Specificity
89 rdf:type schema:DefinedTerm
90 N358a3bf1f8b04417885693f9ccc34738 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Middle Aged
92 rdf:type schema:DefinedTerm
93 N6697c2679f884f17882b4c96431ea1b8 schema:issueNumber 2
94 rdf:type schema:PublicationIssue
95 N6df7efd8c79e4117979780bf0132a7d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Humans
97 rdf:type schema:DefinedTerm
98 N7cb8ab038f754ae5869f3bae449bdb7a rdf:first sg:person.01067051554.58
99 rdf:rest Neb9823787c984f7dbe05c46f1bec5489
100 N9471c95e65f54650a05446afb1b8e6ac schema:volumeNumber 35
101 rdf:type schema:PublicationVolume
102 Nab076e4ba79045fa8336af3e8e6b3957 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Female
104 rdf:type schema:DefinedTerm
105 Ncb21299f48914a72842985957889e664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Subtraction Technique
107 rdf:type schema:DefinedTerm
108 Ncdb79c2fd61d497f8ecf202a7386cdd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Reproducibility of Results
110 rdf:type schema:DefinedTerm
111 Nd2ea9c4519864749a4e0a25753ab1429 rdf:first sg:person.0617216003.83
112 rdf:rest Nf712bc7b3c4744e8b826c68d99eb920d
113 Nddb2510af8f64d478f2d8d708c0a3caa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Artifacts
115 rdf:type schema:DefinedTerm
116 Ndeb073f6909d4716bd0def8a13f1d129 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Radiopharmaceuticals
118 rdf:type schema:DefinedTerm
119 Ne24fe90be79b438fa4aa6eed4f0c1a9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Rubidium Radioisotopes
121 rdf:type schema:DefinedTerm
122 Ne5e0bfc9e8fe4c28ae441bbf2bb491ba schema:name pubmed_id
123 schema:value 17909791
124 rdf:type schema:PropertyValue
125 Neb9823787c984f7dbe05c46f1bec5489 rdf:first sg:person.01225020511.95
126 rdf:rest rdf:nil
127 Nf712bc7b3c4744e8b826c68d99eb920d rdf:first sg:person.0665653512.02
128 rdf:rest N7cb8ab038f754ae5869f3bae449bdb7a
129 Nf81977043ed0462091c062480c811f73 schema:name dimensions_id
130 schema:value pub.1019732602
131 rdf:type schema:PropertyValue
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
136 schema:name Clinical Sciences
137 rdf:type schema:DefinedTerm
138 sg:journal.1297401 schema:issn 1619-7070
139 1619-7089
140 schema:name European Journal of Nuclear Medicine and Molecular Imaging
141 rdf:type schema:Periodical
142 sg:person.01067051554.58 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
143 schema:familyName Merrill
144 schema:givenName Jennifer
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067051554.58
146 rdf:type schema:Person
147 sg:person.01225020511.95 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
148 schema:familyName Bengel
149 schema:givenName Frank M.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225020511.95
151 rdf:type schema:Person
152 sg:person.0617216003.83 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
153 schema:familyName Lautamäki
154 schema:givenName Riikka
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617216003.83
156 rdf:type schema:Person
157 sg:person.0665653512.02 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
158 schema:familyName Brown
159 schema:givenName Tracy L. Y.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665653512.02
161 rdf:type schema:Person
162 sg:pub.10.1007/s00259-001-0710-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043921145
163 https://doi.org/10.1007/s00259-001-0710-4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00259-002-1024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039895492
166 https://doi.org/10.1007/s00259-002-1024-x
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00259-002-1097-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039950580
169 https://doi.org/10.1007/s00259-002-1097-6
170 rdf:type schema:CreativeWork
171 sg:pub.10.1016/j.nuclcard.2005.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049290178
172 https://doi.org/10.1016/j.nuclcard.2005.12.004
173 rdf:type schema:CreativeWork
174 sg:pub.10.1016/j.nuclcard.2006.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001298753
175 https://doi.org/10.1016/j.nuclcard.2006.09.001
176 rdf:type schema:CreativeWork
177 sg:pub.10.1016/j.nuclcard.2006.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006643560
178 https://doi.org/10.1016/j.nuclcard.2006.09.003
179 rdf:type schema:CreativeWork
180 sg:pub.10.1016/j.nuclcard.2006.12.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012469889
181 https://doi.org/10.1016/j.nuclcard.2006.12.325
182 rdf:type schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1075232030 schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1076822339 schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1076848681 schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1077071080 schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1077076565 schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1077111921 schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1077362902 schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1083237973 schema:CreativeWork
191 https://doi.org/10.1016/j.jacc.2006.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478234
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jacc.2006.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007430749
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s1536-1632(03)00044-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025910175
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1118/1.1809778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038821018
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1161/circulationaha.105.541664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011762710
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2967/jnumed.107.039792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016113501
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2967/jnumed.107.040535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030993369
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
206 schema:name Cardiovascular Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N Caroline St, JHOC 3225, 21210, Baltimore, MD, USA
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...