A gradient-based method for segmenting FDG-PET images: methodology and validation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03-13

AUTHORS

Xavier Geets, John A. Lee, Anne Bol, Max Lonneux, Vincent Grégoire

ABSTRACT

PurposeA new gradient-based method for segmenting FDG-PET images is described and validated.MethodsThe proposed method relies on the watershed transform and hierarchical cluster analysis. To allow a better estimation of the gradient intensity, iteratively reconstructed images were first denoised and deblurred with an edge-preserving filter and a constrained iterative deconvolution algorithm. Validation was first performed on computer-generated 3D phantoms containing spheres, then on a real cylindrical Lucite phantom containing spheres of different volumes ranging from 2.1 to 92.9 ml. Moreover, laryngeal tumours from seven patients were segmented on PET images acquired before laryngectomy by the gradient-based method and the thresholding method based on the source-to-background ratio developed by Daisne (Radiother Oncol 2003;69:247–50). For the spheres, the calculated volumes and radii were compared with the known values; for laryngeal tumours, the volumes were compared with the macroscopic specimens. Volume mismatches were also analysed.ResultsOn computer-generated phantoms, the deconvolution algorithm decreased the mis-estimate of volumes and radii. For the Lucite phantom, the gradient-based method led to a slight underestimation of sphere volumes (by 10–20%), corresponding to negligible radius differences (0.5–1.1 mm); for laryngeal tumours, the segmented volumes by the gradient-based method agreed with those delineated on the macroscopic specimens, whereas the threshold-based method overestimated the true volume by 68% (p = 0.014). Lastly, macroscopic laryngeal specimens were totally encompassed by neither the threshold-based nor the gradient-based volumes.ConclusionThe gradient-based segmentation method applied on denoised and deblurred images proved to be more accurate than the source-to-background ratio method. More... »

PAGES

1427-1438

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-006-0363-4

DOI

http://dx.doi.org/10.1007/s00259-006-0363-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028309320

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17431616


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Head and Neck Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymethyl Methacrylate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.48769.34", 
          "name": [
            "Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geets", 
        "givenName": "Xavier", 
        "id": "sg:person.01225751202.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225751202.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.48769.34", 
          "name": [
            "Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "John A.", 
        "id": "sg:person.01061017307.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061017307.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.48769.34", 
          "name": [
            "Department of Nuclear Medicine, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bol", 
        "givenName": "Anne", 
        "id": "sg:person.01310752206.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310752206.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.48769.34", 
          "name": [
            "Department of Nuclear Medicine, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lonneux", 
        "givenName": "Max", 
        "id": "sg:person.01251350364.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251350364.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.48769.34", 
          "name": [
            "Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Universit\u00e9 Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gr\u00e9goire", 
        "givenName": "Vincent", 
        "id": "sg:person.01315730743.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315730743.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-8643-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035447677", 
          "https://doi.org/10.1007/978-1-4613-8643-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01391351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044785439", 
          "https://doi.org/10.1007/bf01391351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00252392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051417747", 
          "https://doi.org/10.1007/bf00252392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008946426658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022904750", 
          "https://doi.org/10.1023/a:1008946426658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3980-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037572815", 
          "https://doi.org/10.1007/978-1-4615-3980-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052529390", 
          "https://doi.org/10.1007/s002590050299"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03-13", 
    "datePublishedReg": "2007-03-13", 
    "description": "PurposeA new gradient-based method for segmenting FDG-PET images is described and validated.MethodsThe proposed method relies on the watershed transform and hierarchical cluster analysis. To allow a better estimation of the gradient intensity, iteratively reconstructed images were first denoised and deblurred with an edge-preserving filter and a constrained iterative deconvolution algorithm. Validation was first performed on computer-generated 3D phantoms containing spheres, then on a real cylindrical Lucite phantom containing spheres of different volumes ranging from 2.1 to 92.9\u00a0ml. Moreover, laryngeal tumours from seven patients were segmented on PET images acquired before laryngectomy by the gradient-based method and the thresholding method based on the source-to-background ratio developed by Daisne (Radiother Oncol 2003;69:247\u201350). For the spheres, the calculated volumes and radii were compared with the known values; for laryngeal tumours, the volumes were compared with the macroscopic specimens. Volume mismatches were also analysed.ResultsOn computer-generated phantoms, the deconvolution algorithm decreased the mis-estimate of volumes and radii. For the Lucite phantom, the gradient-based method led to a slight underestimation of sphere volumes (by 10\u201320%), corresponding to negligible radius differences (0.5\u20131.1\u00a0mm); for laryngeal tumours, the segmented volumes by the gradient-based method agreed with those delineated on the macroscopic specimens, whereas the threshold-based method overestimated the true volume by 68% (p\u2009=\u20090.014). Lastly, macroscopic laryngeal specimens were totally encompassed by neither the threshold-based nor the gradient-based volumes.ConclusionThe gradient-based segmentation method applied on denoised and deblurred images proved to be more accurate than the source-to-background ratio method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-006-0363-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "FDG-PET images", 
      "laryngeal tumors", 
      "laryngeal specimens", 
      "tumors", 
      "PET images", 
      "gradient-based segmentation method", 
      "patients", 
      "laryngectomy", 
      "background ratio", 
      "MethodsThe", 
      "volume", 
      "specimens", 
      "true volume", 
      "hierarchical cluster analysis", 
      "Lucite phantom", 
      "different volumes", 
      "differences", 
      "validation", 
      "phantom", 
      "volume mismatch", 
      "computer-generated phantoms", 
      "slight underestimation", 
      "method", 
      "cluster analysis", 
      "analysis", 
      "ratio", 
      "macroscopic specimens", 
      "underestimation", 
      "images", 
      "intensity", 
      "source", 
      "values", 
      "MI estimates", 
      "threshold-based method", 
      "sphere volume", 
      "background ratio method", 
      "ratio method", 
      "better estimation", 
      "gradient intensity", 
      "deconvolution algorithm", 
      "mismatch", 
      "estimation", 
      "segmentation method", 
      "methodology", 
      "gradient-based methods", 
      "watershed transform", 
      "edge-preserving filter", 
      "filter", 
      "thresholding method", 
      "radius", 
      "new gradient-based method", 
      "iterative deconvolution algorithm", 
      "algorithm", 
      "sphere", 
      "transform", 
      "radius difference"
    ], 
    "name": "A gradient-based method for segmenting FDG-PET images: methodology and validation", 
    "pagination": "1427-1438", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028309320"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-006-0363-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17431616"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-006-0363-4", 
      "https://app.dimensions.ai/details/publication/pub.1028309320"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_441.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-006-0363-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0363-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0363-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0363-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0363-4'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      103 URIs      87 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-006-0363-4 schema:about N1a05ac678d604d799a346256fd3241c7
2 N3c1e54068f284aa3b59fb6e872b515be
3 N5f988dddad2a47988b3a23d1565f75fa
4 N66480cfea8864d968c9737d259d3e05f
5 N75ed3c30bdcb4539a7e92de1b2c3a657
6 N7a92b72e40784079b87cf6357596b6ea
7 N9770278dd0ac4586b7141936cff3cc72
8 N9b02f4325e0340baaf013fe094b2b066
9 Na12616bdba66400e825f64e83decf5ba
10 Nbab18a7df75147bfaa56c9cdb55dd983
11 Ne1c477ef4e1a4fe5b9ddd85f788c9754
12 Ne66bdcbe49f449a892c6e73f35b2671b
13 Nf37cfd91212b4a59b5a0df2fa9bac81e
14 Nfdad0e82254c42a7be13a112b63586ba
15 anzsrc-for:02
16 anzsrc-for:0299
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author Nb4cb8dcb6ea64cc2b84992919ed71941
20 schema:citation sg:pub.10.1007/978-1-4613-8643-8
21 sg:pub.10.1007/978-1-4615-3980-3
22 sg:pub.10.1007/bf00252392
23 sg:pub.10.1007/bf01391351
24 sg:pub.10.1007/s002590050299
25 sg:pub.10.1023/a:1008946426658
26 schema:datePublished 2007-03-13
27 schema:datePublishedReg 2007-03-13
28 schema:description PurposeA new gradient-based method for segmenting FDG-PET images is described and validated.MethodsThe proposed method relies on the watershed transform and hierarchical cluster analysis. To allow a better estimation of the gradient intensity, iteratively reconstructed images were first denoised and deblurred with an edge-preserving filter and a constrained iterative deconvolution algorithm. Validation was first performed on computer-generated 3D phantoms containing spheres, then on a real cylindrical Lucite phantom containing spheres of different volumes ranging from 2.1 to 92.9 ml. Moreover, laryngeal tumours from seven patients were segmented on PET images acquired before laryngectomy by the gradient-based method and the thresholding method based on the source-to-background ratio developed by Daisne (Radiother Oncol 2003;69:247–50). For the spheres, the calculated volumes and radii were compared with the known values; for laryngeal tumours, the volumes were compared with the macroscopic specimens. Volume mismatches were also analysed.ResultsOn computer-generated phantoms, the deconvolution algorithm decreased the mis-estimate of volumes and radii. For the Lucite phantom, the gradient-based method led to a slight underestimation of sphere volumes (by 10–20%), corresponding to negligible radius differences (0.5–1.1 mm); for laryngeal tumours, the segmented volumes by the gradient-based method agreed with those delineated on the macroscopic specimens, whereas the threshold-based method overestimated the true volume by 68% (p = 0.014). Lastly, macroscopic laryngeal specimens were totally encompassed by neither the threshold-based nor the gradient-based volumes.ConclusionThe gradient-based segmentation method applied on denoised and deblurred images proved to be more accurate than the source-to-background ratio method.
29 schema:genre article
30 schema:isAccessibleForFree false
31 schema:isPartOf N37afa8ff6bf8480cab420573868d92a9
32 Nf3327c42cab548b4baad495313e79f89
33 sg:journal.1297401
34 schema:keywords FDG-PET images
35 Lucite phantom
36 MI estimates
37 MethodsThe
38 PET images
39 algorithm
40 analysis
41 background ratio
42 background ratio method
43 better estimation
44 cluster analysis
45 computer-generated phantoms
46 deconvolution algorithm
47 differences
48 different volumes
49 edge-preserving filter
50 estimation
51 filter
52 gradient intensity
53 gradient-based methods
54 gradient-based segmentation method
55 hierarchical cluster analysis
56 images
57 intensity
58 iterative deconvolution algorithm
59 laryngeal specimens
60 laryngeal tumors
61 laryngectomy
62 macroscopic specimens
63 method
64 methodology
65 mismatch
66 new gradient-based method
67 patients
68 phantom
69 radius
70 radius difference
71 ratio
72 ratio method
73 segmentation method
74 slight underestimation
75 source
76 specimens
77 sphere
78 sphere volume
79 threshold-based method
80 thresholding method
81 transform
82 true volume
83 tumors
84 underestimation
85 validation
86 values
87 volume
88 volume mismatch
89 watershed transform
90 schema:name A gradient-based method for segmenting FDG-PET images: methodology and validation
91 schema:pagination 1427-1438
92 schema:productId Nb1543017e1a34536a0b6a790afa96349
93 Nec0ac415e88c49a388adb08ebad9f90c
94 Nf6f5fdb2ea1e44008049693f02e56fc5
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028309320
96 https://doi.org/10.1007/s00259-006-0363-4
97 schema:sdDatePublished 2022-11-24T20:53
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N9db08d6f79584297bb1b2b50fdd59e3f
100 schema:url https://doi.org/10.1007/s00259-006-0363-4
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N1a05ac678d604d799a346256fd3241c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Subtraction Technique
106 rdf:type schema:DefinedTerm
107 N2b56532c49da40f9bf042d87b1c21bc9 rdf:first sg:person.01251350364.77
108 rdf:rest N2d61e6c42b4a4ddf965a32855440a459
109 N2d61e6c42b4a4ddf965a32855440a459 rdf:first sg:person.01315730743.76
110 rdf:rest rdf:nil
111 N37afa8ff6bf8480cab420573868d92a9 schema:issueNumber 9
112 rdf:type schema:PublicationIssue
113 N3c1e54068f284aa3b59fb6e872b515be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Algorithms
115 rdf:type schema:DefinedTerm
116 N5f988dddad2a47988b3a23d1565f75fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Radiopharmaceuticals
118 rdf:type schema:DefinedTerm
119 N66480cfea8864d968c9737d259d3e05f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cluster Analysis
121 rdf:type schema:DefinedTerm
122 N75ed3c30bdcb4539a7e92de1b2c3a657 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Imaging, Three-Dimensional
124 rdf:type schema:DefinedTerm
125 N7a92b72e40784079b87cf6357596b6ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Humans
127 rdf:type schema:DefinedTerm
128 N9770278dd0ac4586b7141936cff3cc72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Positron-Emission Tomography
130 rdf:type schema:DefinedTerm
131 N9b02f4325e0340baaf013fe094b2b066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Head and Neck Neoplasms
133 rdf:type schema:DefinedTerm
134 N9db08d6f79584297bb1b2b50fdd59e3f schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Na12616bdba66400e825f64e83decf5ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Fluorodeoxyglucose F18
138 rdf:type schema:DefinedTerm
139 Nb1543017e1a34536a0b6a790afa96349 schema:name pubmed_id
140 schema:value 17431616
141 rdf:type schema:PropertyValue
142 Nb4cb8dcb6ea64cc2b84992919ed71941 rdf:first sg:person.01225751202.10
143 rdf:rest Nff1a355937ec4ba19035780d7a44f916
144 Nbab18a7df75147bfaa56c9cdb55dd983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Polymethyl Methacrylate
146 rdf:type schema:DefinedTerm
147 Nc5cd70d1a7ee4c408412c1a4b4193988 rdf:first sg:person.01310752206.74
148 rdf:rest N2b56532c49da40f9bf042d87b1c21bc9
149 Ne1c477ef4e1a4fe5b9ddd85f788c9754 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Inflammation
151 rdf:type schema:DefinedTerm
152 Ne66bdcbe49f449a892c6e73f35b2671b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Image Processing, Computer-Assisted
154 rdf:type schema:DefinedTerm
155 Nec0ac415e88c49a388adb08ebad9f90c schema:name doi
156 schema:value 10.1007/s00259-006-0363-4
157 rdf:type schema:PropertyValue
158 Nf3327c42cab548b4baad495313e79f89 schema:volumeNumber 34
159 rdf:type schema:PublicationVolume
160 Nf37cfd91212b4a59b5a0df2fa9bac81e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Pattern Recognition, Automated
162 rdf:type schema:DefinedTerm
163 Nf6f5fdb2ea1e44008049693f02e56fc5 schema:name dimensions_id
164 schema:value pub.1028309320
165 rdf:type schema:PropertyValue
166 Nfdad0e82254c42a7be13a112b63586ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Phantoms, Imaging
168 rdf:type schema:DefinedTerm
169 Nff1a355937ec4ba19035780d7a44f916 rdf:first sg:person.01061017307.67
170 rdf:rest Nc5cd70d1a7ee4c408412c1a4b4193988
171 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
172 schema:name Physical Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
175 schema:name Other Physical Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
178 schema:name Medical and Health Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
181 schema:name Clinical Sciences
182 rdf:type schema:DefinedTerm
183 sg:journal.1297401 schema:issn 1619-7070
184 1619-7089
185 schema:name European Journal of Nuclear Medicine and Molecular Imaging
186 schema:publisher Springer Nature
187 rdf:type schema:Periodical
188 sg:person.01061017307.67 schema:affiliation grid-institutes:grid.48769.34
189 schema:familyName Lee
190 schema:givenName John A.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061017307.67
192 rdf:type schema:Person
193 sg:person.01225751202.10 schema:affiliation grid-institutes:grid.48769.34
194 schema:familyName Geets
195 schema:givenName Xavier
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225751202.10
197 rdf:type schema:Person
198 sg:person.01251350364.77 schema:affiliation grid-institutes:grid.48769.34
199 schema:familyName Lonneux
200 schema:givenName Max
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251350364.77
202 rdf:type schema:Person
203 sg:person.01310752206.74 schema:affiliation grid-institutes:grid.48769.34
204 schema:familyName Bol
205 schema:givenName Anne
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310752206.74
207 rdf:type schema:Person
208 sg:person.01315730743.76 schema:affiliation grid-institutes:grid.48769.34
209 schema:familyName Grégoire
210 schema:givenName Vincent
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315730743.76
212 rdf:type schema:Person
213 sg:pub.10.1007/978-1-4613-8643-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035447677
214 https://doi.org/10.1007/978-1-4613-8643-8
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/978-1-4615-3980-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037572815
217 https://doi.org/10.1007/978-1-4615-3980-3
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/bf00252392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051417747
220 https://doi.org/10.1007/bf00252392
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/bf01391351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044785439
223 https://doi.org/10.1007/bf01391351
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s002590050299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052529390
226 https://doi.org/10.1007/s002590050299
227 rdf:type schema:CreativeWork
228 sg:pub.10.1023/a:1008946426658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904750
229 https://doi.org/10.1023/a:1008946426658
230 rdf:type schema:CreativeWork
231 grid-institutes:grid.48769.34 schema:alternateName Department of Nuclear Medicine, Center for Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium
232 Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium
233 schema:name Department of Nuclear Medicine, Center for Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium
234 Department of Radiation Oncology, Center for Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, St-Luc University Hospital, 1200, Brussels, Belgium
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...