Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01-12

AUTHORS

Ludwig G. Strauss, Sven Klippel, Leyun Pan, Klaus Schönleben, Uwe Haberkorn, Antonia Dimitrakopoulou-Strauss

ABSTRACT

PurposeThe impact of quantitative parameters on the differentiation of primary colorectal tumours from normal colon tissue was assessed. Dynamic PET data (DPET) were acquired, and compartment and non-compartment modelling applied. The discriminant power of single parameters and the combination of PET parameters was assessed. All lesions were confirmed by histology.MethodsFDG DPET studies were acquired in 22 patients with colorectal tumours prior to surgery. Five of these patients also had liver metastases at the time of the PET study. The SUV 56–60 min p.i. was included in the evaluation. A two-tissue compartment model was applied and the parameters k1–k4 as well as the fractional blood volume (VB) were obtained. The FDG influx was calculated from the compartment data. Non-compartment modelling was used to calculate the fractal dimension (FD) of the time-activity data.ResultsFD, SUV, influx and k3 were the most important single parameters for lesion differentiation. The highest accuracy was achieved for FD (88.78%). The overall tracer uptake was mainly dependent on k3 and not on k1 or VB. The support vector machines (SVM) algorithm was used to predict the classification based on the combination of individual PET parameters. The overall accuracy was 97.3%, with only one false positive case and no false negative results. The analysis of the subgroup of five patients with primary tumours and synchronous metastases revealed no significant differences for the individual PET parameters. However, VB tended to be lower while k1 and k2 were higher in patients with synchronous metastases. The SVM classification analysis predicted the presence of metastases based on the PET data of the primary tumour in three of five patients.ConclusionQuantitative FDG PET studies provide very accurate data for the differentiation of primary colorectal tumours from normal tissue. The use of quantitative data has the advantage that the detection of a colorectal tumour is not primarily dependent on the individual assessment and experience of the physician evaluating the FDG PET data only visually. The results suggest that the presence of metastatic lesions may be predicted by analysis of the dynamic PET data of the corresponding primary tumour. Further studies are needed to assess this aspect in detail. More... »

PAGES

868-877

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-006-0319-8

DOI

http://dx.doi.org/10.1007/s00259-006-0319-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044186446

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17219134


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Differentiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Support Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strauss", 
        "givenName": "Ludwig G.", 
        "id": "sg:person.0600206604.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600206604.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Surgical Clinic, Klinikum Ludwigshafen, Ludwigshafen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.413225.3", 
          "name": [
            "Surgical Clinic, Klinikum Ludwigshafen, Ludwigshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klippel", 
        "givenName": "Sven", 
        "id": "sg:person.01173007643.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173007643.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Leyun", 
        "id": "sg:person.01245705414.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245705414.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Surgical Clinic, Klinikum Ludwigshafen, Ludwigshafen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.413225.3", 
          "name": [
            "Surgical Clinic, Klinikum Ludwigshafen, Ludwigshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6nleben", 
        "givenName": "Klaus", 
        "id": "sg:person.01201221702.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201221702.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany", 
            "Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haberkorn", 
        "givenName": "Uwe", 
        "id": "sg:person.01142772466.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772466.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimitrakopoulou-Strauss", 
        "givenName": "Antonia", 
        "id": "sg:person.01371422644.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371422644.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-50036-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044754663", 
          "https://doi.org/10.1007/978-3-642-50036-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002619900202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022527751", 
          "https://doi.org/10.1007/s002619900202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4740-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016061088", 
          "https://doi.org/10.1007/978-1-4757-4740-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-0063-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017509906", 
          "https://doi.org/10.1007/s00259-005-0063-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-0006-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025455021", 
          "https://doi.org/10.1007/s00259-005-0006-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01-12", 
    "datePublishedReg": "2007-01-12", 
    "description": "PurposeThe impact of quantitative parameters on the differentiation of primary colorectal tumours from normal colon tissue was assessed. Dynamic PET data (DPET) were acquired, and compartment and non-compartment modelling applied. The discriminant power of single parameters and the combination of PET parameters was assessed. All lesions were confirmed by histology.MethodsFDG DPET studies were acquired in 22 patients with colorectal tumours prior to surgery. Five of these patients also had liver metastases at the time of the PET study. The SUV 56\u201360\u00a0min p.i. was included in the evaluation. A two-tissue compartment model was applied and the parameters k1\u2013k4 as well as the fractional blood volume (VB) were obtained. The FDG influx was calculated from the compartment data. Non-compartment modelling was used to calculate the fractal dimension (FD) of the time-activity data.ResultsFD, SUV, influx and k3 were the most important single parameters for lesion differentiation. The highest accuracy was achieved for FD (88.78%). The overall tracer uptake was mainly dependent on k3 and not on k1 or VB. The support vector machines (SVM) algorithm was used to predict the classification based on the combination of individual PET parameters. The overall accuracy was 97.3%, with only one false positive case and no false negative results. The analysis of the subgroup of five patients with primary tumours and synchronous metastases revealed no significant differences for the individual PET parameters. However, VB tended to be lower while k1 and k2 were higher in patients with synchronous metastases. The SVM classification analysis predicted the presence of metastases based on the PET data of the primary tumour in three of five patients.ConclusionQuantitative FDG PET studies provide very accurate data for the differentiation of primary colorectal tumours from normal tissue. The use of quantitative data has the advantage that the detection of a colorectal tumour is not primarily dependent on the individual assessment and experience of the physician evaluating the FDG PET data only visually. The results suggest that the presence of metastatic lesions may be predicted by analysis of the dynamic PET data of the corresponding primary tumour. Further studies are needed to assess this aspect in detail.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-006-0319-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "primary colorectal tumors", 
      "colorectal tumors", 
      "PET parameters", 
      "primary tumor", 
      "FDG PET data", 
      "synchronous metastases", 
      "PET studies", 
      "presence of metastases", 
      "FDG PET studies", 
      "corresponding primary tumors", 
      "fractional blood volume", 
      "PET data", 
      "false positive cases", 
      "time-activity data", 
      "two-tissue compartment model", 
      "liver metastases", 
      "metastatic lesions", 
      "false negative results", 
      "normal colon tissue", 
      "FDG influx", 
      "blood volume", 
      "tracer uptake", 
      "patients", 
      "positive cases", 
      "SVM classification analysis", 
      "tumors", 
      "metastasis", 
      "normal tissues", 
      "colon tissue", 
      "min p.", 
      "dynamic PET data", 
      "Further studies", 
      "significant differences", 
      "negative results", 
      "lesions", 
      "lesion differentiation", 
      "individual assessment", 
      "tissue", 
      "influx", 
      "compartment model", 
      "surgery", 
      "quantitative parameters", 
      "differentiation", 
      "histology", 
      "study", 
      "physicians", 
      "assessment", 
      "subgroups", 
      "SUV", 
      "data", 
      "discriminant power", 
      "presence", 
      "quantitative data", 
      "overall accuracy", 
      "important single parameter", 
      "combination", 
      "uptake", 
      "compartments", 
      "p.", 
      "differences", 
      "evaluation", 
      "cases", 
      "K1-K4", 
      "analysis", 
      "classification analysis", 
      "detection", 
      "volume", 
      "accurate data", 
      "experience", 
      "results", 
      "use", 
      "K1", 
      "classification", 
      "time", 
      "impact", 
      "K3", 
      "parameters", 
      "VB", 
      "single parameter", 
      "aspects", 
      "accuracy", 
      "respect", 
      "model", 
      "advantages", 
      "support vector machine algorithm", 
      "K2", 
      "detail", 
      "vector machine algorithm", 
      "high accuracy", 
      "dimensions", 
      "fractal dimension", 
      "machine algorithm", 
      "power", 
      "modelling", 
      "algorithm", 
      "non-compartment modelling", 
      "MethodsFDG DPET studies", 
      "DPET studies", 
      "SUV 56", 
      "parameters k1\u2013k4", 
      "compartment data", 
      "ResultsFD", 
      "overall tracer uptake", 
      "individual PET parameters", 
      "ConclusionQuantitative FDG PET studies", 
      "quantitative FDG PET data"
    ], 
    "name": "Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection?", 
    "pagination": "868-877", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044186446"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-006-0319-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17219134"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-006-0319-8", 
      "https://app.dimensions.ai/details/publication/pub.1044186446"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_445.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-006-0319-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0319-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0319-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0319-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0319-8'


 

This table displays all metadata directly associated to this object as RDF triples.

294 TRIPLES      22 PREDICATES      153 URIs      139 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-006-0319-8 schema:about N37279b12b6bd428da985bd908eb251a8
2 N4402960e078047feae31978fc0d41e9d
3 N5bad5e057965438399adf198675586e1
4 N6311c2019b5a416581fdfef639b0b88b
5 N64add3ed01cb41898a554c83ea61b863
6 N6d0c7861cfa74dc880913f601b4e6b94
7 N6e1516d1216b41f88d4c72cab5a6402d
8 N74c53dca351c4f50b848e6ef192f8beb
9 N7f7825f8a6fa43ee84ac347fc68953e9
10 Na2d84af10510400382aed1e1aa7da738
11 Na7483b830ed243e38e9b1cb0f970b048
12 Nc0cc6314cc844f95b356d491e52f41ea
13 Nc846b160e9a04815b5c73424f8a5d2a0
14 Nc975e495558c48cd9a38324aecc839c0
15 Nfb8bfadf009f40a8abfd5baf188abde0
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author N290bd60a5ed1424988d8f56ab3df7c92
19 schema:citation sg:pub.10.1007/978-1-4757-4740-9
20 sg:pub.10.1007/978-3-642-50036-7_4
21 sg:pub.10.1007/s00259-005-0006-1
22 sg:pub.10.1007/s00259-005-0063-5
23 sg:pub.10.1007/s002619900202
24 sg:pub.10.1023/a:1012487302797
25 schema:datePublished 2007-01-12
26 schema:datePublishedReg 2007-01-12
27 schema:description PurposeThe impact of quantitative parameters on the differentiation of primary colorectal tumours from normal colon tissue was assessed. Dynamic PET data (DPET) were acquired, and compartment and non-compartment modelling applied. The discriminant power of single parameters and the combination of PET parameters was assessed. All lesions were confirmed by histology.MethodsFDG DPET studies were acquired in 22 patients with colorectal tumours prior to surgery. Five of these patients also had liver metastases at the time of the PET study. The SUV 56–60 min p.i. was included in the evaluation. A two-tissue compartment model was applied and the parameters k1–k4 as well as the fractional blood volume (VB) were obtained. The FDG influx was calculated from the compartment data. Non-compartment modelling was used to calculate the fractal dimension (FD) of the time-activity data.ResultsFD, SUV, influx and k3 were the most important single parameters for lesion differentiation. The highest accuracy was achieved for FD (88.78%). The overall tracer uptake was mainly dependent on k3 and not on k1 or VB. The support vector machines (SVM) algorithm was used to predict the classification based on the combination of individual PET parameters. The overall accuracy was 97.3%, with only one false positive case and no false negative results. The analysis of the subgroup of five patients with primary tumours and synchronous metastases revealed no significant differences for the individual PET parameters. However, VB tended to be lower while k1 and k2 were higher in patients with synchronous metastases. The SVM classification analysis predicted the presence of metastases based on the PET data of the primary tumour in three of five patients.ConclusionQuantitative FDG PET studies provide very accurate data for the differentiation of primary colorectal tumours from normal tissue. The use of quantitative data has the advantage that the detection of a colorectal tumour is not primarily dependent on the individual assessment and experience of the physician evaluating the FDG PET data only visually. The results suggest that the presence of metastatic lesions may be predicted by analysis of the dynamic PET data of the corresponding primary tumour. Further studies are needed to assess this aspect in detail.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N62c22d149b5d480e9eefbed0a363f493
32 N8a56f7888380477883caa95e73e78171
33 sg:journal.1297401
34 schema:keywords ConclusionQuantitative FDG PET studies
35 DPET studies
36 FDG PET data
37 FDG PET studies
38 FDG influx
39 Further studies
40 K1
41 K1-K4
42 K2
43 K3
44 MethodsFDG DPET studies
45 PET data
46 PET parameters
47 PET studies
48 ResultsFD
49 SUV
50 SUV 56
51 SVM classification analysis
52 VB
53 accuracy
54 accurate data
55 advantages
56 algorithm
57 analysis
58 aspects
59 assessment
60 blood volume
61 cases
62 classification
63 classification analysis
64 colon tissue
65 colorectal tumors
66 combination
67 compartment data
68 compartment model
69 compartments
70 corresponding primary tumors
71 data
72 detail
73 detection
74 differences
75 differentiation
76 dimensions
77 discriminant power
78 dynamic PET data
79 evaluation
80 experience
81 false negative results
82 false positive cases
83 fractal dimension
84 fractional blood volume
85 high accuracy
86 histology
87 impact
88 important single parameter
89 individual PET parameters
90 individual assessment
91 influx
92 lesion differentiation
93 lesions
94 liver metastases
95 machine algorithm
96 metastasis
97 metastatic lesions
98 min p.
99 model
100 modelling
101 negative results
102 non-compartment modelling
103 normal colon tissue
104 normal tissues
105 overall accuracy
106 overall tracer uptake
107 p.
108 parameters
109 parameters k1–k4
110 patients
111 physicians
112 positive cases
113 power
114 presence
115 presence of metastases
116 primary colorectal tumors
117 primary tumor
118 quantitative FDG PET data
119 quantitative data
120 quantitative parameters
121 respect
122 results
123 significant differences
124 single parameter
125 study
126 subgroups
127 support vector machine algorithm
128 surgery
129 synchronous metastases
130 time
131 time-activity data
132 tissue
133 tracer uptake
134 tumors
135 two-tissue compartment model
136 uptake
137 use
138 vector machine algorithm
139 volume
140 schema:name Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection?
141 schema:pagination 868-877
142 schema:productId N16494aa15c5443f39f6e303a0ba628b9
143 N198e3b017b1b4024b67bb7f90ed69c26
144 N49a1574faf7b4fd7897d7ccece30a35c
145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044186446
146 https://doi.org/10.1007/s00259-006-0319-8
147 schema:sdDatePublished 2022-01-01T18:17
148 schema:sdLicense https://scigraph.springernature.com/explorer/license/
149 schema:sdPublisher N72c39347caa04eeeaf0b134966bfbe2e
150 schema:url https://doi.org/10.1007/s00259-006-0319-8
151 sgo:license sg:explorer/license/
152 sgo:sdDataset articles
153 rdf:type schema:ScholarlyArticle
154 N16494aa15c5443f39f6e303a0ba628b9 schema:name dimensions_id
155 schema:value pub.1044186446
156 rdf:type schema:PropertyValue
157 N198e3b017b1b4024b67bb7f90ed69c26 schema:name pubmed_id
158 schema:value 17219134
159 rdf:type schema:PropertyValue
160 N290bd60a5ed1424988d8f56ab3df7c92 rdf:first sg:person.0600206604.32
161 rdf:rest N5c2dc8448188444cbed5b6c25aadab73
162 N37279b12b6bd428da985bd908eb251a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Liver
164 rdf:type schema:DefinedTerm
165 N4402960e078047feae31978fc0d41e9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Probability
167 rdf:type schema:DefinedTerm
168 N49a1574faf7b4fd7897d7ccece30a35c schema:name doi
169 schema:value 10.1007/s00259-006-0319-8
170 rdf:type schema:PropertyValue
171 N5bad5e057965438399adf198675586e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Humans
173 rdf:type schema:DefinedTerm
174 N5c2dc8448188444cbed5b6c25aadab73 rdf:first sg:person.01173007643.11
175 rdf:rest N6c698a9efdc346f79fcbb2f6438db4f1
176 N62c22d149b5d480e9eefbed0a363f493 schema:volumeNumber 34
177 rdf:type schema:PublicationVolume
178 N6311c2019b5a416581fdfef639b0b88b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Software
180 rdf:type schema:DefinedTerm
181 N64add3ed01cb41898a554c83ea61b863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Cell Differentiation
183 rdf:type schema:DefinedTerm
184 N69d46680c46445e6a7e7a95a12e433aa rdf:first sg:person.01371422644.06
185 rdf:rest rdf:nil
186 N6c698a9efdc346f79fcbb2f6438db4f1 rdf:first sg:person.01245705414.30
187 rdf:rest N94849d8986994ab690169562cd4ba1dc
188 N6d0c7861cfa74dc880913f601b4e6b94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Kinetics
190 rdf:type schema:DefinedTerm
191 N6e1516d1216b41f88d4c72cab5a6402d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Fluorodeoxyglucose F18
193 rdf:type schema:DefinedTerm
194 N72c39347caa04eeeaf0b134966bfbe2e schema:name Springer Nature - SN SciGraph project
195 rdf:type schema:Organization
196 N74c53dca351c4f50b848e6ef192f8beb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Models, Theoretical
198 rdf:type schema:DefinedTerm
199 N7f7825f8a6fa43ee84ac347fc68953e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Positron-Emission Tomography
201 rdf:type schema:DefinedTerm
202 N8a56f7888380477883caa95e73e78171 schema:issueNumber 6
203 rdf:type schema:PublicationIssue
204 N94849d8986994ab690169562cd4ba1dc rdf:first sg:person.01201221702.46
205 rdf:rest Na0b95b8b685e492d88301c304e971f0e
206 Na0b95b8b685e492d88301c304e971f0e rdf:first sg:person.01142772466.17
207 rdf:rest N69d46680c46445e6a7e7a95a12e433aa
208 Na2d84af10510400382aed1e1aa7da738 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Radiopharmaceuticals
210 rdf:type schema:DefinedTerm
211 Na7483b830ed243e38e9b1cb0f970b048 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Neoplasm Metastasis
213 rdf:type schema:DefinedTerm
214 Nc0cc6314cc844f95b356d491e52f41ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Colorectal Neoplasms
216 rdf:type schema:DefinedTerm
217 Nc846b160e9a04815b5c73424f8a5d2a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Models, Statistical
219 rdf:type schema:DefinedTerm
220 Nc975e495558c48cd9a38324aecc839c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Algorithms
222 rdf:type schema:DefinedTerm
223 Nfb8bfadf009f40a8abfd5baf188abde0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Decision Support Techniques
225 rdf:type schema:DefinedTerm
226 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
227 schema:name Medical and Health Sciences
228 rdf:type schema:DefinedTerm
229 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
230 schema:name Clinical Sciences
231 rdf:type schema:DefinedTerm
232 sg:journal.1297401 schema:issn 1619-7070
233 1619-7089
234 schema:name European Journal of Nuclear Medicine and Molecular Imaging
235 schema:publisher Springer Nature
236 rdf:type schema:Periodical
237 sg:person.01142772466.17 schema:affiliation grid-institutes:grid.7700.0
238 schema:familyName Haberkorn
239 schema:givenName Uwe
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772466.17
241 rdf:type schema:Person
242 sg:person.01173007643.11 schema:affiliation grid-institutes:grid.413225.3
243 schema:familyName Klippel
244 schema:givenName Sven
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173007643.11
246 rdf:type schema:Person
247 sg:person.01201221702.46 schema:affiliation grid-institutes:grid.413225.3
248 schema:familyName Schönleben
249 schema:givenName Klaus
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201221702.46
251 rdf:type schema:Person
252 sg:person.01245705414.30 schema:affiliation grid-institutes:grid.7497.d
253 schema:familyName Pan
254 schema:givenName Leyun
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245705414.30
256 rdf:type schema:Person
257 sg:person.01371422644.06 schema:affiliation grid-institutes:grid.7497.d
258 schema:familyName Dimitrakopoulou-Strauss
259 schema:givenName Antonia
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371422644.06
261 rdf:type schema:Person
262 sg:person.0600206604.32 schema:affiliation grid-institutes:grid.7497.d
263 schema:familyName Strauss
264 schema:givenName Ludwig G.
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600206604.32
266 rdf:type schema:Person
267 sg:pub.10.1007/978-1-4757-4740-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016061088
268 https://doi.org/10.1007/978-1-4757-4740-9
269 rdf:type schema:CreativeWork
270 sg:pub.10.1007/978-3-642-50036-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044754663
271 https://doi.org/10.1007/978-3-642-50036-7_4
272 rdf:type schema:CreativeWork
273 sg:pub.10.1007/s00259-005-0006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025455021
274 https://doi.org/10.1007/s00259-005-0006-1
275 rdf:type schema:CreativeWork
276 sg:pub.10.1007/s00259-005-0063-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017509906
277 https://doi.org/10.1007/s00259-005-0063-5
278 rdf:type schema:CreativeWork
279 sg:pub.10.1007/s002619900202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022527751
280 https://doi.org/10.1007/s002619900202
281 rdf:type schema:CreativeWork
282 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
283 https://doi.org/10.1023/a:1012487302797
284 rdf:type schema:CreativeWork
285 grid-institutes:grid.413225.3 schema:alternateName Surgical Clinic, Klinikum Ludwigshafen, Ludwigshafen, Germany
286 schema:name Surgical Clinic, Klinikum Ludwigshafen, Ludwigshafen, Germany
287 rdf:type schema:Organization
288 grid-institutes:grid.7497.d schema:alternateName Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
289 schema:name Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
290 rdf:type schema:Organization
291 grid-institutes:grid.7700.0 schema:alternateName Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
292 schema:name Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
293 Medical PET Group-Biological Imaging (E0601), Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
294 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...