Accuracy and precision of perfusion lung scintigraphy versus 133Xe-radiospirometry for preoperative pulmonary functional assessment of patients with lung cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-09

AUTHORS

Denis Mariano-Goulart, Eric Barbotte, Célia Basurko, F. Comte, Michel Rossi

ABSTRACT

PURPOSE: This study sought to determine whether (133)Xe-radiospirometry (XRS) successfully selects patients able to undergo lung resection without postoperative respiratory complications and whether perfusion lung scintigraphy (PLS) is likely to provide a similar selection of patients for certain tumour stages. METHODS: Two hundred and eighty-four patients with resectable lung cancer underwent preoperative assessment of postoperative forced expiratory volume in 1 s (FEV(1)) by XRS and PLS. Correlations, Bland and Altman analysis and contingency tables were used to analyse the difference between the two predictive techniques. RESULTS: One hundred and sixty patients underwent lung resection on the basis of XRS preoperative testing only. None of them developed respiratory insufficiency. Despite a close correlation, the limits of agreement between predicted FEV(1) by XRS and PLS exceeded +/-0.3 l/s. For tumour stages T1Nx and T2N0, PLS underestimated postoperative FEV(1) whereas it overestimated this parameter for stage III. CONCLUSION: XRS accurately selects patients able to undergo lung resection without postoperative pulmonary insufficiency. The agreement between XRS and PLS is unacceptable. When only PLS is available, higher thresholds for patients with stage III cancers and lower thresholds for those with stage I cancers should be used to decide on operability. More... »

PAGES

1048-1054

References to SciGraph publications

  • 1988-05. Preoperative evaluation of pulmonary risk factors in JOURNAL OF GENERAL INTERNAL MEDICINE
  • 1995. Scintigraphic Prediction of Residual Lung Function Following Lobectomy: The Use of Posterior Oblique Views in RADIOACTIVE ISOTOPES IN CLINICAL MEDICINE AND RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00259-006-0087-5

    DOI

    http://dx.doi.org/10.1007/s00259-006-0087-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034152041

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16639608


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Non-Small-Cell Lung", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forced Expiratory Volume", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Staging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radionuclide Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Respiratory Function Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spirometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Xenon Radioisotopes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "H\u00f4pital Lapeyronie", 
              "id": "https://www.grid.ac/institutes/grid.411572.4", 
              "name": [
                "Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France", 
                "Service Central de M\u00e9decine Nucl\u00e9aire, CHU Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mariano-Goulart", 
            "givenName": "Denis", 
            "id": "sg:person.01370737637.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370737637.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Hospital of Montpellier", 
              "id": "https://www.grid.ac/institutes/grid.157868.5", 
              "name": [
                "Department of Statistics and Epidemiology, Montpellier University Hospital, Montpellier, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barbotte", 
            "givenName": "Eric", 
            "id": "sg:person.0764576561.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764576561.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Hospital of Montpellier", 
              "id": "https://www.grid.ac/institutes/grid.157868.5", 
              "name": [
                "Department of Statistics and Epidemiology, Montpellier University Hospital, Montpellier, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Basurko", 
            "givenName": "C\u00e9lia", 
            "id": "sg:person.0701175072.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701175072.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Hospital of Montpellier", 
              "id": "https://www.grid.ac/institutes/grid.157868.5", 
              "name": [
                "Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Comte", 
            "givenName": "F.", 
            "id": "sg:person.0712120042.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712120042.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Hospital of Montpellier", 
              "id": "https://www.grid.ac/institutes/grid.157868.5", 
              "name": [
                "Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rossi", 
            "givenName": "Michel", 
            "id": "sg:person.0637572120.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637572120.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1378/chest.72.4.422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004517350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1164/ajrccm/139.4.902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008187064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/j.seminoncol.2005.02.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010308696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0300-2896(15)30897-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013097693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.109.4.879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013203848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.108.1.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015953197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4975(89)90172-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019450006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1748-1716.1946.tb00389.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019679708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.123.1_suppl.105s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020282837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.123.1_suppl.105s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020282837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.111.6.1542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021139305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/thorax.56.2.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022187880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/thorax.56.2.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022187880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.111.6.1710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023274258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1183/09031936.98.11061354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026446222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.127.6.1984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027610739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0025-6196(12)60135-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041047925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amjmed.2004.12.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041654352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/00365517409049882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043122770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.117.4.991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043825023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.117.4.991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043825023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4975(90)90864-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048606846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/000331979104201208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050974589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/000331979104201208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050974589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7340-6_54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051541913", 
              "https://doi.org/10.1007/978-3-0348-7340-6_54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02596344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052884195", 
              "https://doi.org/10.1007/bf02596344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02596344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052884195", 
              "https://doi.org/10.1007/bf02596344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/1010-7940(92)90105-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054567646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-0029-1230020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057200161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.178.3.1780667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069324592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7326/0003-4819-112-10-763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073694367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7326/0003-4819-112-10-793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073694370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079904290", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079923476", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080128787", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080423322", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080876289", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081161523", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081174711", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081524335", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081672005", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082344811", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083012473", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.205.1.9314992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083154125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083278033", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-09", 
        "datePublishedReg": "2006-09-01", 
        "description": "PURPOSE: This study sought to determine whether (133)Xe-radiospirometry (XRS) successfully selects patients able to undergo lung resection without postoperative respiratory complications and whether perfusion lung scintigraphy (PLS) is likely to provide a similar selection of patients for certain tumour stages.\nMETHODS: Two hundred and eighty-four patients with resectable lung cancer underwent preoperative assessment of postoperative forced expiratory volume in 1 s (FEV(1)) by XRS and PLS. Correlations, Bland and Altman analysis and contingency tables were used to analyse the difference between the two predictive techniques.\nRESULTS: One hundred and sixty patients underwent lung resection on the basis of XRS preoperative testing only. None of them developed respiratory insufficiency. Despite a close correlation, the limits of agreement between predicted FEV(1) by XRS and PLS exceeded +/-0.3 l/s. For tumour stages T1Nx and T2N0, PLS underestimated postoperative FEV(1) whereas it overestimated this parameter for stage III.\nCONCLUSION: XRS accurately selects patients able to undergo lung resection without postoperative pulmonary insufficiency. The agreement between XRS and PLS is unacceptable. When only PLS is available, higher thresholds for patients with stage III cancers and lower thresholds for those with stage I cancers should be used to decide on operability.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00259-006-0087-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297401", 
            "issn": [
              "1619-7070", 
              "1619-7089"
            ], 
            "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "name": "Accuracy and precision of perfusion lung scintigraphy versus 133Xe-radiospirometry for preoperative pulmonary functional assessment of patients with lung cancer", 
        "pagination": "1048-1054", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a2b073f34c4406459093013ef1f92ef7c826bcb91d4cf5051b328d75f7296fad"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16639608"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101140988"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00259-006-0087-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034152041"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00259-006-0087-5", 
          "https://app.dimensions.ai/details/publication/pub.1034152041"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13073_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00259-006-0087-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0087-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0087-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0087-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-006-0087-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    272 TRIPLES      21 PREDICATES      84 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00259-006-0087-5 schema:about N0ae93c8b61e8496680866d94dfb5c317
    2 N15d98fc625264783ac68ab02b6902196
    3 N1b7a43ed73c343e28b0cd0325ab08c70
    4 N1dae3c5f85dd48218451e6f922837159
    5 N39adc018ed9c49678575a0a2089300c1
    6 N455c0d68d9b74865975bb4d8784e03bc
    7 N6f59ac432c134e47b5199cbe5e4e0b80
    8 N9af6a92ebebf4e6a97e1ab88c64c0186
    9 N9d02c38aac7c47838c9a932859ed9564
    10 Na289eea3e25543b7b6fe9dda223a5697
    11 Na5d5500b316c4e4686204b63d34fbb0e
    12 Nb7c6cd0963d845d4a872953563c76938
    13 Ne419534506bf4568b1bdd9dc01d8dbf7
    14 Ne4369708fe1f4a6da95285676c4a61a9
    15 Nf525eb948f1840a89066b940460bdd0f
    16 anzsrc-for:11
    17 anzsrc-for:1112
    18 schema:author Nd37ede0f3f704da0a9b00e79d823b6fc
    19 schema:citation sg:pub.10.1007/978-3-0348-7340-6_54
    20 sg:pub.10.1007/bf02596344
    21 https://app.dimensions.ai/details/publication/pub.1079904290
    22 https://app.dimensions.ai/details/publication/pub.1079923476
    23 https://app.dimensions.ai/details/publication/pub.1080128787
    24 https://app.dimensions.ai/details/publication/pub.1080423322
    25 https://app.dimensions.ai/details/publication/pub.1080876289
    26 https://app.dimensions.ai/details/publication/pub.1081161523
    27 https://app.dimensions.ai/details/publication/pub.1081174711
    28 https://app.dimensions.ai/details/publication/pub.1081524335
    29 https://app.dimensions.ai/details/publication/pub.1081672005
    30 https://app.dimensions.ai/details/publication/pub.1082344811
    31 https://app.dimensions.ai/details/publication/pub.1083012473
    32 https://app.dimensions.ai/details/publication/pub.1083278033
    33 https://doi.org/10.1016/0003-4975(89)90172-0
    34 https://doi.org/10.1016/0003-4975(90)90864-3
    35 https://doi.org/10.1016/1010-7940(92)90105-7
    36 https://doi.org/10.1016/j.amjmed.2004.12.024
    37 https://doi.org/10.1016/s0025-6196(12)60135-9
    38 https://doi.org/10.1016/s0300-2896(15)30897-8
    39 https://doi.org/10.1053/j.seminoncol.2005.02.012
    40 https://doi.org/10.1055/s-0029-1230020
    41 https://doi.org/10.1111/j.1748-1716.1946.tb00389.x
    42 https://doi.org/10.1136/thorax.56.2.89
    43 https://doi.org/10.1148/radiology.205.1.9314992
    44 https://doi.org/10.1164/ajrccm/139.4.902
    45 https://doi.org/10.1177/000331979104201208
    46 https://doi.org/10.1183/09031936.98.11061354
    47 https://doi.org/10.1378/chest.108.1.68
    48 https://doi.org/10.1378/chest.109.4.879
    49 https://doi.org/10.1378/chest.111.6.1542
    50 https://doi.org/10.1378/chest.111.6.1710
    51 https://doi.org/10.1378/chest.117.4.991
    52 https://doi.org/10.1378/chest.123.1_suppl.105s
    53 https://doi.org/10.1378/chest.127.6.1984
    54 https://doi.org/10.1378/chest.72.4.422
    55 https://doi.org/10.2214/ajr.178.3.1780667
    56 https://doi.org/10.3109/00365517409049882
    57 https://doi.org/10.7326/0003-4819-112-10-763
    58 https://doi.org/10.7326/0003-4819-112-10-793
    59 schema:datePublished 2006-09
    60 schema:datePublishedReg 2006-09-01
    61 schema:description PURPOSE: This study sought to determine whether (133)Xe-radiospirometry (XRS) successfully selects patients able to undergo lung resection without postoperative respiratory complications and whether perfusion lung scintigraphy (PLS) is likely to provide a similar selection of patients for certain tumour stages. METHODS: Two hundred and eighty-four patients with resectable lung cancer underwent preoperative assessment of postoperative forced expiratory volume in 1 s (FEV(1)) by XRS and PLS. Correlations, Bland and Altman analysis and contingency tables were used to analyse the difference between the two predictive techniques. RESULTS: One hundred and sixty patients underwent lung resection on the basis of XRS preoperative testing only. None of them developed respiratory insufficiency. Despite a close correlation, the limits of agreement between predicted FEV(1) by XRS and PLS exceeded +/-0.3 l/s. For tumour stages T1Nx and T2N0, PLS underestimated postoperative FEV(1) whereas it overestimated this parameter for stage III. CONCLUSION: XRS accurately selects patients able to undergo lung resection without postoperative pulmonary insufficiency. The agreement between XRS and PLS is unacceptable. When only PLS is available, higher thresholds for patients with stage III cancers and lower thresholds for those with stage I cancers should be used to decide on operability.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree false
    65 schema:isPartOf N3e40ba21a10a422183b000c2537960db
    66 N97c3109eb53b4ab98d9183d307170271
    67 sg:journal.1297401
    68 schema:name Accuracy and precision of perfusion lung scintigraphy versus 133Xe-radiospirometry for preoperative pulmonary functional assessment of patients with lung cancer
    69 schema:pagination 1048-1054
    70 schema:productId N140eaf881f4c442e9233131d549716e4
    71 N1be03f0c070e4cb0be272484a57d34a6
    72 N2ea044a56b5443ffad9961b7a8c537d8
    73 N7e0fa78068a04d0c934244550808e0fb
    74 Nd50e47bcc2a84ee7bf45fab387837895
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034152041
    76 https://doi.org/10.1007/s00259-006-0087-5
    77 schema:sdDatePublished 2019-04-11T14:27
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N0f67fbf3edb94aef9c05108eea8e4ee6
    80 schema:url http://link.springer.com/10.1007%2Fs00259-006-0087-5
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N0ae93c8b61e8496680866d94dfb5c317 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Female
    86 rdf:type schema:DefinedTerm
    87 N0f67fbf3edb94aef9c05108eea8e4ee6 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N140eaf881f4c442e9233131d549716e4 schema:name pubmed_id
    90 schema:value 16639608
    91 rdf:type schema:PropertyValue
    92 N15d98fc625264783ac68ab02b6902196 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Radionuclide Imaging
    94 rdf:type schema:DefinedTerm
    95 N1b7a43ed73c343e28b0cd0325ab08c70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Forced Expiratory Volume
    97 rdf:type schema:DefinedTerm
    98 N1be03f0c070e4cb0be272484a57d34a6 schema:name doi
    99 schema:value 10.1007/s00259-006-0087-5
    100 rdf:type schema:PropertyValue
    101 N1dae3c5f85dd48218451e6f922837159 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Lung Neoplasms
    103 rdf:type schema:DefinedTerm
    104 N2ea044a56b5443ffad9961b7a8c537d8 schema:name nlm_unique_id
    105 schema:value 101140988
    106 rdf:type schema:PropertyValue
    107 N39adc018ed9c49678575a0a2089300c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Xenon Radioisotopes
    109 rdf:type schema:DefinedTerm
    110 N3d37a46f26e343f5a62a5ff9f94ff64d rdf:first sg:person.0637572120.35
    111 rdf:rest rdf:nil
    112 N3e40ba21a10a422183b000c2537960db schema:issueNumber 9
    113 rdf:type schema:PublicationIssue
    114 N455c0d68d9b74865975bb4d8784e03bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Spirometry
    116 rdf:type schema:DefinedTerm
    117 N6f59ac432c134e47b5199cbe5e4e0b80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Respiratory Function Tests
    119 rdf:type schema:DefinedTerm
    120 N7e0fa78068a04d0c934244550808e0fb schema:name dimensions_id
    121 schema:value pub.1034152041
    122 rdf:type schema:PropertyValue
    123 N97c3109eb53b4ab98d9183d307170271 schema:volumeNumber 33
    124 rdf:type schema:PublicationVolume
    125 N99c7a3f45c2d49d59f1d4afbd7af88c9 rdf:first sg:person.0764576561.37
    126 rdf:rest N9f1159b7ccdb4e67916dcef98a81a2fd
    127 N9af6a92ebebf4e6a97e1ab88c64c0186 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Aged, 80 and over
    129 rdf:type schema:DefinedTerm
    130 N9d02c38aac7c47838c9a932859ed9564 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Male
    132 rdf:type schema:DefinedTerm
    133 N9f1159b7ccdb4e67916dcef98a81a2fd rdf:first sg:person.0701175072.27
    134 rdf:rest Neee623f5e83c4ec79e44c879a36a9378
    135 Na289eea3e25543b7b6fe9dda223a5697 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Neoplasm Staging
    137 rdf:type schema:DefinedTerm
    138 Na5d5500b316c4e4686204b63d34fbb0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Adult
    140 rdf:type schema:DefinedTerm
    141 Nb7c6cd0963d845d4a872953563c76938 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Humans
    143 rdf:type schema:DefinedTerm
    144 Nd37ede0f3f704da0a9b00e79d823b6fc rdf:first sg:person.01370737637.53
    145 rdf:rest N99c7a3f45c2d49d59f1d4afbd7af88c9
    146 Nd50e47bcc2a84ee7bf45fab387837895 schema:name readcube_id
    147 schema:value a2b073f34c4406459093013ef1f92ef7c826bcb91d4cf5051b328d75f7296fad
    148 rdf:type schema:PropertyValue
    149 Ne419534506bf4568b1bdd9dc01d8dbf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Aged
    151 rdf:type schema:DefinedTerm
    152 Ne4369708fe1f4a6da95285676c4a61a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Middle Aged
    154 rdf:type schema:DefinedTerm
    155 Neee623f5e83c4ec79e44c879a36a9378 rdf:first sg:person.0712120042.58
    156 rdf:rest N3d37a46f26e343f5a62a5ff9f94ff64d
    157 Nf525eb948f1840a89066b940460bdd0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Carcinoma, Non-Small-Cell Lung
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Medical and Health Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Oncology and Carcinogenesis
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1297401 schema:issn 1619-7070
    167 1619-7089
    168 schema:name European Journal of Nuclear Medicine and Molecular Imaging
    169 rdf:type schema:Periodical
    170 sg:person.01370737637.53 schema:affiliation https://www.grid.ac/institutes/grid.411572.4
    171 schema:familyName Mariano-Goulart
    172 schema:givenName Denis
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370737637.53
    174 rdf:type schema:Person
    175 sg:person.0637572120.35 schema:affiliation https://www.grid.ac/institutes/grid.157868.5
    176 schema:familyName Rossi
    177 schema:givenName Michel
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637572120.35
    179 rdf:type schema:Person
    180 sg:person.0701175072.27 schema:affiliation https://www.grid.ac/institutes/grid.157868.5
    181 schema:familyName Basurko
    182 schema:givenName Célia
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701175072.27
    184 rdf:type schema:Person
    185 sg:person.0712120042.58 schema:affiliation https://www.grid.ac/institutes/grid.157868.5
    186 schema:familyName Comte
    187 schema:givenName F.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712120042.58
    189 rdf:type schema:Person
    190 sg:person.0764576561.37 schema:affiliation https://www.grid.ac/institutes/grid.157868.5
    191 schema:familyName Barbotte
    192 schema:givenName Eric
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764576561.37
    194 rdf:type schema:Person
    195 sg:pub.10.1007/978-3-0348-7340-6_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051541913
    196 https://doi.org/10.1007/978-3-0348-7340-6_54
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bf02596344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052884195
    199 https://doi.org/10.1007/bf02596344
    200 rdf:type schema:CreativeWork
    201 https://app.dimensions.ai/details/publication/pub.1079904290 schema:CreativeWork
    202 https://app.dimensions.ai/details/publication/pub.1079923476 schema:CreativeWork
    203 https://app.dimensions.ai/details/publication/pub.1080128787 schema:CreativeWork
    204 https://app.dimensions.ai/details/publication/pub.1080423322 schema:CreativeWork
    205 https://app.dimensions.ai/details/publication/pub.1080876289 schema:CreativeWork
    206 https://app.dimensions.ai/details/publication/pub.1081161523 schema:CreativeWork
    207 https://app.dimensions.ai/details/publication/pub.1081174711 schema:CreativeWork
    208 https://app.dimensions.ai/details/publication/pub.1081524335 schema:CreativeWork
    209 https://app.dimensions.ai/details/publication/pub.1081672005 schema:CreativeWork
    210 https://app.dimensions.ai/details/publication/pub.1082344811 schema:CreativeWork
    211 https://app.dimensions.ai/details/publication/pub.1083012473 schema:CreativeWork
    212 https://app.dimensions.ai/details/publication/pub.1083278033 schema:CreativeWork
    213 https://doi.org/10.1016/0003-4975(89)90172-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019450006
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/0003-4975(90)90864-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048606846
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/1010-7940(92)90105-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054567646
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.amjmed.2004.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041654352
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/s0025-6196(12)60135-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041047925
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/s0300-2896(15)30897-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013097693
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1053/j.seminoncol.2005.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010308696
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1055/s-0029-1230020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057200161
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1111/j.1748-1716.1946.tb00389.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019679708
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1136/thorax.56.2.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022187880
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1148/radiology.205.1.9314992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083154125
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1164/ajrccm/139.4.902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008187064
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1177/000331979104201208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050974589
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1183/09031936.98.11061354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026446222
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1378/chest.108.1.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015953197
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1378/chest.109.4.879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013203848
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1378/chest.111.6.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021139305
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1378/chest.111.6.1710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023274258
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1378/chest.117.4.991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043825023
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1378/chest.123.1_suppl.105s schema:sameAs https://app.dimensions.ai/details/publication/pub.1020282837
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1378/chest.127.6.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027610739
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1378/chest.72.4.422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004517350
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.2214/ajr.178.3.1780667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069324592
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.3109/00365517409049882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043122770
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.7326/0003-4819-112-10-763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073694367
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.7326/0003-4819-112-10-793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073694370
    264 rdf:type schema:CreativeWork
    265 https://www.grid.ac/institutes/grid.157868.5 schema:alternateName University Hospital of Montpellier
    266 schema:name Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France
    267 Department of Statistics and Epidemiology, Montpellier University Hospital, Montpellier, France
    268 rdf:type schema:Organization
    269 https://www.grid.ac/institutes/grid.411572.4 schema:alternateName Hôpital Lapeyronie
    270 schema:name Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France
    271 Service Central de Médecine Nucléaire, CHU Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France
    272 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...