11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08-10

AUTHORS

Sungeun Kim, June-Key Chung, So-Hyang Im, Jae Min Jeong, Dong Soo Lee, Dong Gyu Kim, Hee Won Jung, Myung Chul Lee

ABSTRACT

PurposeThe purpose of this study was to compare the prognostic value of 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in glioma patients.MethodsThe study population comprised 47 patients with gliomas (19 glioblastoma, 28 others). Pretreatment magnetic resonance imaging, MET PET and FDG PET were performed within a time interval of 2 weeks in all patients. The uptake ratio and standard uptake values were calculated. Univariate and multivariate analyses were done to determine significant prognostic factors. Ki-67 index was measured by immunohistochemical staining, and compared with FDG and MET uptake in glioma.ResultsAmong the several clinicopathological prognostic factors, tumour pathology (glioblastoma or not), age (≥60 or <60 years), Karnofsky performance status (KPS) (≥70 or <70) and MET PET (higher uptake or not compared with normal cortex) were found to be significant predictors by univariate analysis. In multivariate analysis, tumour pathology, KPS and MET PET were identified as significant independent predictors. The Ki-67 proliferation index was significantly correlated with MET uptake (r=0.64), but not with FDG uptake.ConclusionCompared with FDG PET in glioma, MET PET was an independent significant prognostic factor and MET uptake was correlated with cellular proliferation. MET PET may be a useful biological prognostic marker in glioma patients. More... »

PAGES

52-59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-004-1598-6

DOI

http://dx.doi.org/10.1007/s00259-004-1598-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033967191

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15309332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Korea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methionine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sungeun", 
        "id": "sg:person.01301466142.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301466142.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "June-Key", 
        "id": "sg:person.0751347234.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "So-Hyang", 
        "id": "sg:person.01234563457.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234563457.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "Jae Min", 
        "id": "sg:person.01301360400.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301360400.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dong Gyu", 
        "id": "sg:person.0664476017.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664476017.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Hee Won", 
        "id": "sg:person.01315055034.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315055034.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Myung Chul", 
        "id": "sg:person.01337220140.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-001-0690-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041684840", 
          "https://doi.org/10.1007/s00259-001-0690-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00256026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040288786", 
          "https://doi.org/10.1007/bf00256026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02988499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000471914", 
          "https://doi.org/10.1007/bf02988499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101430050018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039350430", 
          "https://doi.org/10.1007/s101430050018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026518002800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023634136", 
          "https://doi.org/10.1023/a:1026518002800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08-10", 
    "datePublishedReg": "2004-08-10", 
    "description": "PurposeThe purpose of this study was to compare the prognostic value of 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in glioma patients.MethodsThe study population comprised 47 patients with gliomas (19 glioblastoma, 28 others). Pretreatment magnetic resonance imaging, MET PET and FDG PET were performed within a time interval of 2 weeks in all patients. The uptake ratio and standard uptake values were calculated. Univariate and multivariate analyses were done to determine significant prognostic factors. Ki-67 index was measured by immunohistochemical staining, and compared with FDG and MET uptake in glioma.ResultsAmong the several clinicopathological prognostic factors, tumour pathology (glioblastoma or not), age (\u226560 or <60 years), Karnofsky performance status (KPS) (\u226570 or <70) and MET PET (higher uptake or not compared with normal cortex) were found to be significant predictors by univariate analysis. In multivariate analysis, tumour pathology, KPS and MET PET were identified as significant independent predictors. The Ki-67 proliferation index was significantly correlated with MET uptake (r=0.64), but not with FDG uptake.ConclusionCompared with FDG PET in glioma, MET PET was an independent significant prognostic factor and MET uptake was correlated with cellular proliferation. MET PET may be a useful biological prognostic marker in glioma patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-004-1598-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "MET positron emission tomography", 
      "Karnofsky performance status", 
      "positron emission tomography", 
      "FDG positron emission tomography", 
      "significant prognostic factors", 
      "prognostic factors", 
      "MET uptake", 
      "prognostic marker", 
      "glioma patients", 
      "tumor pathology", 
      "multivariate analysis", 
      "independent significant prognostic factor", 
      "pretreatment magnetic resonance imaging", 
      "Ki-67 proliferation index", 
      "clinicopathological prognostic factors", 
      "MethodsThe study population", 
      "biological prognostic markers", 
      "significant independent predictors", 
      "Ki-67 index", 
      "standard uptake value", 
      "magnetic resonance imaging", 
      "performance status", 
      "independent predictors", 
      "prognostic value", 
      "FDG uptake", 
      "univariate analysis", 
      "study population", 
      "immunohistochemical staining", 
      "proliferation index", 
      "patients", 
      "uptake value", 
      "PurposeThe purpose", 
      "resonance imaging", 
      "emission tomography", 
      "gliomas", 
      "uptake ratio", 
      "significant predictors", 
      "cellular proliferation", 
      "pathology", 
      "predictors", 
      "markers", 
      "uptake", 
      "ResultsAmong", 
      "FDG", 
      "factors", 
      "weeks", 
      "index", 
      "staining", 
      "MetS", 
      "tomography", 
      "time interval", 
      "age", 
      "proliferation", 
      "status", 
      "imaging", 
      "population", 
      "interval", 
      "analysis", 
      "study", 
      "purpose", 
      "values", 
      "ratio", 
      "comparison"
    ], 
    "name": "11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET", 
    "pagination": "52-59", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033967191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-004-1598-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15309332"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-004-1598-6", 
      "https://app.dimensions.ai/details/publication/pub.1033967191"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_391.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-004-1598-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1598-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1598-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1598-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1598-6'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      112 URIs      99 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-004-1598-6 schema:about N0974e675be3848349d423e9d2694577e
2 N13c93073476d4e19aab31dcce31cad4e
3 N199ded4513c246f2953300db87e61177
4 N1f898c0be42a43a2a4559f096f4ac0b8
5 N318a3458a8ed442fbd31adf76ab5fb7f
6 N3fb05f1ee4334e5d8844a6fb1d3d14c8
7 N44914fc8c2534950a1ddcc59be4fb91b
8 N4f39d1593d1340ae9cb681a02ef427da
9 N51cdf575d9e2420fb6a0b300c10182ea
10 N5ff7cf4ace774e3383bffebd76c1e6a3
11 N6ae66006f3344e109dea50ded4c20b6a
12 N6bfed66d1a0349c3879d6d5d7b27b87a
13 N70fb290037f3464cbd6ba34598ecdf00
14 Na9d906f977a84a00a6f982ceab0476bc
15 Nc25b79a856cc4ba792227f050951ed4c
16 Nd7e8b02cd5d840ddb692c08e39ddf8da
17 Ndb1750856e7246cb93317d3e8759ad1c
18 Ne89f7f2b7e544c9293c92c8640fa6671
19 Ned8ef3670b9444248a37055a2fe27713
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author Ne4b8207913154425b799b15ebf622d2c
23 schema:citation sg:pub.10.1007/bf00256026
24 sg:pub.10.1007/bf02988499
25 sg:pub.10.1007/s00259-001-0690-4
26 sg:pub.10.1007/s101430050018
27 sg:pub.10.1023/a:1026518002800
28 schema:datePublished 2004-08-10
29 schema:datePublishedReg 2004-08-10
30 schema:description PurposeThe purpose of this study was to compare the prognostic value of 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in glioma patients.MethodsThe study population comprised 47 patients with gliomas (19 glioblastoma, 28 others). Pretreatment magnetic resonance imaging, MET PET and FDG PET were performed within a time interval of 2 weeks in all patients. The uptake ratio and standard uptake values were calculated. Univariate and multivariate analyses were done to determine significant prognostic factors. Ki-67 index was measured by immunohistochemical staining, and compared with FDG and MET uptake in glioma.ResultsAmong the several clinicopathological prognostic factors, tumour pathology (glioblastoma or not), age (≥60 or <60 years), Karnofsky performance status (KPS) (≥70 or <70) and MET PET (higher uptake or not compared with normal cortex) were found to be significant predictors by univariate analysis. In multivariate analysis, tumour pathology, KPS and MET PET were identified as significant independent predictors. The Ki-67 proliferation index was significantly correlated with MET uptake (r=0.64), but not with FDG uptake.ConclusionCompared with FDG PET in glioma, MET PET was an independent significant prognostic factor and MET uptake was correlated with cellular proliferation. MET PET may be a useful biological prognostic marker in glioma patients.
31 schema:genre article
32 schema:isAccessibleForFree false
33 schema:isPartOf N168234d2aaad44a89d9c1025e849de14
34 Ndfdc307b976c4b5fad509aa6d5d79608
35 sg:journal.1297401
36 schema:keywords FDG
37 FDG positron emission tomography
38 FDG uptake
39 Karnofsky performance status
40 Ki-67 index
41 Ki-67 proliferation index
42 MET positron emission tomography
43 MET uptake
44 MetS
45 MethodsThe study population
46 PurposeThe purpose
47 ResultsAmong
48 age
49 analysis
50 biological prognostic markers
51 cellular proliferation
52 clinicopathological prognostic factors
53 comparison
54 emission tomography
55 factors
56 glioma patients
57 gliomas
58 imaging
59 immunohistochemical staining
60 independent predictors
61 independent significant prognostic factor
62 index
63 interval
64 magnetic resonance imaging
65 markers
66 multivariate analysis
67 pathology
68 patients
69 performance status
70 population
71 positron emission tomography
72 predictors
73 pretreatment magnetic resonance imaging
74 prognostic factors
75 prognostic marker
76 prognostic value
77 proliferation
78 proliferation index
79 purpose
80 ratio
81 resonance imaging
82 significant independent predictors
83 significant predictors
84 significant prognostic factors
85 staining
86 standard uptake value
87 status
88 study
89 study population
90 time interval
91 tomography
92 tumor pathology
93 univariate analysis
94 uptake
95 uptake ratio
96 uptake value
97 values
98 weeks
99 schema:name 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET
100 schema:pagination 52-59
101 schema:productId N1e6f44b8b0d34b50bab5a669e02df115
102 N4d962bf7f90f4604bb2856b9342fc46b
103 Nbb654c407e7d491ca16893ad6063d2fa
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033967191
105 https://doi.org/10.1007/s00259-004-1598-6
106 schema:sdDatePublished 2022-10-01T06:32
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nd9c8ff08f7dd47c8ad1ef1b5d0f718ee
109 schema:url https://doi.org/10.1007/s00259-004-1598-6
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0974e675be3848349d423e9d2694577e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Retrospective Studies
115 rdf:type schema:DefinedTerm
116 N0fa9aad6031648fc926efb2a633939e8 rdf:first N1f42566a79254222bd1a568c45ad3de3
117 rdf:rest N72e7a0cdfe3144d3bff76ca01d45c229
118 N13c93073476d4e19aab31dcce31cad4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Middle Aged
120 rdf:type schema:DefinedTerm
121 N168234d2aaad44a89d9c1025e849de14 schema:issueNumber 1
122 rdf:type schema:PublicationIssue
123 N199ded4513c246f2953300db87e61177 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Korea
125 rdf:type schema:DefinedTerm
126 N1e6f44b8b0d34b50bab5a669e02df115 schema:name doi
127 schema:value 10.1007/s00259-004-1598-6
128 rdf:type schema:PropertyValue
129 N1f42566a79254222bd1a568c45ad3de3 schema:affiliation grid-institutes:grid.31501.36
130 schema:familyName Lee
131 schema:givenName Dong Soo
132 rdf:type schema:Person
133 N1f898c0be42a43a2a4559f096f4ac0b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Glioma
135 rdf:type schema:DefinedTerm
136 N2b1fbbf139174642a8c171a586607983 rdf:first sg:person.01234563457.55
137 rdf:rest N66a106f54d1c4b769c9ffe9a117c55c1
138 N318a3458a8ed442fbd31adf76ab5fb7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Reproducibility of Results
140 rdf:type schema:DefinedTerm
141 N33fe2d601bc54f8599728977f8874621 rdf:first sg:person.0751347234.39
142 rdf:rest N2b1fbbf139174642a8c171a586607983
143 N3fb05f1ee4334e5d8844a6fb1d3d14c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Female
145 rdf:type schema:DefinedTerm
146 N44914fc8c2534950a1ddcc59be4fb91b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Radiopharmaceuticals
148 rdf:type schema:DefinedTerm
149 N4d962bf7f90f4604bb2856b9342fc46b schema:name dimensions_id
150 schema:value pub.1033967191
151 rdf:type schema:PropertyValue
152 N4f39d1593d1340ae9cb681a02ef427da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Risk Factors
154 rdf:type schema:DefinedTerm
155 N51cdf575d9e2420fb6a0b300c10182ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Sensitivity and Specificity
157 rdf:type schema:DefinedTerm
158 N5ff7cf4ace774e3383bffebd76c1e6a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Male
160 rdf:type schema:DefinedTerm
161 N66a106f54d1c4b769c9ffe9a117c55c1 rdf:first sg:person.01301360400.94
162 rdf:rest N0fa9aad6031648fc926efb2a633939e8
163 N6ae66006f3344e109dea50ded4c20b6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Humans
165 rdf:type schema:DefinedTerm
166 N6bfed66d1a0349c3879d6d5d7b27b87a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Positron-Emission Tomography
168 rdf:type schema:DefinedTerm
169 N70fb290037f3464cbd6ba34598ecdf00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Prognosis
171 rdf:type schema:DefinedTerm
172 N72e7a0cdfe3144d3bff76ca01d45c229 rdf:first sg:person.0664476017.21
173 rdf:rest Nbe468e8e4e9d4a08a244a4405d9eb5de
174 Na9d906f977a84a00a6f982ceab0476bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Methionine
176 rdf:type schema:DefinedTerm
177 Nbb654c407e7d491ca16893ad6063d2fa schema:name pubmed_id
178 schema:value 15309332
179 rdf:type schema:PropertyValue
180 Nbe468e8e4e9d4a08a244a4405d9eb5de rdf:first sg:person.01315055034.67
181 rdf:rest Ne65d918eb3dd4990a30d6e259036b1a1
182 Nc25b79a856cc4ba792227f050951ed4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Risk Assessment
184 rdf:type schema:DefinedTerm
185 Nd7e8b02cd5d840ddb692c08e39ddf8da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Brain Neoplasms
187 rdf:type schema:DefinedTerm
188 Nd9c8ff08f7dd47c8ad1ef1b5d0f718ee schema:name Springer Nature - SN SciGraph project
189 rdf:type schema:Organization
190 Ndb1750856e7246cb93317d3e8759ad1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Fluorodeoxyglucose F18
192 rdf:type schema:DefinedTerm
193 Ndfdc307b976c4b5fad509aa6d5d79608 schema:volumeNumber 32
194 rdf:type schema:PublicationVolume
195 Ne4b8207913154425b799b15ebf622d2c rdf:first sg:person.01301466142.73
196 rdf:rest N33fe2d601bc54f8599728977f8874621
197 Ne65d918eb3dd4990a30d6e259036b1a1 rdf:first sg:person.01337220140.25
198 rdf:rest rdf:nil
199 Ne89f7f2b7e544c9293c92c8640fa6671 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Prevalence
201 rdf:type schema:DefinedTerm
202 Ned8ef3670b9444248a37055a2fe27713 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Survival Analysis
204 rdf:type schema:DefinedTerm
205 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
206 schema:name Medical and Health Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
209 schema:name Clinical Sciences
210 rdf:type schema:DefinedTerm
211 sg:journal.1297401 schema:issn 1619-7070
212 1619-7089
213 schema:name European Journal of Nuclear Medicine and Molecular Imaging
214 schema:publisher Springer Nature
215 rdf:type schema:Periodical
216 sg:person.01234563457.55 schema:affiliation grid-institutes:grid.31501.36
217 schema:familyName Im
218 schema:givenName So-Hyang
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234563457.55
220 rdf:type schema:Person
221 sg:person.01301360400.94 schema:affiliation grid-institutes:grid.31501.36
222 schema:familyName Jeong
223 schema:givenName Jae Min
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301360400.94
225 rdf:type schema:Person
226 sg:person.01301466142.73 schema:affiliation grid-institutes:grid.31501.36
227 schema:familyName Kim
228 schema:givenName Sungeun
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301466142.73
230 rdf:type schema:Person
231 sg:person.01315055034.67 schema:affiliation grid-institutes:grid.31501.36
232 schema:familyName Jung
233 schema:givenName Hee Won
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315055034.67
235 rdf:type schema:Person
236 sg:person.01337220140.25 schema:affiliation grid-institutes:grid.31501.36
237 schema:familyName Lee
238 schema:givenName Myung Chul
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25
240 rdf:type schema:Person
241 sg:person.0664476017.21 schema:affiliation grid-institutes:grid.31501.36
242 schema:familyName Kim
243 schema:givenName Dong Gyu
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664476017.21
245 rdf:type schema:Person
246 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
247 schema:familyName Chung
248 schema:givenName June-Key
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
250 rdf:type schema:Person
251 sg:pub.10.1007/bf00256026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040288786
252 https://doi.org/10.1007/bf00256026
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/bf02988499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000471914
255 https://doi.org/10.1007/bf02988499
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/s00259-001-0690-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041684840
258 https://doi.org/10.1007/s00259-001-0690-4
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/s101430050018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039350430
261 https://doi.org/10.1007/s101430050018
262 rdf:type schema:CreativeWork
263 sg:pub.10.1023/a:1026518002800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023634136
264 https://doi.org/10.1023/a:1026518002800
265 rdf:type schema:CreativeWork
266 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
267 Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
268 Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea
269 schema:name Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
270 Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
271 Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Korea
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...