Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-10-15

AUTHORS

Nanda C. Krak, R. Boellaard, Otto S. Hoekstra, Jos W. R. Twisk, Corneline J. Hoekstra, Adriaan A. Lammertsma

ABSTRACT

PurposeQuantitative measurement of tracer uptake in a tumour can be influenced by a number of factors, including the method of defining regions of interest (ROIs) and the reconstruction parameters used. The main purpose of this study was to determine the effects of different ROI methods on quantitative outcome, using two reconstruction methods and the standard uptake value (SUV) as a simple quantitative measure of FDG uptake.MethodsFour commonly used methods of ROI definition (manual placement, fixed dimensions, threshold based and maximum pixel value) were used to calculate SUV (SUV[MAN], SUV15 mm, SUV50, SUV75 and SUVmax, respectively) and to generate “metabolic” tumour volumes. Test–retest reproducibility of SUVs and of “metabolic” tumour volumes and the applicability of ROI methods during chemotherapy were assessed. In addition, SUVs calculated on ordered subsets expectation maximisation (OSEM) and filtered back-projection (FBP) images were compared.ResultsROI definition had a direct effect on quantitative outcome. On average, SUV[MAN], SUV15 mm, SUV50 and SUV75, were respectively 48%, 27%, 34% and 15% lower than SUVmax when calculated on OSEM images. No statistically significant differences were found between SUVs calculated on OSEM and FBP reconstructed images. Highest reproducibility was found for SUV15 mm and SUV[MAN] (ICC 0.95 and 0.94, respectively) and for “metabolic” volumes measured with the manual and 50% threshold ROIs (ICC 0.99 for both). Manual, 75% threshold and maximum pixel ROIs could be used throughout therapy, regardless of changes in tumour uptake or geometry. SUVs showed the same trend in relative change in FDG uptake after chemotherapy, irrespective of the ROI method used.ConclusionThe method of ROI definition has a direct influence on quantitative outcome. In terms of simplicity, user-independence, reproducibility and general applicability the threshold-based and fixed dimension methods are the best ROI methods. Threshold methods are in addition relatively independent of changes in size and geometry, however, and may therefore be more suitable for response monitoring purposes. More... »

PAGES

294-301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1

DOI

http://dx.doi.org/10.1007/s00259-004-1566-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049135908

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15791438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Non-Small-Cell Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Outcome Assessment, Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radionuclide Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krak", 
        "givenName": "Nanda C.", 
        "id": "sg:person.0673777171.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "R.", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoekstra", 
        "givenName": "Otto S.", 
        "id": "sg:person.0621551653.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Twisk", 
        "givenName": "Jos W. R.", 
        "id": "sg:person.07673312617.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673312617.90"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hoekstra", 
        "givenName": "Corneline J.", 
        "id": "sg:person.0626764200.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A.", 
        "id": "sg:person.01352511753.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002590050426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264770", 
          "https://doi.org/10.1007/s002590050426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590100566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015542034", 
          "https://doi.org/10.1007/s002590100566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005067118", 
          "https://doi.org/10.1007/s002590050570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590000421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025011181", 
          "https://doi.org/10.1007/s002590000421"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10-15", 
    "datePublishedReg": "2004-10-15", 
    "description": "PurposeQuantitative measurement of tracer uptake in a tumour can be influenced by a number of factors, including the method of defining regions of interest (ROIs) and the reconstruction parameters used. The main purpose of this study was to determine the effects of different ROI methods on quantitative outcome, using two reconstruction methods and the standard uptake value (SUV) as a simple quantitative measure of FDG uptake.MethodsFour commonly used methods of ROI definition (manual placement, fixed dimensions, threshold based and maximum pixel value) were used to calculate SUV (SUV[MAN], SUV15\u00a0mm, SUV50, SUV75 and SUVmax, respectively) and to generate \u201cmetabolic\u201d tumour volumes. Test\u2013retest reproducibility of SUVs and of \u201cmetabolic\u201d tumour volumes and the applicability of ROI methods during chemotherapy were assessed. In addition, SUVs calculated on ordered subsets expectation maximisation (OSEM) and filtered back-projection (FBP) images were compared.ResultsROI definition had a direct effect on quantitative outcome. On average, SUV[MAN], SUV15\u00a0mm, SUV50 and SUV75, were respectively 48%, 27%, 34% and 15% lower than SUVmax when calculated on OSEM images. No statistically significant differences were found between SUVs calculated on OSEM and FBP reconstructed images. Highest reproducibility was found for SUV15\u00a0mm and SUV[MAN] (ICC 0.95 and 0.94, respectively) and for \u201cmetabolic\u201d volumes measured with the manual and 50% threshold ROIs (ICC 0.99 for both). Manual, 75% threshold and maximum pixel ROIs could be used throughout therapy, regardless of changes in tumour uptake or geometry. SUVs showed the same trend in relative change in FDG uptake after chemotherapy, irrespective of the ROI method used.ConclusionThe method of ROI definition has a direct influence on quantitative outcome. In terms of simplicity, user-independence, reproducibility and general applicability the threshold-based and fixed dimension methods are the best ROI methods. Threshold methods are in addition relatively independent of changes in size and geometry, however, and may therefore be more suitable for response monitoring purposes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-004-1566-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "standard uptake value", 
      "FDG uptake", 
      "tumor volume", 
      "test-retest reproducibility", 
      "quantitative outcomes", 
      "ROI method", 
      "tracer uptake", 
      "tumor uptake", 
      "uptake value", 
      "region of interest", 
      "subset expectation maximisation", 
      "outcomes", 
      "chemotherapy", 
      "significant differences", 
      "ROI definition", 
      "monitoring trials", 
      "OSEM images", 
      "direct effect", 
      "uptake", 
      "different ROI methods", 
      "SUVmax", 
      "therapy", 
      "tumors", 
      "number of factors", 
      "trials", 
      "relative changes", 
      "effect", 
      "volume", 
      "SUV50", 
      "simple quantitative measure", 
      "changes", 
      "manual", 
      "MethodsFour", 
      "reproducibility", 
      "quantitative measures", 
      "purpose", 
      "factors", 
      "high reproducibility", 
      "differences", 
      "addition", 
      "study", 
      "measures", 
      "reconstruction parameters", 
      "same trend", 
      "definition", 
      "FBP", 
      "direct influence", 
      "threshold", 
      "method", 
      "back-projection images", 
      "number", 
      "expectation maximisation", 
      "OSEM", 
      "trends", 
      "images", 
      "values", 
      "region", 
      "reconstruction method", 
      "size", 
      "main purpose", 
      "monitoring purposes", 
      "measurements", 
      "influence", 
      "terms of simplicity", 
      "interest", 
      "parameters", 
      "terms", 
      "applicability", 
      "general applicability", 
      "threshold method", 
      "dimension method", 
      "simplicity", 
      "maximisation", 
      "geometry"
    ], 
    "name": "Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial", 
    "pagination": "294-301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049135908"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-004-1566-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15791438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-004-1566-1", 
      "https://app.dimensions.ai/details/publication/pub.1049135908"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_387.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-004-1566-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      122 URIs      110 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-004-1566-1 schema:about N125d9eebeb4544e89a7521af1492b409
2 N20cc7357faf749229f3c3ae446090529
3 N2fb4ae91983b496a87e77c3bb3b3c470
4 N30dd5d3bebaf435c97ae1d2b6343c475
5 N34543bd81e5340988e10edbf3aae1787
6 N40919b2fff644693be5f8c0ddab6d81e
7 N5710bb0f6a4e42289776abbfd41d848d
8 N59b96ea3c7e34c82ab63884e671d14d1
9 N80859fa662364ba5837fa58b33d9c9df
10 N8bedde78d63149c28bb52bc03f1f6cb7
11 N8f539b3bad81491c971b35975e33167a
12 Nb380892dc29a458d85560cd75389d8a4
13 Nb8c457ba145d45d69944498349841dd4
14 Nd38f5792aa1541a8b01fde0c4ed8ee58
15 Ne18a3b8c4d554c9ca4171f213189168a
16 Ne3733e8791ec4309b74b4617f7b8ca59
17 Ne9765b0ff04c4e66b0852f7699f4b710
18 Nf7f872715ffe47f69d7f877100e26ce2
19 Nfc67d582a9ac47c589c2fd83850c971c
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author Ned1950e970484c84ab2a9c8c969baadf
23 schema:citation sg:pub.10.1007/s002590000421
24 sg:pub.10.1007/s002590050426
25 sg:pub.10.1007/s002590050570
26 sg:pub.10.1007/s002590100566
27 schema:datePublished 2004-10-15
28 schema:datePublishedReg 2004-10-15
29 schema:description PurposeQuantitative measurement of tracer uptake in a tumour can be influenced by a number of factors, including the method of defining regions of interest (ROIs) and the reconstruction parameters used. The main purpose of this study was to determine the effects of different ROI methods on quantitative outcome, using two reconstruction methods and the standard uptake value (SUV) as a simple quantitative measure of FDG uptake.MethodsFour commonly used methods of ROI definition (manual placement, fixed dimensions, threshold based and maximum pixel value) were used to calculate SUV (SUV[MAN], SUV15 mm, SUV50, SUV75 and SUVmax, respectively) and to generate “metabolic” tumour volumes. Test–retest reproducibility of SUVs and of “metabolic” tumour volumes and the applicability of ROI methods during chemotherapy were assessed. In addition, SUVs calculated on ordered subsets expectation maximisation (OSEM) and filtered back-projection (FBP) images were compared.ResultsROI definition had a direct effect on quantitative outcome. On average, SUV[MAN], SUV15 mm, SUV50 and SUV75, were respectively 48%, 27%, 34% and 15% lower than SUVmax when calculated on OSEM images. No statistically significant differences were found between SUVs calculated on OSEM and FBP reconstructed images. Highest reproducibility was found for SUV15 mm and SUV[MAN] (ICC 0.95 and 0.94, respectively) and for “metabolic” volumes measured with the manual and 50% threshold ROIs (ICC 0.99 for both). Manual, 75% threshold and maximum pixel ROIs could be used throughout therapy, regardless of changes in tumour uptake or geometry. SUVs showed the same trend in relative change in FDG uptake after chemotherapy, irrespective of the ROI method used.ConclusionThe method of ROI definition has a direct influence on quantitative outcome. In terms of simplicity, user-independence, reproducibility and general applicability the threshold-based and fixed dimension methods are the best ROI methods. Threshold methods are in addition relatively independent of changes in size and geometry, however, and may therefore be more suitable for response monitoring purposes.
30 schema:genre article
31 schema:isAccessibleForFree false
32 schema:isPartOf N502f50f949eb4f409d92ddde395c1cb5
33 Nada217f959504238b8cb6660a478108d
34 sg:journal.1297401
35 schema:keywords FBP
36 FDG uptake
37 MethodsFour
38 OSEM
39 OSEM images
40 ROI definition
41 ROI method
42 SUV50
43 SUVmax
44 addition
45 applicability
46 back-projection images
47 changes
48 chemotherapy
49 definition
50 differences
51 different ROI methods
52 dimension method
53 direct effect
54 direct influence
55 effect
56 expectation maximisation
57 factors
58 general applicability
59 geometry
60 high reproducibility
61 images
62 influence
63 interest
64 main purpose
65 manual
66 maximisation
67 measurements
68 measures
69 method
70 monitoring purposes
71 monitoring trials
72 number
73 number of factors
74 outcomes
75 parameters
76 purpose
77 quantitative measures
78 quantitative outcomes
79 reconstruction method
80 reconstruction parameters
81 region
82 region of interest
83 relative changes
84 reproducibility
85 same trend
86 significant differences
87 simple quantitative measure
88 simplicity
89 size
90 standard uptake value
91 study
92 subset expectation maximisation
93 terms
94 terms of simplicity
95 test-retest reproducibility
96 therapy
97 threshold
98 threshold method
99 tracer uptake
100 trends
101 trials
102 tumor uptake
103 tumor volume
104 tumors
105 uptake
106 uptake value
107 values
108 volume
109 schema:name Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial
110 schema:pagination 294-301
111 schema:productId N272f0802af274470b1e2aabb724c1391
112 N342e4c87e13542e6b2518abe2e49f685
113 Ndfa586873725462eb374b5c8890d6f9b
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049135908
115 https://doi.org/10.1007/s00259-004-1566-1
116 schema:sdDatePublished 2022-12-01T06:24
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N93cf7686db1a462397424d4d41dfa3c0
119 schema:url https://doi.org/10.1007/s00259-004-1566-1
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N125d9eebeb4544e89a7521af1492b409 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Prognosis
125 rdf:type schema:DefinedTerm
126 N20cc7357faf749229f3c3ae446090529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Carcinoma, Non-Small-Cell Lung
128 rdf:type schema:DefinedTerm
129 N272f0802af274470b1e2aabb724c1391 schema:name pubmed_id
130 schema:value 15791438
131 rdf:type schema:PropertyValue
132 N2fb4ae91983b496a87e77c3bb3b3c470 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Outcome Assessment, Health Care
134 rdf:type schema:DefinedTerm
135 N30dd5d3bebaf435c97ae1d2b6343c475 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Fluorodeoxyglucose F18
137 rdf:type schema:DefinedTerm
138 N342e4c87e13542e6b2518abe2e49f685 schema:name dimensions_id
139 schema:value pub.1049135908
140 rdf:type schema:PropertyValue
141 N34543bd81e5340988e10edbf3aae1787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Breast Neoplasms
143 rdf:type schema:DefinedTerm
144 N3f28147c323e4738a2dfd30fa427c103 rdf:first sg:person.07673312617.90
145 rdf:rest N7ba34b0275e74dc1a5bdc3d68415b57f
146 N40919b2fff644693be5f8c0ddab6d81e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Female
148 rdf:type schema:DefinedTerm
149 N502f50f949eb4f409d92ddde395c1cb5 schema:volumeNumber 32
150 rdf:type schema:PublicationVolume
151 N5710bb0f6a4e42289776abbfd41d848d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Clinical Trials as Topic
153 rdf:type schema:DefinedTerm
154 N59b96ea3c7e34c82ab63884e671d14d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adult
156 rdf:type schema:DefinedTerm
157 N779061cf199f4b1090b5269646815875 rdf:first sg:person.01361420011.63
158 rdf:rest Nc8256925e6dc4d2383dba08d3e562a88
159 N7ba34b0275e74dc1a5bdc3d68415b57f rdf:first sg:person.0626764200.40
160 rdf:rest Ne3e8ee6bb50f4bc99622494cf05e0b4c
161 N80859fa662364ba5837fa58b33d9c9df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Humans
163 rdf:type schema:DefinedTerm
164 N8bedde78d63149c28bb52bc03f1f6cb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Image Interpretation, Computer-Assisted
166 rdf:type schema:DefinedTerm
167 N8f539b3bad81491c971b35975e33167a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Reproducibility of Results
169 rdf:type schema:DefinedTerm
170 N93cf7686db1a462397424d4d41dfa3c0 schema:name Springer Nature - SN SciGraph project
171 rdf:type schema:Organization
172 Nada217f959504238b8cb6660a478108d schema:issueNumber 3
173 rdf:type schema:PublicationIssue
174 Nb380892dc29a458d85560cd75389d8a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Aged
176 rdf:type schema:DefinedTerm
177 Nb8c457ba145d45d69944498349841dd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Radiopharmaceuticals
179 rdf:type schema:DefinedTerm
180 Nc8256925e6dc4d2383dba08d3e562a88 rdf:first sg:person.0621551653.25
181 rdf:rest N3f28147c323e4738a2dfd30fa427c103
182 Nd38f5792aa1541a8b01fde0c4ed8ee58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name ROC Curve
184 rdf:type schema:DefinedTerm
185 Ndfa586873725462eb374b5c8890d6f9b schema:name doi
186 schema:value 10.1007/s00259-004-1566-1
187 rdf:type schema:PropertyValue
188 Ne18a3b8c4d554c9ca4171f213189168a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Male
190 rdf:type schema:DefinedTerm
191 Ne3733e8791ec4309b74b4617f7b8ca59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Lung Neoplasms
193 rdf:type schema:DefinedTerm
194 Ne3e8ee6bb50f4bc99622494cf05e0b4c rdf:first sg:person.01352511753.53
195 rdf:rest rdf:nil
196 Ne9765b0ff04c4e66b0852f7699f4b710 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Radionuclide Imaging
198 rdf:type schema:DefinedTerm
199 Ned1950e970484c84ab2a9c8c969baadf rdf:first sg:person.0673777171.10
200 rdf:rest N779061cf199f4b1090b5269646815875
201 Nf7f872715ffe47f69d7f877100e26ce2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Middle Aged
203 rdf:type schema:DefinedTerm
204 Nfc67d582a9ac47c589c2fd83850c971c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Sensitivity and Specificity
206 rdf:type schema:DefinedTerm
207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
208 schema:name Medical and Health Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
211 schema:name Clinical Sciences
212 rdf:type schema:DefinedTerm
213 sg:journal.1297401 schema:issn 1619-7070
214 1619-7089
215 schema:name European Journal of Nuclear Medicine and Molecular Imaging
216 schema:publisher Springer Nature
217 rdf:type schema:Periodical
218 sg:person.01352511753.53 schema:affiliation grid-institutes:grid.16872.3a
219 schema:familyName Lammertsma
220 schema:givenName Adriaan A.
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53
222 rdf:type schema:Person
223 sg:person.01361420011.63 schema:affiliation grid-institutes:grid.16872.3a
224 schema:familyName Boellaard
225 schema:givenName R.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
227 rdf:type schema:Person
228 sg:person.0621551653.25 schema:affiliation grid-institutes:grid.16872.3a
229 schema:familyName Hoekstra
230 schema:givenName Otto S.
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25
232 rdf:type schema:Person
233 sg:person.0626764200.40 schema:familyName Hoekstra
234 schema:givenName Corneline J.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40
236 rdf:type schema:Person
237 sg:person.0673777171.10 schema:affiliation grid-institutes:grid.16872.3a
238 schema:familyName Krak
239 schema:givenName Nanda C.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10
241 rdf:type schema:Person
242 sg:person.07673312617.90 schema:affiliation grid-institutes:grid.16872.3a
243 schema:familyName Twisk
244 schema:givenName Jos W. R.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673312617.90
246 rdf:type schema:Person
247 sg:pub.10.1007/s002590000421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025011181
248 https://doi.org/10.1007/s002590000421
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/s002590050426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264770
251 https://doi.org/10.1007/s002590050426
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s002590050570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005067118
254 https://doi.org/10.1007/s002590050570
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s002590100566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015542034
257 https://doi.org/10.1007/s002590100566
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.16872.3a schema:alternateName Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands
260 Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands
261 schema:name Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands
262 Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...