Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-10-15

AUTHORS

Nanda C. Krak, R. Boellaard, Otto S. Hoekstra, Jos W. R. Twisk, Corneline J. Hoekstra, Adriaan A. Lammertsma

ABSTRACT

PurposeQuantitative measurement of tracer uptake in a tumour can be influenced by a number of factors, including the method of defining regions of interest (ROIs) and the reconstruction parameters used. The main purpose of this study was to determine the effects of different ROI methods on quantitative outcome, using two reconstruction methods and the standard uptake value (SUV) as a simple quantitative measure of FDG uptake.MethodsFour commonly used methods of ROI definition (manual placement, fixed dimensions, threshold based and maximum pixel value) were used to calculate SUV (SUV[MAN], SUV15 mm, SUV50, SUV75 and SUVmax, respectively) and to generate “metabolic” tumour volumes. Test–retest reproducibility of SUVs and of “metabolic” tumour volumes and the applicability of ROI methods during chemotherapy were assessed. In addition, SUVs calculated on ordered subsets expectation maximisation (OSEM) and filtered back-projection (FBP) images were compared.ResultsROI definition had a direct effect on quantitative outcome. On average, SUV[MAN], SUV15 mm, SUV50 and SUV75, were respectively 48%, 27%, 34% and 15% lower than SUVmax when calculated on OSEM images. No statistically significant differences were found between SUVs calculated on OSEM and FBP reconstructed images. Highest reproducibility was found for SUV15 mm and SUV[MAN] (ICC 0.95 and 0.94, respectively) and for “metabolic” volumes measured with the manual and 50% threshold ROIs (ICC 0.99 for both). Manual, 75% threshold and maximum pixel ROIs could be used throughout therapy, regardless of changes in tumour uptake or geometry. SUVs showed the same trend in relative change in FDG uptake after chemotherapy, irrespective of the ROI method used.ConclusionThe method of ROI definition has a direct influence on quantitative outcome. In terms of simplicity, user-independence, reproducibility and general applicability the threshold-based and fixed dimension methods are the best ROI methods. Threshold methods are in addition relatively independent of changes in size and geometry, however, and may therefore be more suitable for response monitoring purposes. More... »

PAGES

294-301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1

DOI

http://dx.doi.org/10.1007/s00259-004-1566-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049135908

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15791438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Non-Small-Cell Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Outcome Assessment, Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radionuclide Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krak", 
        "givenName": "Nanda C.", 
        "id": "sg:person.0673777171.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "R.", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoekstra", 
        "givenName": "Otto S.", 
        "id": "sg:person.0621551653.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Twisk", 
        "givenName": "Jos W. R.", 
        "id": "sg:person.07673312617.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673312617.90"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hoekstra", 
        "givenName": "Corneline J.", 
        "id": "sg:person.0626764200.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A.", 
        "id": "sg:person.01352511753.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002590050426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264770", 
          "https://doi.org/10.1007/s002590050426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005067118", 
          "https://doi.org/10.1007/s002590050570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590000421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025011181", 
          "https://doi.org/10.1007/s002590000421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590100566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015542034", 
          "https://doi.org/10.1007/s002590100566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10-15", 
    "datePublishedReg": "2004-10-15", 
    "description": "PurposeQuantitative measurement of tracer uptake in a tumour can be influenced by a number of factors, including the method of defining regions of interest (ROIs) and the reconstruction parameters used. The main purpose of this study was to determine the effects of different ROI methods on quantitative outcome, using two reconstruction methods and the standard uptake value (SUV) as a simple quantitative measure of FDG uptake.MethodsFour commonly used methods of ROI definition (manual placement, fixed dimensions, threshold based and maximum pixel value) were used to calculate SUV (SUV[MAN], SUV15\u00a0mm, SUV50, SUV75 and SUVmax, respectively) and to generate \u201cmetabolic\u201d tumour volumes. Test\u2013retest reproducibility of SUVs and of \u201cmetabolic\u201d tumour volumes and the applicability of ROI methods during chemotherapy were assessed. In addition, SUVs calculated on ordered subsets expectation maximisation (OSEM) and filtered back-projection (FBP) images were compared.ResultsROI definition had a direct effect on quantitative outcome. On average, SUV[MAN], SUV15\u00a0mm, SUV50 and SUV75, were respectively 48%, 27%, 34% and 15% lower than SUVmax when calculated on OSEM images. No statistically significant differences were found between SUVs calculated on OSEM and FBP reconstructed images. Highest reproducibility was found for SUV15\u00a0mm and SUV[MAN] (ICC 0.95 and 0.94, respectively) and for \u201cmetabolic\u201d volumes measured with the manual and 50% threshold ROIs (ICC 0.99 for both). Manual, 75% threshold and maximum pixel ROIs could be used throughout therapy, regardless of changes in tumour uptake or geometry. SUVs showed the same trend in relative change in FDG uptake after chemotherapy, irrespective of the ROI method used.ConclusionThe method of ROI definition has a direct influence on quantitative outcome. In terms of simplicity, user-independence, reproducibility and general applicability the threshold-based and fixed dimension methods are the best ROI methods. Threshold methods are in addition relatively independent of changes in size and geometry, however, and may therefore be more suitable for response monitoring purposes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00259-004-1566-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "standard uptake value", 
      "FDG uptake", 
      "tumor volume", 
      "test-retest reproducibility", 
      "quantitative outcomes", 
      "ROI method", 
      "tracer uptake", 
      "tumor uptake", 
      "uptake value", 
      "region of interest", 
      "subset expectation maximisation", 
      "outcomes", 
      "chemotherapy", 
      "significant differences", 
      "ROI definition", 
      "monitoring trials", 
      "OSEM images", 
      "direct effect", 
      "uptake", 
      "different ROI methods", 
      "SUVmax", 
      "therapy", 
      "tumors", 
      "number of factors", 
      "trials", 
      "relative changes", 
      "effect", 
      "volume", 
      "SUV50", 
      "simple quantitative measure", 
      "changes", 
      "manual", 
      "MethodsFour", 
      "reproducibility", 
      "quantitative measures", 
      "purpose", 
      "factors", 
      "high reproducibility", 
      "differences", 
      "addition", 
      "study", 
      "measures", 
      "reconstruction parameters", 
      "same trend", 
      "definition", 
      "FBP", 
      "direct influence", 
      "threshold", 
      "method", 
      "back-projection images", 
      "number", 
      "expectation maximisation", 
      "OSEM", 
      "trends", 
      "images", 
      "values", 
      "region", 
      "reconstruction method", 
      "size", 
      "main purpose", 
      "monitoring purposes", 
      "measurements", 
      "influence", 
      "terms of simplicity", 
      "interest", 
      "parameters", 
      "terms", 
      "applicability", 
      "general applicability", 
      "threshold method", 
      "dimension method", 
      "simplicity", 
      "maximisation", 
      "geometry"
    ], 
    "name": "Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial", 
    "pagination": "294-301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049135908"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-004-1566-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15791438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-004-1566-1", 
      "https://app.dimensions.ai/details/publication/pub.1049135908"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_388.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00259-004-1566-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-004-1566-1'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      122 URIs      110 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-004-1566-1 schema:about N00c5e316c4224bb7bfd7d6919b60c8d2
2 N02b7d82d414a4e53b2a1d526e7129b64
3 N08c9f3b596254f5db449ee4e26e3c711
4 N4cb5163fc64447708d3a2313f1d9581a
5 N6082ea65c30044f8bf7950fc3a096624
6 N66e9c4c2d6204d15b05212ae41fc4e7e
7 N7236ab704ed041849a25c9c589dbe6b8
8 N83aeec9bf52d4678b39de61c6095dd57
9 N8803bc5128d244e999806405e0681cb1
10 N9a31bd923ca64f7e91e47cdb4ad3834a
11 N9e319ab0ed904a09a7a0cf8cff5f40db
12 Nab88b2ebe4054a0a93040d7341f6f17e
13 Nbb2b1dddfe5a419bb5385b2e6c4706c3
14 Nc44656e0ed984951a04756d55d8e0557
15 Nce00200280514f7795a0606f35901abe
16 Nd6da0b24564841f687e6b996c8085daf
17 Ne8dcd0ff57fa494faa8b14a1dbcc4cc2
18 Nf7acbd231ce2486e8a028601ca649ff0
19 Nf89d81859e214bc0b471bcaa1761be96
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author N2c2e72b83cf946c2a2b01ba0b5820e4c
23 schema:citation sg:pub.10.1007/s002590000421
24 sg:pub.10.1007/s002590050426
25 sg:pub.10.1007/s002590050570
26 sg:pub.10.1007/s002590100566
27 schema:datePublished 2004-10-15
28 schema:datePublishedReg 2004-10-15
29 schema:description PurposeQuantitative measurement of tracer uptake in a tumour can be influenced by a number of factors, including the method of defining regions of interest (ROIs) and the reconstruction parameters used. The main purpose of this study was to determine the effects of different ROI methods on quantitative outcome, using two reconstruction methods and the standard uptake value (SUV) as a simple quantitative measure of FDG uptake.MethodsFour commonly used methods of ROI definition (manual placement, fixed dimensions, threshold based and maximum pixel value) were used to calculate SUV (SUV[MAN], SUV15 mm, SUV50, SUV75 and SUVmax, respectively) and to generate “metabolic” tumour volumes. Test–retest reproducibility of SUVs and of “metabolic” tumour volumes and the applicability of ROI methods during chemotherapy were assessed. In addition, SUVs calculated on ordered subsets expectation maximisation (OSEM) and filtered back-projection (FBP) images were compared.ResultsROI definition had a direct effect on quantitative outcome. On average, SUV[MAN], SUV15 mm, SUV50 and SUV75, were respectively 48%, 27%, 34% and 15% lower than SUVmax when calculated on OSEM images. No statistically significant differences were found between SUVs calculated on OSEM and FBP reconstructed images. Highest reproducibility was found for SUV15 mm and SUV[MAN] (ICC 0.95 and 0.94, respectively) and for “metabolic” volumes measured with the manual and 50% threshold ROIs (ICC 0.99 for both). Manual, 75% threshold and maximum pixel ROIs could be used throughout therapy, regardless of changes in tumour uptake or geometry. SUVs showed the same trend in relative change in FDG uptake after chemotherapy, irrespective of the ROI method used.ConclusionThe method of ROI definition has a direct influence on quantitative outcome. In terms of simplicity, user-independence, reproducibility and general applicability the threshold-based and fixed dimension methods are the best ROI methods. Threshold methods are in addition relatively independent of changes in size and geometry, however, and may therefore be more suitable for response monitoring purposes.
30 schema:genre article
31 schema:isAccessibleForFree false
32 schema:isPartOf N457d0d5075724b94b9b42c6d15312f1b
33 Nb5923494f5ad4e828d2fb0435a613e4c
34 sg:journal.1297401
35 schema:keywords FBP
36 FDG uptake
37 MethodsFour
38 OSEM
39 OSEM images
40 ROI definition
41 ROI method
42 SUV50
43 SUVmax
44 addition
45 applicability
46 back-projection images
47 changes
48 chemotherapy
49 definition
50 differences
51 different ROI methods
52 dimension method
53 direct effect
54 direct influence
55 effect
56 expectation maximisation
57 factors
58 general applicability
59 geometry
60 high reproducibility
61 images
62 influence
63 interest
64 main purpose
65 manual
66 maximisation
67 measurements
68 measures
69 method
70 monitoring purposes
71 monitoring trials
72 number
73 number of factors
74 outcomes
75 parameters
76 purpose
77 quantitative measures
78 quantitative outcomes
79 reconstruction method
80 reconstruction parameters
81 region
82 region of interest
83 relative changes
84 reproducibility
85 same trend
86 significant differences
87 simple quantitative measure
88 simplicity
89 size
90 standard uptake value
91 study
92 subset expectation maximisation
93 terms
94 terms of simplicity
95 test-retest reproducibility
96 therapy
97 threshold
98 threshold method
99 tracer uptake
100 trends
101 trials
102 tumor uptake
103 tumor volume
104 tumors
105 uptake
106 uptake value
107 values
108 volume
109 schema:name Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial
110 schema:pagination 294-301
111 schema:productId N54f0283d363c490d8938ec9f1e40f302
112 Ne7fa11bc9d004fbebb8a3f7d73fde322
113 Nf69eb7508f934150b2813c5587856e21
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049135908
115 https://doi.org/10.1007/s00259-004-1566-1
116 schema:sdDatePublished 2022-11-24T20:50
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N438e11ffe56a4f9392a9634d2d222afd
119 schema:url https://doi.org/10.1007/s00259-004-1566-1
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N00c5e316c4224bb7bfd7d6919b60c8d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Fluorodeoxyglucose F18
125 rdf:type schema:DefinedTerm
126 N02b7d82d414a4e53b2a1d526e7129b64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Humans
128 rdf:type schema:DefinedTerm
129 N08c9f3b596254f5db449ee4e26e3c711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Reproducibility of Results
131 rdf:type schema:DefinedTerm
132 N2c2e72b83cf946c2a2b01ba0b5820e4c rdf:first sg:person.0673777171.10
133 rdf:rest N78c752198793488c92a5dac8e4baa951
134 N2e8a1f3bec9f459e90af0ea79856e552 rdf:first sg:person.01352511753.53
135 rdf:rest rdf:nil
136 N438e11ffe56a4f9392a9634d2d222afd schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 N457d0d5075724b94b9b42c6d15312f1b schema:volumeNumber 32
139 rdf:type schema:PublicationVolume
140 N4cb5163fc64447708d3a2313f1d9581a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Aged
142 rdf:type schema:DefinedTerm
143 N54f0283d363c490d8938ec9f1e40f302 schema:name doi
144 schema:value 10.1007/s00259-004-1566-1
145 rdf:type schema:PropertyValue
146 N5bb051f6231d4b84b50e5e11d47f0ebc rdf:first sg:person.07673312617.90
147 rdf:rest N68a33f5ad5694b7f818001d2a37fe98a
148 N6082ea65c30044f8bf7950fc3a096624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Adult
150 rdf:type schema:DefinedTerm
151 N66e9c4c2d6204d15b05212ae41fc4e7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name ROC Curve
153 rdf:type schema:DefinedTerm
154 N68a33f5ad5694b7f818001d2a37fe98a rdf:first sg:person.0626764200.40
155 rdf:rest N2e8a1f3bec9f459e90af0ea79856e552
156 N7236ab704ed041849a25c9c589dbe6b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Radiopharmaceuticals
158 rdf:type schema:DefinedTerm
159 N78c752198793488c92a5dac8e4baa951 rdf:first sg:person.01361420011.63
160 rdf:rest Nca36a8f1f4444f6d81fbecffdf722a0a
161 N83aeec9bf52d4678b39de61c6095dd57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Prognosis
163 rdf:type schema:DefinedTerm
164 N8803bc5128d244e999806405e0681cb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Carcinoma, Non-Small-Cell Lung
166 rdf:type schema:DefinedTerm
167 N9a31bd923ca64f7e91e47cdb4ad3834a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Radionuclide Imaging
169 rdf:type schema:DefinedTerm
170 N9e319ab0ed904a09a7a0cf8cff5f40db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Clinical Trials as Topic
172 rdf:type schema:DefinedTerm
173 Nab88b2ebe4054a0a93040d7341f6f17e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Middle Aged
175 rdf:type schema:DefinedTerm
176 Nb5923494f5ad4e828d2fb0435a613e4c schema:issueNumber 3
177 rdf:type schema:PublicationIssue
178 Nbb2b1dddfe5a419bb5385b2e6c4706c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Lung Neoplasms
180 rdf:type schema:DefinedTerm
181 Nc44656e0ed984951a04756d55d8e0557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Sensitivity and Specificity
183 rdf:type schema:DefinedTerm
184 Nca36a8f1f4444f6d81fbecffdf722a0a rdf:first sg:person.0621551653.25
185 rdf:rest N5bb051f6231d4b84b50e5e11d47f0ebc
186 Nce00200280514f7795a0606f35901abe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Breast Neoplasms
188 rdf:type schema:DefinedTerm
189 Nd6da0b24564841f687e6b996c8085daf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Male
191 rdf:type schema:DefinedTerm
192 Ne7fa11bc9d004fbebb8a3f7d73fde322 schema:name dimensions_id
193 schema:value pub.1049135908
194 rdf:type schema:PropertyValue
195 Ne8dcd0ff57fa494faa8b14a1dbcc4cc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Outcome Assessment, Health Care
197 rdf:type schema:DefinedTerm
198 Nf69eb7508f934150b2813c5587856e21 schema:name pubmed_id
199 schema:value 15791438
200 rdf:type schema:PropertyValue
201 Nf7acbd231ce2486e8a028601ca649ff0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Image Interpretation, Computer-Assisted
203 rdf:type schema:DefinedTerm
204 Nf89d81859e214bc0b471bcaa1761be96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Female
206 rdf:type schema:DefinedTerm
207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
208 schema:name Medical and Health Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
211 schema:name Clinical Sciences
212 rdf:type schema:DefinedTerm
213 sg:journal.1297401 schema:issn 1619-7070
214 1619-7089
215 schema:name European Journal of Nuclear Medicine and Molecular Imaging
216 schema:publisher Springer Nature
217 rdf:type schema:Periodical
218 sg:person.01352511753.53 schema:affiliation grid-institutes:grid.16872.3a
219 schema:familyName Lammertsma
220 schema:givenName Adriaan A.
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53
222 rdf:type schema:Person
223 sg:person.01361420011.63 schema:affiliation grid-institutes:grid.16872.3a
224 schema:familyName Boellaard
225 schema:givenName R.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
227 rdf:type schema:Person
228 sg:person.0621551653.25 schema:affiliation grid-institutes:grid.16872.3a
229 schema:familyName Hoekstra
230 schema:givenName Otto S.
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25
232 rdf:type schema:Person
233 sg:person.0626764200.40 schema:familyName Hoekstra
234 schema:givenName Corneline J.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626764200.40
236 rdf:type schema:Person
237 sg:person.0673777171.10 schema:affiliation grid-institutes:grid.16872.3a
238 schema:familyName Krak
239 schema:givenName Nanda C.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673777171.10
241 rdf:type schema:Person
242 sg:person.07673312617.90 schema:affiliation grid-institutes:grid.16872.3a
243 schema:familyName Twisk
244 schema:givenName Jos W. R.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673312617.90
246 rdf:type schema:Person
247 sg:pub.10.1007/s002590000421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025011181
248 https://doi.org/10.1007/s002590000421
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/s002590050426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264770
251 https://doi.org/10.1007/s002590050426
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s002590050570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005067118
254 https://doi.org/10.1007/s002590050570
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s002590100566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015542034
257 https://doi.org/10.1007/s002590100566
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.16872.3a schema:alternateName Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands
260 Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands
261 schema:name Clinical PET Centre, VU University Medical Centre, Amsterdam, The Netherlands
262 Department of Clinical Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...