Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

H. Yeung, A. Sanches, O. Squire, H. Macapinlac, S. Larson, Y. Erdi

ABSTRACT

Although the standardized uptake value (SUV) is currently used in fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging, concerns have been raised over its accuracy and clinical relevance. Dependence of the SUV on body weight has been observed in adults and this should be of concern in the pediatric population, since there are significant body changes during childhood. The aim of the present study was to compare SUV measurements based on body weight, body surface area and lean body mass in the pediatric population and to determine a more reliable parameter across all ages. Sixty-eight pediatric FDG-PET studies were evaluated. Age ranged from 2 to 17 years and weight from 11 to 77 kg. Regions of interest were drawn at the liver for physiologic comparison and at FDG-avid malignant lesions. SUV based on body weight (SUV(bw)) varied across different weights, a phenomenon less evident when body surface area (SUV(bsa)) normalization is applied. Lean body mass-based SUV (SUV(lbm)) also showed a positive correlation with weight, which again was less evident when normalized to bsa (SUV(bsa-lbm)). The measured liver SUV(bw) was 1.1+/-0.3, a much lower value than in our adult population (1.9+/-0.3). The liver SUV(bsa) was 7.3+/-1.3. The tumor sites had an SUV(bw) of 4.0+/-2.7 and an SUV(bsa) of 25.9+/-15.4 (65% of the patients had neuroblastoma). The bsa-based SUVs were more constant across the pediatric ages and were less dependent on body weight than the SUV(bw). These results indicate that SUV calculated on the basis of body surface area is a more uniform parameter than SUV based on body weight in pediatric patients and is probably the most appropriate approach for the follow-up of these patients. More... »

PAGES

61-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00259-001-0662-8

DOI

http://dx.doi.org/10.1007/s00259-001-0662-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048896394

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11807608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Surface Area", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York City, NY 10021, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeung", 
        "givenName": "H.", 
        "id": "sg:person.01100015635.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100015635.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unicamp \u2013 Division of Nuclear Medicine, Campinas, SP, Brazil, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanches", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York City, NY 10021, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Squire", 
        "givenName": "O.", 
        "id": "sg:person.01345621360.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345621360.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macapinlac", 
        "givenName": "H.", 
        "id": "sg:person.0677650210.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677650210.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York City, NY 10021, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larson", 
        "givenName": "S.", 
        "id": "sg:person.013306534017.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306534017.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York City, NY 10021, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erdi", 
        "givenName": "Y.", 
        "id": "sg:person.01320377707.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320377707.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiology.213.2.r99nv37521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029967292"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "Although the standardized uptake value (SUV) is currently used in fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging, concerns have been raised over its accuracy and clinical relevance. Dependence of the SUV on body weight has been observed in adults and this should be of concern in the pediatric population, since there are significant body changes during childhood. The aim of the present study was to compare SUV measurements based on body weight, body surface area and lean body mass in the pediatric population and to determine a more reliable parameter across all ages. Sixty-eight pediatric FDG-PET studies were evaluated. Age ranged from 2 to 17 years and weight from 11 to 77 kg. Regions of interest were drawn at the liver for physiologic comparison and at FDG-avid malignant lesions. SUV based on body weight (SUV(bw)) varied across different weights, a phenomenon less evident when body surface area (SUV(bsa)) normalization is applied. Lean body mass-based SUV (SUV(lbm)) also showed a positive correlation with weight, which again was less evident when normalized to bsa (SUV(bsa-lbm)). The measured liver SUV(bw) was 1.1+/-0.3, a much lower value than in our adult population (1.9+/-0.3). The liver SUV(bsa) was 7.3+/-1.3. The tumor sites had an SUV(bw) of 4.0+/-2.7 and an SUV(bsa) of 25.9+/-15.4 (65% of the patients had neuroblastoma). The bsa-based SUVs were more constant across the pediatric ages and were less dependent on body weight than the SUV(bw). These results indicate that SUV calculated on the basis of body surface area is a more uniform parameter than SUV based on body weight in pediatric patients and is probably the most appropriate approach for the follow-up of these patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00259-001-0662-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter", 
    "pagination": "61-66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e8eeab1555423070af5a9c0903af37c0ed07c97f709539a657a237ba03c406b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11807608"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101140988"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00259-001-0662-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048896394"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00259-001-0662-8", 
      "https://app.dimensions.ai/details/publication/pub.1048896394"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00259-001-0662-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00259-001-0662-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00259-001-0662-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00259-001-0662-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00259-001-0662-8'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      42 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00259-001-0662-8 schema:about N09b14a07df544a4c80f272f587a37126
2 N4399abdf61084f1d8c6ef6ae18ae28a0
3 N4552f69ee7d244cb9810b38df4db6dff
4 N58b7a02f41194b8583a358e124b3c97a
5 N5ed761a1c0104affb26a1b444c919c8c
6 N7bbec18858a34f509b374154e47a1d79
7 Nb3a1fd7ba2df4fc99314696ac6ba1cf9
8 Ncd06dc61e07e416e9e9bb93b60454d12
9 Ndeaf452c00054f09895a1612949c669f
10 Ne691670fecec42b0a01bd9c2cd2eb3d6
11 Nea8ee35e341e46b4989c20811fec96f6
12 Nf9bbf5725f1543c0af0f4146e7ab76c7
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author Nba7855bd52ba43438b33fc330381dd22
16 schema:citation https://doi.org/10.1148/radiology.213.2.r99nv37521
17 schema:datePublished 2002-01
18 schema:datePublishedReg 2002-01-01
19 schema:description Although the standardized uptake value (SUV) is currently used in fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging, concerns have been raised over its accuracy and clinical relevance. Dependence of the SUV on body weight has been observed in adults and this should be of concern in the pediatric population, since there are significant body changes during childhood. The aim of the present study was to compare SUV measurements based on body weight, body surface area and lean body mass in the pediatric population and to determine a more reliable parameter across all ages. Sixty-eight pediatric FDG-PET studies were evaluated. Age ranged from 2 to 17 years and weight from 11 to 77 kg. Regions of interest were drawn at the liver for physiologic comparison and at FDG-avid malignant lesions. SUV based on body weight (SUV(bw)) varied across different weights, a phenomenon less evident when body surface area (SUV(bsa)) normalization is applied. Lean body mass-based SUV (SUV(lbm)) also showed a positive correlation with weight, which again was less evident when normalized to bsa (SUV(bsa-lbm)). The measured liver SUV(bw) was 1.1+/-0.3, a much lower value than in our adult population (1.9+/-0.3). The liver SUV(bsa) was 7.3+/-1.3. The tumor sites had an SUV(bw) of 4.0+/-2.7 and an SUV(bsa) of 25.9+/-15.4 (65% of the patients had neuroblastoma). The bsa-based SUVs were more constant across the pediatric ages and were less dependent on body weight than the SUV(bw). These results indicate that SUV calculated on the basis of body surface area is a more uniform parameter than SUV based on body weight in pediatric patients and is probably the most appropriate approach for the follow-up of these patients.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N465fbae7a8e84aada12acea5f93b426b
24 N54a51927a51f4405bb3462354e6d1b1b
25 sg:journal.1297401
26 schema:name Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter
27 schema:pagination 61-66
28 schema:productId N3d2ca4af8c8249809e7b861dc3e93101
29 N6ef4e2d800c14257866d64b500942657
30 N82eba9a3b46c4bae82c88b5f9e535798
31 N8531382b615a478fbf8724d5921476c6
32 N9b560d8a6e7b460bbbd77431df1d1077
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048896394
34 https://doi.org/10.1007/s00259-001-0662-8
35 schema:sdDatePublished 2019-04-11T00:17
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nad82f114196a4003ac7b046d9df94de6
38 schema:url http://link.springer.com/10.1007%2Fs00259-001-0662-8
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N09b14a07df544a4c80f272f587a37126 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
43 schema:name Humans
44 rdf:type schema:DefinedTerm
45 N3d2ca4af8c8249809e7b861dc3e93101 schema:name nlm_unique_id
46 schema:value 101140988
47 rdf:type schema:PropertyValue
48 N4399abdf61084f1d8c6ef6ae18ae28a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
49 schema:name Body Surface Area
50 rdf:type schema:DefinedTerm
51 N4552f69ee7d244cb9810b38df4db6dff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Adolescent
53 rdf:type schema:DefinedTerm
54 N465fbae7a8e84aada12acea5f93b426b schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N54a51927a51f4405bb3462354e6d1b1b schema:volumeNumber 29
57 rdf:type schema:PublicationVolume
58 N58b7a02f41194b8583a358e124b3c97a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Fluorodeoxyglucose F18
60 rdf:type schema:DefinedTerm
61 N5ed761a1c0104affb26a1b444c919c8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Child, Preschool
63 rdf:type schema:DefinedTerm
64 N5fc5c12851604c01b91b8e130be2fde4 rdf:first Na2089cacfab149f3bf3d1c914accc561
65 rdf:rest Nbcc7d3fe063a4466afef70e441af2616
66 N6ef4e2d800c14257866d64b500942657 schema:name readcube_id
67 schema:value e8eeab1555423070af5a9c0903af37c0ed07c97f709539a657a237ba03c406b4
68 rdf:type schema:PropertyValue
69 N7bbec18858a34f509b374154e47a1d79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Tomography, Emission-Computed
71 rdf:type schema:DefinedTerm
72 N803c93428a70464e805057c434d91b17 rdf:first sg:person.01320377707.42
73 rdf:rest rdf:nil
74 N82eba9a3b46c4bae82c88b5f9e535798 schema:name dimensions_id
75 schema:value pub.1048896394
76 rdf:type schema:PropertyValue
77 N8531382b615a478fbf8724d5921476c6 schema:name doi
78 schema:value 10.1007/s00259-001-0662-8
79 rdf:type schema:PropertyValue
80 N9b560d8a6e7b460bbbd77431df1d1077 schema:name pubmed_id
81 schema:value 11807608
82 rdf:type schema:PropertyValue
83 Na2089cacfab149f3bf3d1c914accc561 schema:affiliation Neffdf7713eac42139f16f7d5bd31a502
84 schema:familyName Sanches
85 schema:givenName A.
86 rdf:type schema:Person
87 Nad82f114196a4003ac7b046d9df94de6 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nb3a1fd7ba2df4fc99314696ac6ba1cf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Neoplasms
91 rdf:type schema:DefinedTerm
92 Nb919db5f3b4548a8b28f42cd20fa4c56 rdf:first sg:person.013306534017.05
93 rdf:rest N803c93428a70464e805057c434d91b17
94 Nba7855bd52ba43438b33fc330381dd22 rdf:first sg:person.01100015635.82
95 rdf:rest N5fc5c12851604c01b91b8e130be2fde4
96 Nbcc7d3fe063a4466afef70e441af2616 rdf:first sg:person.01345621360.91
97 rdf:rest Nbf8abe54c4404c15ada10f65df42148b
98 Nbf8abe54c4404c15ada10f65df42148b rdf:first sg:person.0677650210.40
99 rdf:rest Nb919db5f3b4548a8b28f42cd20fa4c56
100 Ncd06dc61e07e416e9e9bb93b60454d12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Liver
102 rdf:type schema:DefinedTerm
103 Ndeaf452c00054f09895a1612949c669f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Child
105 rdf:type schema:DefinedTerm
106 Ne691670fecec42b0a01bd9c2cd2eb3d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Body Mass Index
108 rdf:type schema:DefinedTerm
109 Nea8ee35e341e46b4989c20811fec96f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Radiopharmaceuticals
111 rdf:type schema:DefinedTerm
112 Neffdf7713eac42139f16f7d5bd31a502 schema:name Unicamp – Division of Nuclear Medicine, Campinas, SP, Brazil, Brazil
113 rdf:type schema:Organization
114 Nf9bbf5725f1543c0af0f4146e7ab76c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Body Weight
116 rdf:type schema:DefinedTerm
117 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
118 schema:name Medical and Health Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
121 schema:name Clinical Sciences
122 rdf:type schema:DefinedTerm
123 sg:journal.1297401 schema:issn 1619-7070
124 1619-7089
125 schema:name European Journal of Nuclear Medicine and Molecular Imaging
126 rdf:type schema:Periodical
127 sg:person.01100015635.82 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
128 schema:familyName Yeung
129 schema:givenName H.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100015635.82
131 rdf:type schema:Person
132 sg:person.01320377707.42 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
133 schema:familyName Erdi
134 schema:givenName Y.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320377707.42
136 rdf:type schema:Person
137 sg:person.013306534017.05 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
138 schema:familyName Larson
139 schema:givenName S.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306534017.05
141 rdf:type schema:Person
142 sg:person.01345621360.91 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
143 schema:familyName Squire
144 schema:givenName O.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345621360.91
146 rdf:type schema:Person
147 sg:person.0677650210.40 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
148 schema:familyName Macapinlac
149 schema:givenName H.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677650210.40
151 rdf:type schema:Person
152 https://doi.org/10.1148/radiology.213.2.r99nv37521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029967292
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
155 schema:name MD Anderson Cancer Center, Houston, TX, USA
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.51462.34 schema:alternateName Memorial Sloan Kettering Cancer Center
158 schema:name Division of Nuclear Medicine, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York City, NY 10021, USA, USA
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...